Skip to main content

Pharmacodynamics and Pharmacokinetics of Stroke Therapy

  • Chapter
  • First Online:
Precision Medicine in Stroke

Abstract

Stroke is a complex disorder that includes several different pathophysiological entities, and therefore requires a personalized approach to therapy. Pharmacological acute stroke therapy includes fibrinolytics such as alteplase (rt-PA) or tenecteplase which has a more favorable pharmacokinetic profile. Hemorrhagic adverse events are the main risks of these therapies, and clinical, laboratorial, and genetic factors may influence the risk of severe bleeding. After the acute time window, prevention is paramount in order to avoid recurrent stroke. Antiplatelet drugs (aspirin, clopidogrel, dipyridamole) are the default secondary prevention therapies. In some patients, such as those with cardioembolic stroke, anticoagulants are the preferred preventive treatment. These include vitamin K antagonists (warfarin) and direct oral anticoagulants (dabigatran, rivaroxaban, apixaban, edoxaban). With some drugs, such as clopidogrel and warfarin, significant heterogeneity of the magnitude of effect and side effect profile exists between subjects. In addition to environmental factors and drug-drug interactions, genetic polymorphisms contribute to intersubject variability, whether through drug receptor or metabolic pathway variations. Knowledge of the precise pharmacodynamic, pharmacokinetic, and pharmacogenetic details of drugs used in stroke care enables the selection of the most appropriate option for each individual patient. Precision medicine and pharmacogenetic-guided drug algorithms may become the standard of care in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke. Stroke. 2019;50(12):E344–418.

    Article  PubMed  Google Scholar 

  2. Meretoja A, Keshtkaran M, Saver JL, Tatlisumak T, Parsons MW, Kaste M, et al. Stroke thrombolysis: save a minute, save a day. Stroke. 2014;45(4):1053–8.

    Article  PubMed  Google Scholar 

  3. Emberson J, Lees KR, Lyden P, Blackwell L, Albers G, Bluhmki E, et al. Effect of treatment delay, age, and stroke severity on the effects of intravenous thrombolysis with alteplase for acute ischaemic stroke: a meta-analysis of individual patient data from randomised trials. Lancet. 2014;384(9958):1929–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Klijn CJM, Paciaroni M, Berge E, Korompoki E, Kõrv J, Lal A, et al. Antithrombotic treatment for secondary prevention of stroke and other thromboembolic events in patients with stroke or transient ischemic attack and non-valvular atrial fibrillation: a European Stroke Organisation guideline. Eur Stroke J. 2019;4(3):198–223.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Love BB, Bendixen BH. Classification of subtype of acute ischemic stroke definitions for use in a multicenter clinical trial. Stroke. 1993;24(1):35–41.

    Article  PubMed  Google Scholar 

  6. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med. 1995;333(24):1581–8.

    Article  Google Scholar 

  7. Hacke W, Kaste M, Bluhmki E, Brozman M, Dávalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med. 2008;359(13):1317–29.

    Article  CAS  PubMed  Google Scholar 

  8. Wardlaw JM, Murray V, Berge E, del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev. 2014;2014(7):CD000213.

    PubMed Central  Google Scholar 

  9. Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22.

    Article  PubMed  Google Scholar 

  10. Campbell BCV, Ma H, Ringleb PA, Parsons MW, Churilov L, Bendszus M, et al. Extending thrombolysis to 4·5–9 h and wake-up stroke using perfusion imaging: a systematic review and meta-analysis of individual patient data. Lancet. 2019;394(10193):139–47.

    Article  PubMed  Google Scholar 

  11. Ford GA, Ahmed N, Azevedo E, Grond M, Larrue V, Lindsberg PJ, et al. Intravenous alteplase for stroke in those older than 80 years old. Stroke. 2010;41(11):2568–74.

    Article  PubMed  Google Scholar 

  12. Meretoja A, Tatlisumak T. Thrombolytic therapy in acute ischemic stroke—basic concepts. Curr Vasc Pharmacol. 2006;4(1):31–44.

    Article  CAS  PubMed  Google Scholar 

  13. Liu H, Zheng H, Cao Y, Pan Y, Wang D, Zhang R, et al. Low- versus standard-dose intravenous tissue-type plasminogen activator for acute ischemic stroke: an updated meta-analysis. J Stroke Cerebrovasc Dis. 2018;27(4):988–97.

    Article  PubMed  Google Scholar 

  14. Anderson CS, Robinson T, Lindley RI, Arima H, Lavados PM, Lee TH, et al. Low-dose versus standard-dose intravenous alteplase in acute ischemic stroke. N Engl J Med. 2016;374(24):2313–23.

    Article  CAS  PubMed  Google Scholar 

  15. Hill MD, Lye T, Moss H, Barber PA, Demchuk AM, Newcommon NJ, et al. Hemi-orolingual angioedema and ACE inhibition after alteplase treatment of stroke. Neurology. 2003;60(9):1525–7.

    Article  CAS  PubMed  Google Scholar 

  16. Lin SY, Tang SC, Tsai LK, Yeh SJ, Hsiao YJ, Chen YW, et al. Orolingual angioedema after alteplase therapy of acute ischaemic stroke: incidence and risk of prior angiotensin-converting enzyme inhibitor use. Eur J Neurol. 2014;21(10):1285–91.

    Article  PubMed  Google Scholar 

  17. Hurford R, Rezvani S, Kreimei M, Herbert A, Vail A, Parry-Jones AR, et al. Incidence, predictors and clinical characteristics of orolingual angio-oedema complicating thrombolysis with tissue plasminogen activator for ischaemic stroke. J Neurol Neurosurg Psychiatry. 2015;86(5):520–3.

    Article  PubMed  Google Scholar 

  18. Fröhlich K, MacHa K, Gerner ST, Bobinger T, Schmidt M, Dörfler A, et al. Angioedema in stroke patients with thrombolysis: a lesion mapping study. Stroke. 2019;50(7):1682–7.

    Article  PubMed  Google Scholar 

  19. Emeis JJ, van den Eijnden-Schrauwen Y, van den Hoogen CM, de Priester W, Westmuckett A, Lupu F. An endothelial storage granule for tissue-type plasminogen activator. J Cell Biol. 1997;139(1):245–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bivard A, Lin L, Parsonsb MW. Review of stroke thrombolytics. J Stroke. 2013;15(2):90.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Rijken DC, Lijnen HR. New insights into the molecular mechanisms of the fibrinolytic system. J Thromb Haemost. 2009;7(1):4–13.

    Article  CAS  PubMed  Google Scholar 

  22. Hoylaerts M, Rijken DC, Lijnen HR, Collen D. Kinetics of the activation of plasminogen by human tissue plasminogen activator. Role of fibrin. J Biol Chem. 1982;257:2912–9.

    Article  CAS  PubMed  Google Scholar 

  23. Acheampong P, Ford GA. Pharmacokinetics of alteplase in the treatment of ischaemic stroke. Expert Opin Drug Metab Toxicol. 2012;8(2):271–81.

    Article  CAS  PubMed  Google Scholar 

  24. Verheijen JH, Caspers MP, Chang GT, de Munk GA, Pouwels PH, Enger-Valk BE. Involvement of finger domain and kringle 2 domain of tissue-type plasminogen activator in fibrin binding and stimulation of activity by fibrin. EMBO J. 1986;5(13):3525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tanswell P, Modi N, Combs D, Danays T. Pharmacokinetics and pharmacodynamics of tenecteplase in fibrinolytic therapy of acute myocardial infarction. Clin Pharmacokinet. 2002;41(15):1229–45.

    Article  CAS  PubMed  Google Scholar 

  26. Campbell BCV, Mitchell PJ, Churilov L, Yassi N, Kleinig TJ, Yan B, et al. Tenecteplase versus alteplase before endovascular thrombectomy (EXTEND-IA TNK): a multicenter, randomized, controlled study. Int J Stroke. 2018;13(3):328–34.

    Article  PubMed  Google Scholar 

  27. Logallo N, Novotny V, Assmus J, Kvistad CE, Alteheld L, Rønning OM, et al. Tenecteplase versus alteplase for management of acute ischaemic stroke (NOR-TEST): a phase 3, randomised, open-label, blinded endpoint trial. Lancet Neurol. 2017;16(10):781–8.

    Article  CAS  PubMed  Google Scholar 

  28. Del Río-Espínola A, Fernández-Cadenas I, Giralt D, Quiroga A, Gutiérrez-Agullõ M, Quintana M, et al. A predictive clinical-genetic model of tissue plasminogen activator response in acute ischemic stroke. Ann Neurol. 2012;72(5):716–29.

    Article  PubMed  CAS  Google Scholar 

  29. Falcone GJ, Malik R, Dichgans M, Rosand J. Current concepts and clinical applications of stroke genetics. Lancet Neurol. 2014;13(4):405–18.

    Article  PubMed  Google Scholar 

  30. Fernández-Cadenas I, Del Río-Espínola A, Giralt D, Domingues-Montanari S, Quiroga A, Mendióroz M, et al. IL1B and VWF variants are associated with fibrinolytic early recanalization in patients with ischemic stroke. Stroke. 2012;43(10):2659–65.

    Article  PubMed  CAS  Google Scholar 

  31. Castellanos M, Sobrino T, Millán M, García M, Arenillas J, Nombela F, et al. Serum cellular fibronectin and matrix metalloproteinase-9 as screening biomarkers for the prediction of parenchymal hematoma after thrombolytic therapy in acute ischemic stroke: a multicenter confirmatory study. Stroke. 2007;38(6):1855–9.

    Article  CAS  PubMed  Google Scholar 

  32. Hernandez-Guillamon M, Garcia-Bonilla L, Solé M, Sosti V, Parés M, Campos M, et al. Plasma VAP-1/SSAO activity predicts intracranial hemorrhages and adverse neurological outcome after tissue plasminogen activator treatment in stroke. Stroke. 2010;41(7):1528–35.

    Article  CAS  PubMed  Google Scholar 

  33. Sadler JE. Biochemistry and genetics of von Willebrand factor. Annu Rev Biochem. 1998;67(1):395–424.

    Article  CAS  PubMed  Google Scholar 

  34. International Stroke Trial Collaborative Group. The International Stroke Trial (IST): a randomised trial of aspirin, subcutaneous heparin, both, or neither among 19435 patients with acute ischaemic stroke. International Stroke Trial Collaborative Group. Lancet. 1997;349(9065):1569–81.

    Article  Google Scholar 

  35. CAST (Chinese Acute Stroke Trial) Collaborative Group. CAST: randomised placebo-controlled trial of early aspirin use in 20,000 patients with acute ischaemic stroke. Lancet. 1997;349:1641–9.

    Article  Google Scholar 

  36. UK-TIA Study Group. The United Kingdom transient ischaemic attack (UK-TIA) aspirin trial: final results UK-TIA Study group. J Neurol Neurosurg Psychiatry. 1991;54:1044–54.

    Article  Google Scholar 

  37. Hart RG, Benavente O, McBride R, Pearce LA. Antithrombotic therapy to prevent stroke in patients with atrial fibrillation. Ann Intern Med. 1999;131(7):492.

    Article  CAS  PubMed  Google Scholar 

  38. Apostolakis S, Lip GY, Shantsila E. Pharmacokinetic considerations for antithrombotic therapies in stroke. Expert Opin Drug Metab Toxicol. 2013;9(10):1335–47.

    Article  CAS  PubMed  Google Scholar 

  39. Roth GJ, Calverley DC. Aspirin, platelets, and thrombosis: theory and practice. Blood. 1994;83(4):885–98.

    Article  CAS  PubMed  Google Scholar 

  40. Wang Y, Wang Y, Zhao X, Liu L, Wang D, Wang C, et al. Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med. 2013;369(1):11–9.

    Article  CAS  PubMed  Google Scholar 

  41. Claiborne Johnston S, Donald Easton J, Farrant M, Barsan W, Conwit RA, Elm JJ, et al. Clopidogrel and aspirin in acute ischemic stroke and high-risk TIA. N Engl J Med. 2018;379(3):215–25.

    Article  PubMed  Google Scholar 

  42. Pan Y, Elm JJ, Li H, Easton JD, Wang Y, Farrant M, et al. Outcomes associated with clopidogrel-aspirin use in minor stroke or transient ischemic attack: a pooled analysis of clopidogrel in high-risk patients with acute non-disabling cerebrovascular events (CHANCE) and platelet-oriented inhibition in new TIA and minor ischemic stroke (POINT) trials. JAMA Neurol. 2019;76(12):1466–73.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Pedersen AK, FitzGerald GA. Dose-related kinetics of aspirin. Presystemic acetylation of platelet cyclooxygenase. N Engl J Med. 1984;311(19):1206–11.

    Article  CAS  PubMed  Google Scholar 

  44. Cheng Y, Austin SC, Rocca B, Koller BH, Coffman TM, Grosser T, et al. Role of prostacyclin in the cardiovascular response to thromboxane A2. Science. 2002;296(5567):539–41.

    Article  CAS  PubMed  Google Scholar 

  45. Catella-Lawson F, Reilly MP, Kapoor SC, Cucchiara AJ, DeMarco S, Tournier B, et al. Cyclooxygenase inhibitors and the antiplatelet effects of aspirin. N Engl J Med. 2001;345(25):1809–17.

    Article  CAS  PubMed  Google Scholar 

  46. Li X, Fries S, Li R, Lawson JA, Propert KJ, Diamond SL, et al. Differential impairment of aspirin-dependent platelet cyclooxygenase acetylation by nonsteroidal anti-inflammatory drugs. Proc Natl Acad Sci U S A. 2014;111(47):16830–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Patrono C, Ciabattoni G, Patrignani P, Pugliese F, Filabozzi P, Catella F, et al. Clinical pharmacology of platelet cyclooxygenase inhibition. Circulation. 1985;72(6):1177–84.

    Article  CAS  PubMed  Google Scholar 

  48. Cox D, Maree AO, Dooley M, Conroy R, Byrne MF, Fitzgerald DJ. Effect of enteric coating on antiplatelet activity of low-dose aspirin in healthy volunteers. Stroke. 2006;37(8):2153–8.

    Article  CAS  PubMed  Google Scholar 

  49. Peace A, Mccall M, Tedesco T, Kenny D, Conroy RM, Foley D, et al. The role of weight and enteric coating on aspirin response in cardiovascular patients. J Thromb Haemost. 2010;8(10):2323–5.

    Article  CAS  PubMed  Google Scholar 

  50. Kelly JP, Kaufman DW, Jurgelon JM, Sheehan J, Koff RS, Shapiro S. Risk of aspirin-associated major upper-gastrointestinal bleeding with enteric-coated or buffered product. Lancet. 1996;348(9039):1413–6.

    Article  CAS  PubMed  Google Scholar 

  51. Rand ML, Leung R, Packham MA. Platelet function assays. Transfus Apher Sci. 2003;28(3):307–17.

    Article  PubMed  Google Scholar 

  52. Harrison P. Progress in the assessment of platelet function. Br J Haematol. 2000;1111(3):733–44.

    Google Scholar 

  53. Michelson AD. Platelet function testing in cardiovascular diseases. Circulation. 2004;110(19):e489–93.

    Article  PubMed  Google Scholar 

  54. Bhatt DL, Topol EJ. Scientific and therapeutic advances in antiplatelet therapy. Nat Rev Drug Discov. 2003;2(1):15–28.

    Article  CAS  PubMed  Google Scholar 

  55. Hankey GJ, Eikelboom JW. Aspirin resistance. Lancet. 2006;367(9510):606–17.

    Article  CAS  PubMed  Google Scholar 

  56. Patrono C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost. 2003;1(8):1710–3.

    Article  CAS  PubMed  Google Scholar 

  57. Topçuoglu MA, Arsava EM, Ay H. Antiplatelet resistance in stroke. Expert Rev Neurother. 2011;11(2):251–63.

    Article  PubMed  PubMed Central  Google Scholar 

  58. De Schryver ELLM, Van Gijn J, Kappelle LJ, Koudstaal PJ, Algra A. Non-adherence to aspirin or oral anticoagulants in secondary prevention after ischaemic stroke. J Neurol. 2005;252(11):1316–21.

    Article  PubMed  CAS  Google Scholar 

  59. Al AlShaikh S, Quinn T, Dunn W, Walters M, Dawson J. Predictive factors of non-adherence to secondary preventative medication after stroke or transient ischaemic attack: a systematic review and meta-analyses. Eur Stroke J. 2016;1(2):65–75.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Helgason CM, Bolin KM, Hoff JA, Winkler SR, Mangat A, Tortorice KL, et al. Development of aspirin resistance in persons with previous ischemic stroke. Stroke. 1994;25(12):2331–6.

    Article  CAS  PubMed  Google Scholar 

  61. Pulcinelli FM, Pignatelli P, Celestini A, Riondino S, Gazzaniga PP, Violi F. Inhibition of platelet aggregation by aspirin progressively decreases in long-term treated patients. J Am Coll Cardiol. 2004;43(6):979–84.

    Article  CAS  PubMed  Google Scholar 

  62. Krasopoulos G, Brister SJ, Beattie WS, Buchanan MR. Aspirin “resistance” and risk of cardiovascular morbidity: systematic review and meta-analysis. BMJ. 2008;336(7637):195–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. O’Donnell CJ, Larson MG, Feng D, Sutherland PA, Lindpaintner K, Myers RH, et al. Genetic and environmental contributions to platelet aggregation. Circulation. 2001;103(25):3051–6.

    Article  PubMed  Google Scholar 

  64. Halushka MK, Walker LP, Halushka PV. Genetic variation in cyclooxygenase 1: effects on response to aspirin. Clin Pharmacol Ther. 2003;73(1):122–30.

    Article  CAS  PubMed  Google Scholar 

  65. Cambria-Kiely JA, Gandhi PJ. Aspirin resistance and genetic polymorphisms. J Thromb Thrombolysis. 2002;14(1):51–8.

    Article  CAS  PubMed  Google Scholar 

  66. Li Q, Chen BL, Ozmedir V, Ji W, Mao YM, Wang LC, et al. Frequency of genetic polymorphisms of COX1, GPIIIa and P2Y1 in a Chinese population and association with attenuated response to aspirin. Pharmacogenomics. 2007;8(6):577–86.

    Article  CAS  PubMed  Google Scholar 

  67. Maree AO, Curtin RJ, Chubb A, Dolan C, Cox D, O’Brien J, et al. Cyclooxygenase-1 haplotype modulates platelet response to aspirin. J Thromb Haemost. 2005;3(10):2340–5.

    Article  CAS  PubMed  Google Scholar 

  68. Andrioli G, Minuz P, Solero P, Pincelli S, Ortolani R, Lussignoli S, et al. Defective platelet response to arachidonic acid and thromboxane A2 in subjects with PlA2 polymorphism of beta3 subunit (glycoprotein IIIa). Br J Haematol. 2000;110(4):911–8.

    Article  CAS  PubMed  Google Scholar 

  69. Michelson AD, Furman MI, Goldschmidt-Clermont P, Mascelli MA, Hendrix C, Coleman L, et al. Platelet GP IIIa Pl A polymorphisms display different sensitivities to agonists. Circulation. 2000;101(9):1013–8.

    Article  CAS  PubMed  Google Scholar 

  70. Jefferson BK, Foster JH, McCarthy JJ, Ginsburg G, Parker A, Kottke-Marchant K, et al. Aspirin resistance and a single gene. Am J Cardiol. 2005;95(6):805–8.

    Article  CAS  PubMed  Google Scholar 

  71. Goodman T, Ferro A, Sharma P. Pharmacogenetics of aspirin resistance: a comprehensive systematic review. Br J Clin Pharmacol. 2008;66(2):222–32.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Meschia JF. Pharmacogenetics and stroke. Stroke. 2009;40(11):3641–5.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schilling U, Dingemanse J, Ufer M. Pharmacokinetics and pharmacodynamics of approved and investigational P2Y12 receptor antagonists. Clin Pharmacokinet. 2020;59(5):545–66.

    Article  CAS  PubMed  Google Scholar 

  74. Johnston SC, Amarenco P, Denison H, Evans SR, Himmelmann A, James S, et al. Ticagrelor and aspirin or aspirin alone in acute ischemic stroke or TIA. N Engl J Med. 2020;383(3):207–17.

    Article  CAS  PubMed  Google Scholar 

  75. Prasad K, Siemieniuk R, Hao Q, Guyatt G, O’Donnell M, Lytvyn L, et al. Dual antiplatelet therapy with aspirin and clopidogrel for acute high risk transient ischaemic attack and minor ischaemic stroke: a clinical practice guideline. BMJ. 2018;363:k5130.

    Article  PubMed  Google Scholar 

  76. Kim D, Park JM, Kang K, Cho YJ, Hong KS, Lee KB, et al. Dual versus mono antiplatelet therapy in large atherosclerotic stroke: a retrospective analysis of the Nationwide Multicenter Stroke Registry. Stroke. 2019;50(5):1184–92.

    Article  PubMed  Google Scholar 

  77. Liu L, Wong KSL, Leng X, Pu Y, Wang Y, Jing J, et al. Dual antiplatelet therapy in stroke and ICAS. Neurology. 2015;85(13):1154–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Chimowitz MI, Lynn MJ, Derdeyn CP, Turan TN, Fiorella D, Lane BF, et al. Stenting versus aggressive medical therapy for intracranial arterial stenosis. N Engl J Med. 2011;365(11):993–1003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Bath PM, Woodhouse LJ, Appleton JP, Beridze M, Christensen H, Dineen RA, et al. Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): a randomised, open-label, phase 3 superiority trial. Lancet. 2018;391(10123):850–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Johnston-Cox HA, Ravid K. Adenosine and blood platelets. Purinergic Signal. 2011;7:357–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Taubert D, von Beckerath N, Grimberg G, Lazar A, Jung N, Goeser T, et al. Impact of P-glycoprotein on clopidogrel absorption. Clin Pharmacol Ther. 2006;80(5):486–501.

    Article  CAS  PubMed  Google Scholar 

  82. Savi P, Herbert JM, Pflieger AM, Dol F, Delebassee D, Combalbert J, et al. Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol. 1992;44(3):527–32.

    Article  CAS  PubMed  Google Scholar 

  83. Savi P, Pereillo JM, Uzabiaga MF, Combalbert J, Picard C, Maffrand JP, et al. Identification and biological activity of the active metabolite of clopidogrel. Thromb Haemost. 2000;84(5):891–6.

    Article  CAS  PubMed  Google Scholar 

  84. Kazui M, Nishiya Y, Ishizuka T, Hagihara K, Farid NA, Okazaki O, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010;38(1):92–9.

    Article  CAS  PubMed  Google Scholar 

  85. Farid NA, Kurihara A, Wrighton SA. Review: metabolism and disposition of the thienopyridine antiplatelet drugs ticlopidine, clopidogrel, and prasugrel in humans. J Clin Pharmacol. 2010;50(2):126–42.

    Article  CAS  PubMed  Google Scholar 

  86. Von Beckerath N, Taubert D, Pogatsa-Murray G, Schömig E, Kastrati A, Schömig A. Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (intracoronary stenting and antithrombotic regimen: choose between 3 high oral doses for immediate clopidogrel effect) trial. Circulation. 2005;112(19):2946–50.

    Article  CAS  Google Scholar 

  87. Li YG, Ni L, Brandt JT, Small DS, Payne CD, Ernest CS, et al. Inhibition of platelet aggregation with prasugrel and clopidogrel: an integrated analysis in 846 subjects. Platelets. 2009;20(5):316–27.

    Article  CAS  PubMed  Google Scholar 

  88. Frelinger AL, Bhatt DL, Lee RD, Mulford DJ, Wu J, Nudurupati S, et al. Clopidogrel pharmacokinetics and pharmacodynamics vary widely despite exclusion or control of polymorphisms (CYP2C19, ABCB1, PON1), noncompliance, diet, smoking, co-medications (including proton pump inhibitors), and pre-existent variability in platelet function. J Am Coll Cardiol. 2013;61(8):872–9.

    Article  CAS  PubMed  Google Scholar 

  89. O’Donoghue ML, Braunwald E, Antman EM, Murphy SA, Bates ER, Rozenman Y, et al. Pharmacodynamic effect and clinical efficacy of clopidogrel and prasugrel with or without a proton-pump inhibitor: an analysis of two randomised trials. Lancet. 2009;374(9694):989–97.

    Article  PubMed  CAS  Google Scholar 

  90. Li X-Q, Andersson TB, Ahlström M, Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos. 2004;32(8):821–7.

    Article  CAS  PubMed  Google Scholar 

  91. Neubauer H, Engelhardt A, Krüger JC, Lask S, Börgel J, Mügge A, et al. Pantoprazole does not influence the antiplatelet effect of clopidogrel-A whole blood aggregometry study after coronary stenting. J Cardiovasc Pharmacol. 2010;56(1):91–7.

    Article  CAS  PubMed  Google Scholar 

  92. Kwok CS, Loke YK. Meta-analysis: the effects of proton pump inhibitors on cardiovascular events and mortality in patients receiving clopidogrel. Aliment Pharmacol Ther. 2010;31(8):810–23.

    CAS  PubMed  Google Scholar 

  93. Bhatt DL, Cryer BL, Contant CF, Cohen M, Lanas A, Schnitzer TJ, et al. Clopidogrel with or without omeprazole in coronary artery disease. N Engl J Med. 2010;363(20):1909–17.

    Article  CAS  PubMed  Google Scholar 

  94. Laine L, Hennekens C. Proton pump inhibitor and clopidogrel interaction: fact or fiction. Am J Gastroenterol. 2010;105(1):34–41.

    Article  CAS  PubMed  Google Scholar 

  95. Lanas A, García-Rodríguez LA, Arroyo MT, Bujanda L, Gomollón F, Forné M, et al. Effect of antisecretory drugs and nitrates on the risk of ulcer bleeding associated with nonsteroidal anti-inflammatory drugs, antiplatelet agents, and anticoagulants. Am J Gastroenterol. 2007;102(3):507–15.

    Article  CAS  PubMed  Google Scholar 

  96. Oliphant CS, Trevarrow BJ, Dobesh PP. Clopidogrel response variability: review of the literature and practical considerations. J Pharm Pract. 2016;29(1):26–34.

    Article  PubMed  Google Scholar 

  97. Ellis KJ, Stouffer GA, McLeod HL, Lee CR. Clopidogrel pharmacogenomics and risk of inadequate platelet inhibition: US FDA recommendations. Pharmacogenomics. 2009;10(11):1799–817.

    Article  CAS  PubMed  Google Scholar 

  98. Mega JL, Close SL, Wiviott SD, Shen L, Hockett RD, Brandt JT, et al. Cytochrome P-450 polymorphisms and response to clopidogrel. N Engl J Med. 2009;360(4):354–62.

    Article  CAS  PubMed  Google Scholar 

  99. Martis S, Peter I, Hulot JS, Kornreich R, Desnick RJ, Scott SA. Multi-ethnic distribution of clinically relevant CYP2C genotypes and haplotypes. Pharmacogenomics J. 2013;13(4):369–77.

    Article  CAS  PubMed  Google Scholar 

  100. Shuldiner AR, O’Connell JR, Bliden KP, Ghandi A, Ryan K, Horenstein RB, et al. Association of cytochrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA. 2009;302(8):849–58. Available from: www.jama.com.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hulot JS, Bura A, Villard E, Azizi M, Remones V, Goyenvalle C, et al. Cytochrome P450 2C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood. 2006;108(7):2244–7.

    Article  CAS  PubMed  Google Scholar 

  102. Sofi F, Giusti B, Marcucci R, Gori AM, Abbate R, Gensini GF. Cytochrome P450 2C19 2 polymorphism and cardiovascular recurrences in patients taking clopidogrel: a meta-analysis. Pharmacogenomics J. 2011;11(3):199–206.

    Article  CAS  PubMed  Google Scholar 

  103. Zabalza M, Subirana I, Sala J, Lluis-Ganella C, Lucas G, Tomás M, et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes in patients with coronary artery disease treated with clopidogrel. Heart. 2012;98(2):100–8.

    Article  CAS  PubMed  Google Scholar 

  104. Tiroch KA, Sibbing D, Koch W, Roosen-Runge T, Mehilli J, Schömig A, et al. Protective effect of the CYP2C19*17 polymorphism with increased activation of clopidogrel on cardiovascular events. Am Heart J. 2010;160(3):506–12.

    Article  CAS  PubMed  Google Scholar 

  105. Wang Y, Zhao X, Lin J, Li H, Johnston SC, Lin Y, et al. Association between CYP2C19 loss-of-function allele status and efficacy of clopidogrel for risk reduction among patients with minor stroke or transient ischemic attack. JAMA. 2016;316(1):70.

    Article  CAS  PubMed  Google Scholar 

  106. Pan Y, Chen W, Xu Y, Yi X, Han Y, Yang Q, et al. Genetic polymorphisms and clopidogrel efficacy for acute ischemic stroke or transient ischemic attack. Circulation. 2017;135(1):21–33.

    Article  CAS  PubMed  Google Scholar 

  107. Qiu LN, Sun Y, Wang L, Han RF, Xia XS, Liu J, et al. Influence of CYP2C19 polymorphisms on platelet reactivity and clinical outcomes in ischemic stroke patients treated with clopidogrel. Eur J Pharmacol. 2015;747:29–35.

    Article  CAS  PubMed  Google Scholar 

  108. Jia DM, Chen ZB, Zhang MJ, Yang WJ, Jin JL, Xia YQ, et al. CYP2C19 polymorphisms and antiplatelet effects of clopidogrel in acute ischemic stroke in China. Stroke. 2013;44(6):1717–9.

    Article  CAS  PubMed  Google Scholar 

  109. Sun W, Li Y, Li J, Zhang Z, Zhu W, Liu W, et al. Variant recurrent risk among stroke patients with different CYP2C19 phenotypes and treated with clopidogrel. Platelets. 2015;26(6):558–62.

    Article  CAS  PubMed  Google Scholar 

  110. Anderson CD, Biffi A, Greenberg SM, Rosand J. Personalized approaches to clopidogrel therapy: are we there yet? Stroke. 2010;41(12):2997–3002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Neuvonen M, Tarkiainen EK, Tornio A, Hirvensalo P, Tapaninen T, Paile-Hyvärinen M, et al. Effects of genetic variants on carboxylesterase 1 gene expression, and clopidogrel pharmacokinetics and antiplatelet effects. Basic Clin Pharmacol Toxicol. 2018;122(3):341–5.

    Article  CAS  PubMed  Google Scholar 

  112. Lewis JP, Horenstein RB, Ryan K, O’Connell JR, Gibson Q, Mitchell BD, et al. The functional G143E variant of carboxylesterase 1 is associated with increased clopidogrel active metabolite levels and greater clopidogrel response. Pharmacogenet Genomics. 2013;23(1):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Wang X, Shen C, Wang B, Huang X, Hu Z, Li J. Genetic polymorphisms of CYP2C19*2 and ABCB1 C3435T affect the pharmacokinetic and pharmacodynamic responses to clopidogrel in 401 patients with acute coronary syndrome. Gene. 2015;558(2):200–7.

    Article  CAS  PubMed  Google Scholar 

  114. Su J, Xu J, Li X, Zhang H, Hu J, Fang R, et al. ABCB1 C3435T polymorphism and response to clopidogrel treatment in coronary artery disease (CAD) patients: a meta-analysis. PLoS One. 2012;7(10):e46366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Cui G, Zhang S, Zou J, Chen Y, Chen H. P2Y12 receptor gene polymorphism and the risk of resistance to clopidogrel: a meta-analysis and review of the literature. Adv Clin Exp Med. 2017;26(2):343–9.

    Article  PubMed  Google Scholar 

  116. Seiffge DJ, Werring DJ, Paciaroni M, Dawson J, Warach S, Milling TJ, et al. Timing of anticoagulation after recent ischaemic stroke in patients with atrial fibrillation. Lancet Neurol. 2019;18(1):117–26.

    Article  PubMed  Google Scholar 

  117. Paciaroni M, Agnelli G, Corea F, Ageno W, Alberti A, Lanari A, et al. Early hemorrhagic transformation of brain infarction: rate, predictive factors, and influence on clinical outcome: results of a prospective multicenter study. Stroke. 2008;39(8):2249–56.

    Article  PubMed  Google Scholar 

  118. Heidbuchel H, Verhamme P, Alings M, Antz M, Hacke W, Oldgren J, et al. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: executive summary. Eur Heart J. 2013;34(27):2094–106.

    Article  CAS  PubMed  Google Scholar 

  119. Munn D, Abdul-Rahim AH, Fischer U, Werring DJ, Robinson TG, Dawson J. A survey of opinion: when to start oral anticoagulants in patients with acute ischaemic stroke and atrial fibrillation? Eur Stroke J. 2018;3(4):355–60.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Whitlon DS, Sadowski JA, Suttie JW. Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry. 1978;17(8):1371–7.

    Article  CAS  PubMed  Google Scholar 

  121. Holford NHG. Clinical pharmacokinetics and pharmacodynamics of warfarin. Clin Pharmacokinet. 1986;11(6):483–504.

    Article  CAS  PubMed  Google Scholar 

  122. Wittkowsky AK. Warfarin and other coumarin derivatives: pharmacokinetics, pharmacodynamics, and drug interactions. Semin Vasc Med. 2003;3(3):221–30.

    Article  PubMed  Google Scholar 

  123. Fasco MJ, Hildebrandt EF, Suttie JW. Evidence that warfarin anticoagulant action involves two distinct reductase activities. J Biol Chem. 1982;257(19):11210–2.

    Article  CAS  PubMed  Google Scholar 

  124. Malhotras OP, Nesheimo ME, Manntl KG. The kinetics of activation of normal and y-carboxyglutamic acid-deficient prothrombins. J Biol Chem. 1985;260(1):279–87.

    Article  Google Scholar 

  125. Apostolakis S, Lip GY, Lane DA, Shantsila E. The quest for new anticoagulants: from clinical development to clinical practice. Cardiovasc Ther. 2011;29(6):e12–22.

    Article  PubMed  Google Scholar 

  126. Yacobi A, Udall JA, Levy G. Serum protein binding as a determinant of warfarin body clearance and anticoagulant effect. Clin Pharmacol Ther. 1976;19(5 Pt 1):552–8.

    Article  CAS  PubMed  Google Scholar 

  127. Routledge P, Chapman P, Davies D, Rawlins M. Pharmacokinetics and pharmacodynamics of warfarin at steady state. Br J Clin Pharmacol. 1979;8(3):243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Hirsh J, Fuster V, Ansell J, Halperin JL. American Heart Association/American College of Cardiology Foundation guide to warfarin therapy. J Am Coll Cardiol. 2003;41(9):1633–52.

    Article  CAS  PubMed  Google Scholar 

  129. Chan E, McLachlan A, Pegg M, MacKay A, Cole R, Rowland M. Disposition of warfarin enantiomers and metabolites in patients during multiple dosing with rac-warfarin [see comments]. Br J Clin Pharmacol. 1994;37(6):563–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Wells PS, Holbrook AM, Crowther NR, Hirsh J. Interactions of warfarin with drugs and food. Ann Intern Med. 1994;121(9):676–83.

    Article  CAS  PubMed  Google Scholar 

  131. Freedman MD, Olatidoye AG. Clinically significant drug interactions with the oral anticoagulants. Drug Saf. 1994;10(5):381–94.

    Article  CAS  PubMed  Google Scholar 

  132. Wittkowsky AK. Drug interactions update: drugs, herbs, and oral anticoagulation. J Thromb Thrombolysis. 2001;12(1):67–71.

    Article  CAS  PubMed  Google Scholar 

  133. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, et al. 2016 ESC guidelines for the management of atrial fibrillation developed in collaboration with EACTS. Eur Heart J. 2016;37(38):2893–962.

    Article  PubMed  Google Scholar 

  134. January CT, Wann LS, Alpert JS, Calkins H, Cigarroa JE, Cleveland JC, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J Am Coll Cardiol. 2014;64(21):e1–76.

    Article  PubMed  Google Scholar 

  135. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, et al. 2019 AHA/ACC/HRS focused update of the 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society in Collaboration with the Society of Thoracic Surgeons. Circulation. 2019;140(2):e125–51.

    Article  PubMed  Google Scholar 

  136. Schmitt L, Speckman J, Ansell J. Quality assessment of anticoagulation dose management: comparative evaluation of measures of time-in-therapeutic range. J Thromb Thrombolysis. 2003;15(3):213–6.

    Article  CAS  PubMed  Google Scholar 

  137. Bodin L, Verstuyft C, Tregouet DA, Robert A, Dubert L, Funck-Brentano C, et al. Cytochrome P450 2C9 (CYP2C9) and vitamin K epoxide reductase (VKORC1) genotypes as determinants of acenocoumarol sensitivity. Blood. 2005;106(1):135–40.

    Article  CAS  PubMed  Google Scholar 

  138. Schalekamp T, Brassé BP, Roijers JFM, Van Meegen E, Van Der Meer FJM, Van Wijk EM, et al. VKORC1 and CYP2C9 genotypes and phenprocoumon anticoagulation status: interaction between both genotypes affects dose requirement. Clin Pharmacol Ther. 2007;81(2):185–93.

    Article  CAS  PubMed  Google Scholar 

  139. Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJR, Bumpstead S, et al. The largest prospective warfarin-treated cohort supports genetic forecasting. Blood. 2009;113(4):784–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Manolopoulos VG, Ragia G, Tavridou A. Pharmacogenetics of coumarinic oral anticoagulants. Pharmacogenomics. 2010;11(4):493–6.

    Article  CAS  PubMed  Google Scholar 

  141. Aithal GP, Day CP, Kesteven PJL, Daly AK. Association of polymorphisms in the cytochrome P450 CYP2C9 with warfarin dose requirement and risk of bleeding complications. Lancet. 1999;353(9154):717–9.

    Article  CAS  PubMed  Google Scholar 

  142. Lee CR, Goldstein JA, Pieper JA. Cytochrome P450 2C9 polymorphisms: a comprehensive review of the in-vitro and human data. Pharmacogenetics. 2002;12(3):251–63.

    Article  CAS  PubMed  Google Scholar 

  143. Johnson JA, Gong L, Whirl-Carrillo M, Gage BF, Scott SA, Stein CM, et al. Clinical pharmacogenetics implementation consortium guidelines for CYP2C9 and VKORC1 genotypes and warfarin dosing. Clin Pharmacol Ther. 2011;90(4):625–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Limdi NA, Arnett DK, Goldstein JA, Beasley TM, McGwin G, Adler BK, et al. Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics. 2008;9(5):511–26.

    Article  CAS  PubMed  Google Scholar 

  145. Rieder MJ, Reiner AP, Gage BF, Nickerson DA, Eby CS, McLeod HL, et al. Effect of VKORC1 haplotypes on transcriptional regulation and warfarin dose. N Engl J Med. 2005;352(22):2285–93.

    Article  CAS  PubMed  Google Scholar 

  146. Yuan HY, Chen JJ, Lee MTM, Wung JC, Chen YF, Charng MJ, et al. A novel functional VKORC1 promoter polymorphism is associated with inter-individual and inter-ethnic differences in warfarin sensitivity. Hum Mol Genet. 2005;14(13):1745–51.

    Article  CAS  PubMed  Google Scholar 

  147. Watzka M, Geisen C, Bevans CG, Sittinger K, Spohn G, Rost S, et al. Thirteen novel VKORC1 mutations associated with oral anticoagulant resistance: insights into improved patient diagnosis and treatment. J Thromb Haemost. 2011;9(1):109–18.

    Article  CAS  PubMed  Google Scholar 

  148. Ross S, Paré G. Pharmacogenetics of stroke. Stroke. 2018;49(10):2541–8.

    Article  PubMed  Google Scholar 

  149. McDonald MG, Rieder MJ, Nakano M, Hsia CK, Rettie AE. CYP4F2 is a vitamin K1 oxidase: an explanation for altered warfarin dose in carriers of the V433M variant. Mol Pharmacol. 2009;75(6):1337–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP, et al. The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood. 2005;106(7):2329–33.

    Article  CAS  PubMed  Google Scholar 

  151. Gage BF, Eby C, Johnson JA, Deych E, Rieder MJ, Ridker PM, et al. Use of pharmacogenetic and clinical factors to predict the therapeutic dose of warfarin. Clin Pharmacol Ther. 2008;84(3):326–31.

    Article  CAS  PubMed  Google Scholar 

  152. Limdi NA, Wadelius M, Cavallari L, Eriksson N, Crawford DC, Lee MTM, et al. Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood. 2010;115(18):3827–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. López-López JA, Sterne JAC, Thom HHZ, Higgins JPT, Hingorani AD, Okoli GN, et al. Oral anticoagulants for prevention of stroke in atrial fibrillation: systematic review, network meta-analysis, and cost effectiveness analysis. BMJ. 2017;359(j5058):1–13.

    Google Scholar 

  154. Camm AJ, Fox KAA, Peterson E. Challenges in comparing the non-vitamin K antagonist oral anticoagulants for atrial fibrillation-related stroke prevention. Europace. 2018;20(1):1–11.

    Article  PubMed  Google Scholar 

  155. Gómez-Outes A, Suárez-Gea ML, Lecumberri R, Terleira-Fernández AI, Vargas-Castrillón E. Direct-acting oral anticoagulants: pharmacology, indications, management, and future perspectives. Eur J Haematol. 2015;95(5):389–404.

    Article  PubMed  CAS  Google Scholar 

  156. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, et al. Dabigatran versus warfarin in patients with atrial fibrillation. N Engl J Med. 2009;361(12):1139–51.

    Article  CAS  PubMed  Google Scholar 

  157. Diener H-C, Connolly SJ, Ezekowitz MD, Wallentin L, Reilly PA, Yang S, et al. Dabigatran compared with warfarin in patients with atrial fibrillation and previous transient ischaemic attack or stroke: a subgroup analysis of the RE-LY trial. Lancet Neurol. 2010;9(12):1157–63.

    Article  CAS  PubMed  Google Scholar 

  158. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N Engl J Med. 2011;365(10):883–91.

    Article  CAS  PubMed  Google Scholar 

  159. Hankey GJ, Patel MR, Stevens SR, Becker RC, Breithardt G, Carolei A, et al. Rivaroxaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of ROCKET AF. Lancet Neurol. 2012;11(4):315–22.

    Article  CAS  PubMed  Google Scholar 

  160. Granger CB, Alexander JH, McMurray JJV, Lopes RD, Hylek EM, Hanna M, et al. Apixaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2011;365(11):981–92.

    Article  CAS  PubMed  Google Scholar 

  161. Easton JD, Lopes RD, Bahit MC, Wojdyla DM, Granger CB, Wallentin L, et al. Apixaban compared with warfarin in patients with atrial fibrillation and previous stroke or transient ischaemic attack: a subgroup analysis of the ARISTOTLE trial. Lancet Neurol. 2012;11(6):503–11.

    Article  CAS  PubMed  Google Scholar 

  162. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, et al. Edoxaban versus warfarin in patients with atrial fibrillation. N Engl J Med. 2013;369(22):2093–104.

    Article  CAS  PubMed  Google Scholar 

  163. Rost NS, Giugliano RP, Ruff CT, Murphy SA, Crompton AE, Norden AD, et al. Outcomes with edoxaban versus warfarin in patients with previous cerebrovascular events: findings from ENGAGE AF-TIMI 48 (effective anticoagulation with factor Xa next generation in atrial fibrillation-thrombolysis in myocardial infarction 48). Stroke. 2016;47(8):2075–82.

    Article  CAS  PubMed  Google Scholar 

  164. Steffel J, Verhamme P, Potpara TS, Albaladejo P, Antz M, Desteghe L, et al. The 2018 European Heart Rhythm Association Practical Guide on the use of non-vitamin K antagonist oral anticoagulants in patients with atrial fibrillation: executive summary. Europace. 2018;20(8):1231–42.

    Article  PubMed  Google Scholar 

  165. Eikelboom JW, Connolly SJ, Brueckmann M, Granger CB, Kappetein AP, Mack MJ, et al. Dabigatran versus warfarin in patients with mechanical heart valves. N Engl J Med. 2013;369(13):1206–14.

    Article  CAS  PubMed  Google Scholar 

  166. Ferro JM, Coutinho JM, Dentali F, Kobayashi A, Alasheev A, Canhão P, et al. Safety and efficacy of dabigatran etexilate vs. dose-adjusted warfarin in patients with cerebral venous thrombosis: a randomized clinical trial. JAMA Neurol. 2019;76(12):1457–65.

    Article  PubMed  PubMed Central  Google Scholar 

  167. Miranda B, Aaron S, Arauz A, Barinagarrementeria F, Borhani-Haghighi A, Carvalho M, et al. The benefit of EXtending oral antiCOAgulation treatment (EXCOA) after acute cerebral vein thrombosis (CVT): EXCOA-CVT cluster randomized trial protocol. Int J Stroke. 2018;13(7):771–4.

    Article  PubMed  Google Scholar 

  168. Pollack CV, Reilly PA, Eikelboom J, Glund S, Verhamme P, Bernstein RA, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373(6):511–20.

    Article  CAS  PubMed  Google Scholar 

  169. Dobesh PP, Bhatt SH, Trujillo TC, Glaubius K. Antidotes for reversal of direct oral anticoagulants. Pharmacol Ther. 2019;204:107405.

    Article  CAS  PubMed  Google Scholar 

  170. Eikelboom JW, Quinlan DJ, Van Ryn J, Weitz JI. Idarucizumab the antidote for reversal of dabigatran. Circulation. 2015;132(25):2412–22.

    Article  PubMed  Google Scholar 

  171. Tse DM, Young L, Ranta A, Barber PA. Intravenous alteplase and endovascular clot retrieval following reversal of dabigatran with idarucizumab. J Neurol Neurosurg Psychiatry. 2018;89(5):549–50.

    Article  PubMed  Google Scholar 

  172. Zhao H, Coote S, Pesavento L, Jones B, Rodrigues E, Ng JL, et al. Prehospital idarucizumab prior to intravenous thrombolysis in a mobile stroke unit. Int J Stroke. 2019;14(3):265–9.

    Article  PubMed  Google Scholar 

  173. Barber PA, Wu TY, Ranta A. Stroke reperfusion therapy following dabigatran reversal with idarucizumab in a national cohort. Neurology. 2020;94(19):e1968–72.

    Article  CAS  PubMed  Google Scholar 

  174. Beharry J, Waters MJ, Drew R, Fink JN, Wilson D, Campbell BCV, et al. Dabigatran reversal before intravenous tenecteplase in acute ischemic stroke. Stroke. 2020;51:1616–9.

    Article  PubMed  Google Scholar 

  175. Diener HC, Bernstein R, Butcher K, Campbell B, Cloud G, Davalos A, et al. Thrombolysis and thrombectomy in patients treated with dabigatran with acute ischemic stroke: expert opinion. Int J Stroke. 2017;12(1):9–12.

    Article  CAS  PubMed  Google Scholar 

  176. Seiffge DJ, Polymeris AA, Fladt J, Lyrer PA, Engelter ST, De Marchis GM. Management of patients with stroke treated with direct oral anticoagulants. J Neurol. 2018;265(12):3022–33.

    Article  CAS  PubMed  Google Scholar 

  177. Wieland E, Shipkova M. Pharmacokinetic and pharmacodynamic drug monitoring of direct-acting oral anticoagulants. Ther Drug Monit. 2019;41(2):180–91.

    Article  CAS  PubMed  Google Scholar 

  178. Lu G, Deguzman FR, Hollenbach SJ, Karbarz MJ, Abe K, Lee G, et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med. 2013;19(4):446–51.

    Article  CAS  PubMed  Google Scholar 

  179. Connolly SJ, Milling TJ, Eikelboom JW, Michael Gibson C, Curnutte JT, Gold A, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med. 2016;375(12):1131–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Mueck W, Stampfuss J, Kubitza D, Becka M. Clinical pharmacokinetic and pharmacodynamic profile of rivaroxaban. Clin Pharmacokinet. 2014;53(1):1–16.

    Article  CAS  PubMed  Google Scholar 

  181. Kubitza D, Becka M, Voith B, Zuehlsdorf M, Wensing G. Safety, pharmacodynamics, and pharmacokinetics of single doses of BAY 59-7939, an oral, direct factor Xa inhibitor. Clin Pharmacol Ther. 2005;78(4):412–21.

    Article  CAS  PubMed  Google Scholar 

  182. Stampfuss J, Kubitza D, Becka M, Mueck W. The effect of food on the absorption and pharmacokinetics of rivaroxaban. Int J Clin Pharmacol Ther. 2013;51(7):549–61.

    Article  CAS  PubMed  Google Scholar 

  183. Byon W, Garonzik S, Boyd RA, Frost CE. Apixaban: a clinical pharmacokinetic and pharmacodynamic review. Clin Pharmacokinet. 2019;58(10):1265–79.

    Article  PubMed  PubMed Central  Google Scholar 

  184. Stacy ZA, Call WB, Hartmann AP, Peters GL, Richter SK. Edoxaban: a comprehensive review of the pharmacology and clinical data for the management of atrial fibrillation and venous thromboembolism. Cardiol Ther. 2016;5(1):1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Parasrampuria DA, Truitt KE. Pharmacokinetics and pharmacodynamics of edoxaban, a non-vitamin K antagonist oral anticoagulant that inhibits clotting factor Xa. Clin Pharmacokinet. 2016;55(6):641–55.

    Article  CAS  PubMed  Google Scholar 

  186. Chan N, Sager PT, Lawrence J, Ortel T, Reilly P, Berkowitz S, et al. Is there a role for pharmacokinetic/pharmacodynamic-guided dosing for novel oral anticoagulants? Am Heart J. 2018;199:59–67.

    Article  CAS  PubMed  Google Scholar 

  187. Kanuri SH, Kreutz RP. Pharmacogenomics of novel direct oral anticoagulants: newly identified genes and genetic variants. J Pers Med. 2019;9(1):7.

    Article  PubMed Central  Google Scholar 

  188. Kampouraki E, Kamali F. Pharmacogenetics of anticoagulants used for stroke prevention in patients with atrial fibrillation. Expert Opin Drug Metab Toxicol. 2019;15(6):449–58.

    Article  CAS  PubMed  Google Scholar 

  189. Paré G, Eriksson N, Lehr T, Connolly S, Eikelboom J, Ezekowitz MD, et al. Genetic determinants of dabigatran plasma levels and their relation to bleeding. Circulation. 2013;127(13):1404–12.

    Article  PubMed  CAS  Google Scholar 

  190. Sychev DA, Levanov AN, Shelekhova TV, Bochkov PO, Denisenko NP, Ryzhikova KA, et al. The impact of ABCB1 (rs1045642 and rs4148738) and CES1 (rs2244613) gene polymorphisms on dabigatran equilibrium peak concentration in patients after total knee arthroplasty. Pharmgenomics Pers Med. 2018;11:127–37.

    CAS  PubMed  PubMed Central  Google Scholar 

  191. Ing Lorenzini K, Daali Y, Fontana P, Desmeules J, Samer C. Rivaroxaban-induced hemorrhage associated with ABCB1 genetic defect. Front Pharmacol. 2016;7:494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Gouin-Thibault I, Delavenne X, Blanchard A, Siguret V, Salem JE, Narjoz C, et al. Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin. J Thromb Haemost. 2017;15(2):273–83.

    Article  CAS  PubMed  Google Scholar 

  193. Nagar S, Walther S, Blanchard RL. Sulfotransferase (SULT) 1A1 polymorphic variants *1, *2, and *3 are associated with altered enzymatic activity, cellular phenotype, and protein degradation. Mol Pharmacol. 2006;69(6):2084–92.

    Article  CAS  PubMed  Google Scholar 

  194. Kryukov AV, Sychev DA, Andreev DA, Ryzhikova KA, Grishina EA, Ryabova AV, et al. Influence of ABCB1 and CYP3A5 gene polymorphisms on pharmacokinetics of apixaban in patients with atrial fibrillation and acute stroke. Pharmgenomics Pers Med. 2018;11:43–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Hinman JD, Rost NS, Leung TW, Montaner J, Muir KW, Brown S, et al. Principles of precision medicine in stroke. J Neurol Neurosurg Psychiatry. 2017;88(1):54–61.

    Article  PubMed  Google Scholar 

  196. Rostanski SK, Marshall RS. Precision medicine for ischemic stroke. JAMA Neurol. 2016;73(7):773.

    Article  PubMed  Google Scholar 

  197. Lin Y, Li Z, Liu C, Wang Y. Towards precision medicine in ischemic stroke and transient ischemic attack. Front Biosci. 2018;23(7):1338–59.

    Article  CAS  Google Scholar 

  198. Verbelen M, Weale ME, Lewis CM. Cost-effectiveness of pharmacogenetic-guided treatment: are we there yet? Pharmacogenomics J. 2017;17(5):395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria José Diógenes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Leal Rato, M., Diógenes, M.J., Sebastião, A. (2021). Pharmacodynamics and Pharmacokinetics of Stroke Therapy. In: Fonseca, A.C., Ferro, J.M. (eds) Precision Medicine in Stroke. Springer, Cham. https://doi.org/10.1007/978-3-030-70761-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-70761-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-70760-6

  • Online ISBN: 978-3-030-70761-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics