®

Check for
updates

Momba: JANI Meets Python*

Maximilian A. Kéhl' ® (=), Michaela Klauck! ®, and Holger Hermanns!:2

'Saarland University, Saarland Informatics Campus, Saarbriicken, Germany
2Institute of Intelligent Software, Guangzhou, China
{koehl,klauck,hermanns}@cs.uni-saarland.de

Abstract. JANI-model [6] is a model interchange format for networks
of interacting automata. It is well-entrenched in the quantitative model
checking community and allows modeling a variety of systems involving
concurrency, probabilistic and real-time aspects, as well as continuous
dynamics. Python is a general purpose programming language preferred
by many for its ease of use and vast ecosystem. In this paper, we present
Momba, a flexible Python framework for dealing with formal models cen-
tered around the JANI-model format and formalism. Momba strives to
deliver an integrated and intuitive experience for experimenting with for-
mal models making them accessible to a broader audience. To this end,
it provides a pythonic interface for model construction, validation, and
analysis. Here, we demonstrate these capabilities.

1 Introduction

Dealing with formal models encompasses a variety of tasks which can be chal-
lenging from time to time—especially for newcomers. Everything starts with
the construction of a model or a family thereof. Often a textual or other, more
formal, description of the scenario to be modeled is already existing, such as a
rough sketch of the desired behavior or a circuit diagram. Then, after a formal
model has finally been conceived, one has to walidate that the model actually
adequately models what should be modeled. In this regard models are just like
any other human artifact, inadequate initially but over time it gets better. Only
after confidence in the model has been established, one is able to harvest the
benefits by handing over the model to analysis tools, e. g., a model checker.

In this paper, we present Momba, a flexible Python framework for dealing
with formal models. Momba strives to deliver an integrated and intuitive ex-
perience to aid the process of model construction, validation, and analysis. It
provides convenience functions for the constructions of models effectively turn-
ing Python into a syntax-aware macro language enabling the construction of
models in a modular fashion. Momba’s built-in simulation engine allows gaining

* This work was partially supported by the ERC Advanced Investigators Grant
695614 (POWVER), by the German Research Foundation (DFG) under grant
No. 389792660, as part of TRR 248, see https://perspicuous-computing.science,
and by the Key-Area Research and Development Program Grant 2018B010107004
of Guangdong Province.

© The Author(s) 2021

J. F. Groote and K. G. Larsen (Eds.): TACAS 2021, LNCS 12652, pp. 389-398, 2021.
https://doi.org/10.1007/978-3-030-72013-1_23

https://doi.org/10.5281/zenodo.4431780
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72013-1_23&domain=pdf
http://orcid.org/0000-0003-2551-2814
http://orcid.org/0000-0002-6353-227X
http://orcid.org/0000-0002-2766-9615
https://perspicuous-computing.science
https://doi.org/10.1007/978-3-030-72013-1_23

390 M. A. Kohl et al.

confidence in a model, for instance, by rapidly prototyping a tool for interactive
model exploration and visualization, or by connecting it to a testing framework.
Finally, thanks to the JANI-model [6] interchange format, several state-of-the-
art model checkers and other tools are readily available for analysis. The latest
version of Momba is always available on GitHub [1] and the evaluated artifact
of this tool demo paper can be found on Zenodo [27].

Why Momba? The idea to harvest a general purpose programming environment
for formal modelling is not new at all. For instance, the SVL language com-
bines the power of process algebraic modelling with the power of the bourne
shell. As part of many CADP installations [12,13], it is in daily use since its in-
ception [11]. Many formal modeling tools also already provide Python bindings
[23,10]. Momba tries not to be yet another incarnation of these ideas.

While the construction of formal models clearly is an integral part of Momba,
Momba is more than just a framework for constructing models with the help of
Python. Most importantly, it also provides features to work with these models
such as a simulator or an interface to different model checking tools. At the same
time, it is not just a binding to an API developed for another language, say C++.
Momba is tool-agnostic and aims to provide a pythonic interface for dealing with
formal models while leveraging existing tools. Momba covers the whole process
from model creation through validation to analysis. To this end, it is centered
around the well-entrenched JANI-model interchange format.

Why JANI? Traditionally, most analysis tools for formal models came with
their own modeling languages and formats. The resulting fragmentation hindered
interoperability between and comparability across different tools. JANI-model
[6] has been conceived with the vision to put an end to this fragmentation. It
has since been adopted by many quantitative model checkers [20,21,9] while for
others translators have been developed [20,9] enabling cross-tool comparability
and fostering competition within the community [22,19,7]. Recently, JANI has
also been discovered by the planning community [24,25].

Momba supports all features of the JANI-model specification and some of its
optional extensions. JANI is the natural foundation for a project like Momba. It
provides a solid, well-established, and powerful modeling formalism for a variety
of different kinds of systems involving concurrency, probabilistic and real-time
aspects, as well as continuous dynamics. A JANI model is a network of interacting
automata with variables. Attached to a model one can also specify various kinds
of probabilistic and timed properties which can then be checked by several model
checkers, e. g., ePMC [20], The Modest Toolset [21], and Storm [23]. The broad
tool support for JANT models enables us to build upon existing research and to
outsource computation-intensive tasks via unified interfaces.

Why Python? Python is a popular high-level programming language, preferred
by many for its ease of use and ecosystem. Especially within the data-science
community, Python is the go-to language for data analysis and machine learn-
ing leaveraging tools such as TensorFlow [2] and scikit-learn [29]. Around these
tools, scientific general purpose tools such as Jupyter [26] have emerged. Jupyter

Momba: JANI Meets Python 391

provides a platform for documenting scientific experiments and their results in
a reproducible way combining code, data, and documentation.

Our vision is to harvest Python’s ecosystem and the tools developed by the
scientific community for dealing with formal models. Imagine, a Jupyter note-
book documenting a model, including the code to construct it, with interactive
visualizations of the model itself and various analysis results.

By basing our efforts on a popular language that is appreciated by scientists
and established in the scientific community, we hope to lower the entry barrier,
especially for those outside the formal methods community.

The User Perspective. In what follows, we demonstrate multiple facets of Momba
using a variant of Racetrack, a well-known benchmark in autonomous Al decision
making [4,31] which has recently found its use in several model checking contexts
[16,3,15]. too. We go through the entire process from the construction of a family
of models through their validation to their analysis. For each step, we highlight
what Momba has to offer in terms of effectively supporting the process.

Originally Racetrack has been a pen-and-paper game [14]. A track is a two-
dimensional grid comprising start, goal, wall, and blank cells (cf. Fig. 1) [4]. A
vehicle starts off with some initial velocity from a start cell, with the objective
to reach a goal cell as fast as possible without crashing into a wall. The vehi-
cle is controlled by nine possible actions modifying the current velocity vector.
Racetrack naturally lends itself as a benchmark for sequential decision making
in risky scenarios, in particular, when extended with probabilistic noise. In a
variety of such noisy forms, it has been adopted as a benchmark for Markov
Decision Process (MDP) algorithms in the Al community [4,5,28,30,31].

For our demonstration, we consider multiple variants of Racetrack giving rise
to a family of MDPs, studied recently [3] from a feature-oriented perspective [8].
For example, there are different tank options and fuel is consumed according to
various consumption models. In addition, there are different undergrounds induc-
ing probabilistic noise modeling slippery road conditions. Clearly, this modeling
scenario is beyond what is possible with mere model parametrization, especially
so because we are interested in the car’s performance on different tracks each
inducing its own MDP [4].

2 Scenario-Based Model Construction

Usually, formal models are not constructed out of thin air but based on some
kind of scenario description existing upfront. Such descriptions usually comprise
an operational characterization of the behavior to model together with additional
and sometimes more formal information about the specific case. Our use case is
no exemption, here a textual description of the behavior of the car is provided
together with a specific track and a specification of the variant.

Naturally, Python can be used to nicely capture the formal parts of a sce-
nario description in various data structures. Combined with a domain-specific
parser for configuration files, scenario descriptions are interchangeable and easy
to interface with the code for model construction. In our case, a textual represen-
tation of the track (cf. Fig. 1) [4] is provided and parsed together with additional

392 M. A. Kohl et al.

dim: 12 35

Fig.1. Textual representation (left) and picture of a track (right): start cells in blue
(s), goal cells in green (g), and wall cells marked with x.

parameters, like the size of the tank and the type of the underground, into a
data structure tailored to that purpose.

Now, how does Momba support the construction of models from such data
structures? A distinguishing feature of Momba is that it effectively turns Python
into a syntax-aware macro language enabling the modular construction of models.
For our Racetrack use case different fuel consumption models can be captured
as macros from JANT expressions to JANI expressions:

linear = lambda dx, dy: expr("abs($dx) + abs($dy)", dx=dx, dy=dy)
quadratic = lambda dx, dy: expr("$linear ** 2", linear=linear(dx, dy))

A macro is simply a Python function. Upon execution, these macros construct
JANT expressions using a straightforward syntax inspired by Python expressions.
In this case, both functions take expressions for the current velocity of the vehicle
in x and y dimension and return an expression for the resulting fuel consumption
which is either linear or quadratic in the velocity. In contrast to how macros work
in languages like C, syntax-aware macros using Momba’s expr function prevent
surprises from mere text-based expansion. Being Python functions, macros can
be easily passed around and used elsewhere:
assignments = {

"fuel": expr(

"min(TANK_SIZE, max(0, fuel - floor($consumption)))",
consumption=fuel_model(car_dx, car_dy),

}

Here, we update the fuel level by taking whatever macro has been provided
for computing the fuel consumption. This code is part of constructing an edge
for the tank automaton in a modular fashion in the sense that the consump-
tion model is exchangeable. Momba provides further functions, for instance, for
declaring variables, like fuel, and constructing automata, networks, as well as
other model objects. Most of these functions provide all kinds of comforts, for
instance, directly checking the types of the involved expressions.

Using syntax-aware macros and Momba’s other convenience functions, we
arrive at a Python script racetrack.py [27] generating a collection of JANI
models from scenario descriptions comprising a track and specifying a variant.
Tterating over possible scenario descriptions, hundreds of JANI models can be
generated fully automatically and consequently be analyzed.

Momba: JANI Meets Python 393

3 Validation by Simulation

Having our models ready, we have to somehow gain confidence that they actually
model what we want them to, before handing them over to analysis tools. One
way of gaining confidence into a model is by simulating its behavior and manually
checking it for consistency with the own understanding of what the model should
do. Just like any kind of debugging, this can be a tedious and frustrating process,
especially with text-based traces generated by some generic simulator. Momba
instead comprises a built-in simulation engine, enabling rapid development of
interactive visualizations. This effectively allows us to steer a vehicle through
a track thereby exploring a model’s behavior, testing edge cases as in a racing
game, and ultimately gaining confidence in the model.

Momba’s built-in simulation engine supports the simulation of a variety of
different JANI models including timed models. It has been written completely
from scratch with easy accessibility from Python in mind. Non-determinism can
be resolved by uniform random sampling or by querying an external oracle such
as, in the case of our interactive visualization, the user, a testing framework,
or even a neural network as done for DSMC [16]. For each step, the simulator
provides all the necessary information like the binding of variables to values,
the locations the various automata of a network are in, and the possible actions
(and time delays for timed models) that can be taken. This information can then
be extracted and used to display whatever is of interest for understanding and
investigating the behavior of the model under scrutiny.

Fig. 2 shows a simple interactive visualization of the Racetrack example based
on Momba’s simulation engine where the user can steer the vehicle (indicated by
the yellow asterisk) through the track by entering acceleration values. Certainly,
there is ample room for beautification of this simulator (see TraceVis [15] for
example) but for rapid model development this is not needed. After playing
around with the interactive simulation for a while and testing various edge cases,
we are confident that the model is adequate.

dx: 2, dy: -1, fuel: 312

Please choose an acceleration in x direction in range [-2, 2]: 2
Please choose an acceleration in y direction in range [-2, 2]: ©

Fig. 2. Interactive visualization using Momba’s simulation engine.

394 M. A. Kohl et al.

4 Harvesting the Benefits

Having constructed the models and gained confidence in their adequacy, we are
now ready to harvest the benefits of formal modeling and to apply various state-
of-the-art analysis tools, exploiting the JANI-model interchange. Again, Momba
provides the necessary functions to define properties and hand our models, with
the respective properties attached to them, over to common analysis tools.
Imagine that we are interested in the property P,q. (0 on_goal A fuel > 0),
i.e., the maximal probability of reaching a goal cell with a non-empty tank from
a given start cell. Using Momba’s syntax-aware macros, we first construct a
disjunction over all goal cells and then define the property using the concise
syntax provided by Momba’s prop function:
on_goal = reduce(lor, (expr('car_pos == $g", g=g) for g in goal_cells), False)
define_property(
prop("min({ Pmax(F($on_goal and fuel > 0)) | initial })", on_goal=on_goal),
name="goalProbabilityFuel",
)
After generating a model with the vehicle starting from position (0,7) on the
track depicted in Fig. 1 and with sand as underground, the value iteration engine
mesta [18] of The Modest Toolset calculates a probability of 87.5 % taking 153 s
when invoked by Momba with the model. Momba also cross-checks the results
for us, by invoking Storm’s dd engine [9] (the fastest engine for this model) and
obtains the same result in 107s. These experiments have been carried out on a
standard laptop with an Intel Core i7 at 2.7 GHz.

5 Conclusion

We presented Momba, a Python framework for dealing with quantitative models
covering the whole process of model creation, validation, and analysis provid-
ing an integrated and intuitive experience. In a user story on Racetrack, we
demonstrated how Momba’s capabilities can be used throughout all stages of
the development process of cyber-physical models.

We demonstrated how Momba enables scenario-based model construction
with Python code in a concise and modular way with syntax-aware macros. Using
Momba’s simulation engine, we were able to rapidly prototype an interactive
visualization thereby gaining confidence in our models and, finally, thanks to
JANI-model, we demonstrated how to analyse our models with state-of-the-art
model checkers directly invoked and cross-checked by Momba.

By basing Momba on Python, we aim to harvest the tools developed by the
data-science community. Especially, when combined with Jupyter [26], Momba
enables literate programming [32] combining code, data, and documentation for
reproducible experiments and process documentation.

We hope that Momba helps to open up the world of formal modeling towards
a broader community by lowering or removing barriers otherwise obstructing the
application of formal models. Momba’s infrastructure is implemented in such a
way that it can easily be extended into other directions and for connections to
other research areas, e. g., model checking policies machine learned with Python
libraries [16,17].

Momba: JANI Meets Python 395

References

Momba on GitHub, https://github.com/koehlma/momba

2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-

10.

11.

mawat, S., Irving, G., Isard, M., Kudlur, M., Levenberg, J., Monga, R., Moore, S.,
Murray, D.G., Steiner, B., Tucker, P., Vasudevan, V., Warden, P., Wicke, M., Yu,
Y., Zheng, X.: Tensorflow: A system for large-scale machine learning. In: Proceed-
ings of the 12th USENIX Conference on Operating Systems Design and Implemen-
tation. p. 265283. OSDI’16, USENIX Association, USA (2016)

Baier, C., Dubslaff, C., Hermanns, H., Klauck, M., Kliippelholz, S., Kéhl, M.A.:
Components in probabilistic systems: Suitable by construction. In: Proceedings of
the 9th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. X by Construction. (2020)

. Barto, A.G., Bradtke, S.J., Singh, S.P.: Learning to act using real-

time dynamic programming. Artificial Intelligence 72(1), 81 — 138 (1995).
https://doi.org/10.1016,/0004-3702(94)00011-O

Bonet, B., Geftner, H.: Labeled RTDP: improving the convergence of real-time
dynamic programming. In: ICAPS. pp. 12-21 (2003)

Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.:
JANI: Quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.)
Tools and Algorithms for the Construction and Analysis of Systems - 23rd Interna-
tional Conference, TACAS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29,
2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10206, pp.
151-168 (2017). https://doi.org/10.1007/978-3-662-54580-5_9

Budde, C.E., Hartmanns, A., Klauck, M., Kretinsky, J., Parker, D., Quatmann, T.,
Turrini, A., Zhang, Z.: On Correctness, Precision, and Performance in Quantitative
Verification (QComp 2020 Competition Report). In: Proceedings of the 9th Inter-
national Symposium On Leveraging Applications of Formal Methods, Verification
and Validation. Software Verification Tools. (2020)

Chrszon, P., Dubslaff, C., Klippelholz, S., Baier, C.: Profeat: feature-oriented
engineering for family-based probabilistic model checking. Formal Aspects Com-
put. 30(1), 45-75 (2018). https://doi.org/10.1007/s00165-017-0432-4, https://
doi.org/10.1007/s00165-017-0432-4

Dehnert, C., Junges, S., Katoen, J., Volk, M.: A storm is coming: A modern prob-
abilistic model checker. In: Majumdar, R., Kuncak, V. (eds.) Computer Aided Ver-
ification - 29th International Conference, CAV 2017, Heidelberg, Germany, July
24-28, 2017, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10427,
pp. 592-600. Springer (2017). https://doi.org/10.1007/978-3-319-63390-9_ 31
Duret-Lutz, A., Lewkowicz, A., Fauchille, A., Michaud, T., Renault, E., Xu, L.:
Spot 2.0a framework for 1tl and w-automata manipulation. In: International Sym-
posium on Automated Technology for Verification and Analysis. pp. 122-129.
Springer (2016)

Fernandez, J., Garavel, H., Kerbrat, A., Mounier, L., Mateescu, R., Sighireanu,
M.: CADP - A protocol validation and verification toolbox. In: Alur, R., Hen-
zinger, T.A. (eds.) Computer Aided Verification, 8th International Conference,
CAV 96, New Brunswick, NJ, USA, July 31 - August 3, 1996, Proceedings.
Lecture Notes in Computer Science, vol. 1102, pp. 437-440. Springer (1996).
https://doi.org/10.1007/3-540-61474-5 97

https://github.com/koehlma/momba
https://doi.org/10.1016/0004-3702(94)00011-O
https://doi.org/10.1007/978-3-662-54580-5_9
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/s00165-017-0432-4
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/3-540-61474-5_97

396

12.

13.

14.
15.

16.

17.

18.

19.

20.

21.

M. A. Kohl et al.

Garavel, H., Lang, F., Mateescu, R., Serwe, W.: CADP 2011: a toolbox for the
construction and analysis of distributed processes. Int. J. Softw. Tools Technol.
Transf. 15(2), 89-107 (2013). https://doi.org/10.1007 /s10009-012-0244-7

Garavel, H., Lang, F., Mounier, L..: Compositional verification in action. In: Howar,
F., Barnat, J. (eds.) Formal Methods for Industrial Critical Systems - 23rd Inter-
national Conference, FMICS 2018, Maynooth, Ireland, September 3-4, 2018, Pro-
ceedings. Lecture Notes in Computer Science, vol. 11119, pp. 189-210. Springer
(2018). https://doi.org/10.1007/978-3-030-00244-2_ 13

Gardner, M.: Mathematical games. Scientific American 229, 118-121 (1973)
Gros, T.P., Grof}, D., Gumhold, S., Hoffmann, J., Klauck, M., Steinmetz, M.: Trace-
Vis: Towards Visualization for Deep Statistical Model Checking. In: Proceedings of
the 9th International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation. From Verification to Explanation. (2020)

Gros, T.P., Hermanns, H., Hoffmann, J., Klauck, M., Steinmetz, M.: Deep statis-
tical model checking. In: Gotsman, A., Sokolova, A. (eds.) Formal Techniques for
Distributed Objects, Components, and Systems - 40th IFIP WG 6.1 International
Conference, FORTE 2020, Held as Part of the 15th International Federated Con-
ference on Distributed Computing Techniques, DisCoTec 2020, Valletta, Malta,
June 15-19, 2020, Proceedings. Lecture Notes in Computer Science, vol. 12136, pp.
96-114. Springer (2020). https://doi.org/10.1007/978-3-030-50086-3_ 6

Gros, T.P., Holler, D., Hoffmann, J., Wolf, V.: Tracking the race between deep
reinforcement learning and imitation learning. In: Gribaudo, M., Jansen, D.N.,
Remke, A. (eds.) Quantitative Evaluation of Systems - 17th International Con-
ference, QEST 2020, Vienna, Austria, August 31 - September 3, 2020, Proceed-
ings. Lecture Notes in Computer Science, vol. 12289, pp. 11-17. Springer (2020).
https://doi.org/10.1007/978-3-030-59854-9 2

Hahn, E.M., Hartmanns, A.: A comparison of time- and reward-bounded prob-
abilistic model checking techniques. In: Franzle, M., Kapur, D., Zhan, N. (eds.)
Dependable Software Engineering: Theories, Tools, and Applications - Second
International Symposium, SETTA 2016, Beijing, China, November 9-11, 2016,
Proceedings. Lecture Notes in Computer Science, vol. 9984, pp. 85-100 (2016).
https://doi.org/10.1007/978-3-319-47677-3_6

Hahn, E.M., Hartmanns, A., Hensel, C., Klauck, M., Klein, J., Kretinsky, J., Parker,
D., Quatmann, T., Ruijters, E., Steinmetz, M.: The 2019 comparison of tools for
the analysis of quantitative formal models - (QComp 2019 competition report). In:
Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) Tools and Algorithms for
the Construction and Analysis of Systems - 25 Years of TACAS: TOOLympics,
Held as Part of ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceed-
ings, Part III. Lecture Notes in Computer Science, vol. 11429, pp. 69-92. Springer
(2019). https://doi.org/10.1007/978-3-030-17502-3_5

Hahn, E.M., Li, Y., Schewe, S., Turrini, A., Zhang, L.: iscasmc: A web-based
probabilistic model checker. In: Jones, C.B., Pihlajasaari, P., Sun, J. (eds.) FM
2014: Formal Methods - 19th International Symposium, Singapore, May 12-16,
2014. Proceedings. Lecture Notes in Computer Science, vol. 8442, pp. 312-317.
Springer (2014). https://doi.org/10.1007/978-3-319-06410-9_ 22

Hartmanns, A., Hermanns, H.: The Modest Toolset: An integrated environment for
quantitative modelling and verification. In: Abrahdm, E., Havelund, K. (eds.) Tools
and Algorithms for the Construction and Analysis of Systems - 20th International
Conference, TACAS 2014, Held as Part of the European Joint Conferences on
Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014.

https://doi.org/10.1007/s10009-012-0244-z
https://doi.org/10.1007/978-3-030-00244-2_13
https://doi.org/10.1007/978-3-030-50086-3_6
https://doi.org/10.1007/978-3-030-59854-9_2
https://doi.org/10.1007/978-3-319-47677-3_6
https://doi.org/10.1007/978-3-030-17502-3_5
https://doi.org/10.1007/978-3-319-06410-9_22

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Momba: JANI Meets Python 397

Proceedings. Lecture Notes in Computer Science, vol. 8413, pp. 593-598. Springer
(2014). https://doi.org/10.1007/978-3-642-54862-8 51

Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The Quan-
titative Verification Benchmark Set. In: Vojnar, T., Zhang, L. (eds.) Tools and
Algorithms for the Construction and Analysis of Systems - 25th International Con-
ference, TACAS 2019, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019,
Proceedings, Part I. Lecture Notes in Computer Science, vol. 11427, pp. 344-350.
Springer (2019). https://doi.org/10.1007/978-3-030-17462-0_ 20

Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic
model checker storm. CoRR abs/2002.07080 (2020), https://arxiv.org/abs/
2002.07080

Hoffmann, J., Hermanns, H., Klauck, M., Steinmetz, M., Karpas, E., Magazzeni,
D.: Let’s learn their language? A case for planning with automata-network lan-
guages from model checking. In: The Thirty-Fourth AAAT Conference on Artificial
Intelligence, AAAT 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, TAAI 2020, The Tenth AAAI Symposium on Educational
Advances in Artificial Intelligence, EAAT 2020, New York, NY, USA, February
7-12, 2020. pp. 13569-13575. AAAI Press (2020)

Klauck, M., Steinmetz, M., Hoffmann, J., Hermanns, H.: Bridging the gap be-
tween probabilistic model checking and probabilistic planning: Survey, compi-
lations, and empirical comparison. J. Artif. Intell. Res. 68, 247-310 (2020).
https://doi.org/10.1613/jair.1.11595

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B.E., Bussonnier, M., Frederic,
J., Kelley, K., Hamrick, J.B., Grout, J., Corlay, S., et al.: Jupyter notebooks-a
publishing format for reproducible computational workflows. In: ELPUB. pp. 87—
90 (2016)

Kohl, M.A., Klauck, M., Hermanns, H.: (TACAS21 Artifact) Momba: JANI Meets
Python. https://doi.org/10.5281/zenodo.4431780

McMahan, H.B., Gordon, G.J.: Fast exact planning in Markov decision processes.
In: ICAPS. pp. 151-160 (2005)

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825-2830 (2011)
Pineda, L.E., Lu, Y., Zilberstein, S., Goldman, C.V.: Fault-tolerant planning under
uncertainty. In: IJCAL pp. 2350-2356 (2013)

Pineda, L.E., Zilberstein, S.: Planning under uncertainty using reduced models:
Revisiting determinization. In: Chien, S.A., Do, M.B., Fern, A., Ruml, W. (eds.)
Proceedings of the Twenty-Fourth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2014, Portsmouth, New Hampshire, USA, June 21-26,
2014. AAAT (2014)

Ruys, T.C., Brinksma, E.: Experience with literate programming in the mod-
elling and validation of systems. In: Steffen, B. (ed.) Tools and Algorithms for
Construction and Analysis of Systems, 4th International Conference, TACAS 98,
Held as Part of the European Joint Conferences on the Theory and Practice
of Software, ETAPS’98, Lisbon, Portugal, March 28 - April 4, 1998, Proceed-
ings. Lecture Notes in Computer Science, vol. 1384, pp. 393-408. Springer (1998).
https://doi.org/10.1007/BFb0054185

https://doi.org/10.1007/978-3-642-54862-8_51
https://doi.org/10.1007/978-3-030-17462-0_20
https://arxiv.org/abs/2002.07080
https://arxiv.org/abs/2002.07080
https://doi.org/10.1613/jair.1.11595
https://doi.org/10.5281/zenodo.4431780
https://doi.org/10.1007/BFb0054185

398 M. A. Kohl et al.

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.
0/), which permits use, sharing, adaptation, distribution and reproduction in any
medium or format, as long as you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license and indicate if changes
were made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need
to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Momba: JANI Meets Python
	1 Introduction
	2 Scenario-Based Model Construction
	3 Validation by Simulation
	4 Harvesting the Benefits
	5 Conclusion
	References

