Skip to main content

PAMOP2: State-of-the-Art Computations for Atomic, Molecular and Optical Processes

  • Conference paper
  • First Online:
High Performance Computing in Science and Engineering '19

Abstract

Our prime computational effort is to support current and future measurements of atomic photoionization cross-sections at various synchrotron radiation facilities, and ion-atom collision experiments, together with plasma, fusion and astrophysical applications. We solve the Schrödinger or Dirac equation using the R-matrix method from first principles. A time-dependent close coupling approach is used to investigate ion-atom excitation and electron-impact ionization. Finally, we present cross-sections and rates for molecule-molecule interactions and radiative association reactions between atoms of interest in astrophysics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B.M. McLaughlin, J.M. Bizau, D. Cubaynes, S. Guilbaud, S. Douix M.M. and Al Shorman, M.O.M. El Ghazaly, I. Sahko, M.F. Gharaibeh, K-shell photoionization of O\(^{4+}\) and O\(^{5+}\) ions: experiment and theory. Mon. Not. Roy. Astro. Soc. 465, 3690 (2017)

    Google Scholar 

  2. B.M. McLaughlin, Inner-shell photoionization, fluorescence and auger yields, in Spectroscopic Challenges of Photoionized Plasma, ed. by G.J. Ferland, D.W. Savin, vol. 247, pp. 87, San Francisco, CA, USA, 2001. Astronomical Society of the Pacific, ASP Con\(f\). Series

    Google Scholar 

  3. T.R. Kallman, Challenges of plasma modelling: Current status and future plans. Space Sci. Rev. 157, 177 (2010)

    Article  Google Scholar 

  4. B.M. McLaughlin, C.P. Ballance, Photoionization, fluorescence and inner-shell processes, in Yearbook of Science and Technology, ed. by McGraw Hill, p. 281. New York, NY, USA, 2013. McGraw Hill

    Google Scholar 

  5. B.M. McLaughlin, C.P. Ballance, Photoionization cross section calculations for the halogen-like ions Kr\(^{+}\), Xe\(^{+}\). J. Phys. B: At. Mol. Opt. Phys. 45, 085701 (2012)

    Article  Google Scholar 

  6. B.M. McLaughlin, C.P. Ballance, Photoionization cross sections for the trans-iron element Se\(^{+}\) from 18 to 31 eV. J. Phys. B: At. Mol. Opt. Phys. 45, 095202 (2012)

    Article  Google Scholar 

  7. B.M. McLaughlin, J.F. Babb, Single photoionization of the Kr-like Rb II ion in the photon energy range 22—46.0eV. Mon. Not. Roy. Astro. Soc. 486, 245 (2019)

    Google Scholar 

  8. C.P. Ballance, D.C. Griffin, Relativistic radiatively damped R-matrix calculation of the electron-impact excitation of W\(^{46+}\). J. Phys. B: At. Mol. Opt. Phys. 39, 3617 (2006)

    Article  Google Scholar 

  9. P.H. Norrington, I.P. Grant, Low-energy electron scattering by Fe XXIII and Fe VII using the Dirac R-matrix method. J. Phys. B: At. Mol. Phys. 20, 4869 (1987)

    Article  Google Scholar 

  10. C.P. Ballance, Darc codes website url. http://connorb.freeshell.org 2018

  11. B.M. McLaughlin, C.P. Ballance, Petascale computations for large-scale atomic and molecular collisions, in Sustained Simulated Performance 2014, ed. by M.M. Resch, Y. Kovalenko, E. Fotch, W. Bez, H. Kobaysah, pp. 173–190 (Springer, Berlin, Germany, 2015)

    Google Scholar 

  12. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, A. Müller, PAMOP: petascale atomic, molecular and optical collisions, in High Performance Computing in Science and Engineering’14, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch, pp 23–40 (Springer, Berlin, Germany, 2015)

    Google Scholar 

  13. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, A. Müller, PAMOP project : Petaflop computations in support of experiments, High Performance Computing in Science and Engineering’15, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch, pp. 51–74 (Springer, Berlin, Germany, 2016)

    Google Scholar 

  14. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, P.C. Stancil, S. Schippers, A. Müller, PAMOP project: Petaflop computations in support of experiments, in High Performance Computing in Science and Engineering’16, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch (Springer, Berlin, Germany, 2017), pp. 33–48

    Google Scholar 

  15. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, P.C. Stancil, J.F. Babb, S. Schippers, A. Müller, PAMOP: Large-scale calculations supporting experiments and astrophysical applications, in High Performance Computing in Science and Engineering’17, ed. by W.E. Nagel, D.H. Kröner, M.M. Resch, pp. 37–59(Springer, Berlin, Germany, 2018)

    Google Scholar 

  16. B.M. McLaughlin, C.P. Ballance, M.S. Pindzola, P.C. Stancil, J.F. Babb, S. Schippers, A. Müller, PAMOP2: Towards Exascale Computations Supporting Experiments and Astrophysics, High Performance Computing in Science and Engineering’18. pp. 37–59. Springer, Berlin, Germany, 2019

    Google Scholar 

  17. K.G. Dyall, C.T. Johnson, I.P. Grant, F. Parpia, E.P. Plummer, GRASP: A general-purpose relativistic atomic structure program. Comput. Phys. Commun. 55, 425 (1989)

    Article  Google Scholar 

  18. I.P. Grant, Relativistic Quantum Theory of Atoms and Molecules: Theory and Computation (Springer, New York, USA, 2007)

    Book  Google Scholar 

  19. P.G. Burke, R-Matrix Theory of Atomic Collisions: Application to Atomic (Molecular and Optical Processes. Springer, New York, USA, 2011)

    Book  MATH  Google Scholar 

  20. J. Darling, The 87 Rubidium atomic clock maser in giant stars. Research Notes of the AAS 2(1), 15 (2018)

    Article  Google Scholar 

  21. C. Sneden, R.G. Gratton, D.A. Crocker, Trends in copper and zinc abundances for disk and halo stars. Astron. & Astrophys. 246, 354 (1991)

    Google Scholar 

  22. T.V. Mishenina, V.V. Kovtyukh, C. Soubiran, C. Travaglio, M. Busso, Abundances of Cu and Zn in metal-poor stars: Clues for galaxy evolution. A&A 396, 189 (2002)

    Article  Google Scholar 

  23. I.U. Roederer, A.F. Marino, C. Sneden, Characterizing the heavy elements in globular cluster M22 and an empirical s-process abundance distribution derived from the two stellar groups. Astrophys. J. 742, 37 (2011)

    Article  Google Scholar 

  24. I.U. Roederer, C. Sneden, I.B. Thompson, G.W. Preston, S.A. Shectman, Characterizing the chemistry of the milky way stellar halo: Detailed chemical analysis of a metal-poor stellar stream. Astrophys. J. 711, 573 (2010)

    Article  Google Scholar 

  25. A. Frebel, J.D. Simon, E.N. Kirby, Segue 1: An unevolved fossil galaxy from the early universe. Astrophys. J. 786, 74 (2014)

    Article  Google Scholar 

  26. A. Mueller, D. Macaluso, N. Sterling, A. Juarez, I. Dumitriu, R. Bilodeau, E. Red, D. Hardy, A. Aguilar, Absolute photoionization of Rb\(^{+}\) and Br\(^{2+}\) ions for the determination of elemental abundances in astrophysical nebulae, in APS Division of Atomic, Molecular and Optical Physics Meeting Abstracts Bull. Am. Phys. Soc. 58, 178 (2013)

    Google Scholar 

  27. D. Kilbane, F. Folkman, J.M. Bizau, C. Banahan, S. Scully, H. Kjeldsen, P. van Kampen, M.W.D. Mansfiled, J.T. Costello, J.B. West, Absolute photoionization cross-section measurements of the Kr I isoelectronic sequence. Phys. Rev. A 75, 032711 (2007)

    Article  Google Scholar 

  28. A. Neogi, E.T. Kennedy , J.P. Mosnier, P. van Kampen, G. Costello J T O’Sullivan, M.W.D. Mansfiled, V. Demekhin Ph, B.M. Lagutin, V.L. Sukhorukov, Trends in autoionization of rydberg states converging to the 4s threshold in the Kr - Rb\(^{+}\) - Sr\(^{2+}\) isoelectonic sequence: theory and experiment. Phys. Rev. A 67, 042707 (2003)

    Google Scholar 

  29. G. Hinojosa, V.T. Davis, A.M. Covington, J.S. Thompson, A.L.D. Kilcoyne, A. Antillón, E.M. Hernández, D. Calabrese, A. Morales-Mori, A.M. Juárez, O. Windelius, B.M. McLaughlin, Single photoionization of the  Zn II ion in the photon energy range 17.5–90.0 eV: experiment and theory. Mon. Not. Roy. Astro. Soc. 470, 4048 (2017)

    Google Scholar 

  30. A. Müller, S. Schippers, R.P. Phaneuf, A.M. Covington, A. Aguilar, G. Hinojosa, J. Bozeck, M.M. Sant’Anna, A.S. Schlachter, C. Cisneros, B.M. McLaughlin, Photoionisation of Ca\(^{+}\) ions in the valence energy region 20–56 eV: experiment and theory. J. Phys. B: At. Mol. Opt. Phys. 50, 205001 (2017)

    Article  Google Scholar 

  31. D.A. Macaluso, K. Bogolub, A. Johnson, A. Aguilar, A.L.D. Kilcoyne, R.C. Bilodeau, M. Bautista, A.B. Kerlin, N.C. Sterling, Absolute single photoionization cross-section measurements for Rb\(^{2+}\) ions : theory and experiment. J. Phys. B: At. Mol. Opt. Phys. 49, 235002 (2016)

    Article  Google Scholar 

  32. D.A. Macaluso, K. Bogolub, A. Johnson, A. Aguilar, A.L.D. Kilcoyne, R.C. Bilodeau, M. Bautista, A.B. Kerlin, N.C. Sterling, Corrigendum: Absolute single photoionization cross-section measurements for Rb\(^{2+}\) ions : theory and experiment. J. Phys. B: At. Mol. Opt. Phys. 50, 119501 (2017)

    Article  Google Scholar 

  33. G.J. Ferland, K.T. Korista, D.A. Verner, J.W. Ferguson, J.B. Kingdon, E.M. Verner, CLOUDY 90 : numerical simulations of plasmas and their spectra. Pub. Astron. Soc. Pac. (PASP) 110, 761 (1998)

    Google Scholar 

  34. G.J. Ferland, Quantative spectroscopy of photoionized clouds. Ann. Rev. of Astron. Astrophys. 41, 517 (2003)

    Article  Google Scholar 

  35. T.R. Kallman, Photoionized modeling codes. Astrophys. J. Suppl. Ser. 134, 139 (2001)

    Google Scholar 

  36. A.R. Foster, L. Ji, R.K. Smith, N.S. Brickhouse, Updated atomic data and calculations for X-Ray spectroscopy. Astrophys. J. 756, 128 (2012)

    Article  Google Scholar 

  37. B.M. McLaughlin, J.F. Babb, Photoionization of Rb\(^{2+}\) ions in the valence energy region 37 eV - 44 eV. J. Phys. B: At. Mol. Opt. Phys. 52, 125201 (2019)

    Article  Google Scholar 

  38. C.A. Ramsbottom, C.E. Hudson, P.H. Norrington, M.P. Scott, Electron-impact excitation of Fe II: Collision strengths and effective collision strengths for low-lying fine-structure forbidden transitions. Astron. & Astrophys. 475, 765 (2007)

    Article  Google Scholar 

  39. H. Nussbaumer, P.J. Storey, Atomic data for FeII. Astron. & Astrophys. 89, 308 (1980)

    Google Scholar 

  40. A.E. Kramida, Y. Ralchenko, J. Reader, NIST ASD Team, NIST Atomic Spectra Database (version 5.6.2). National Institute of Standards, Technology, Gaithersburg, MD, USA, 2018

    Google Scholar 

  41. M.A. Bautista, V. Fivet, C. Ballance, P. Quinet, G.J. Ferland, C. Mendoza, T.R. Kallman, Atomic data and spectral models for Fe II. Astrophys. J. 808, 174 (2015)

    Article  Google Scholar 

  42. C.A. Ramsbottom, C.J. Noble, V.M. Burke, M.P. Scott, P.G. Burke, Configuration interaction effects in low-energy electron collisions with Fe II. J. Phys. B: At. Mol. Opt. Phys. 37, 3609 (2004)

    Article  Google Scholar 

  43. S.S. Tayal, O. Zatsarinny, Electron-impact excitation of forbidden and allowed transitions in Fe II. Phys. Rev. A 98, 012706 (2018)

    Article  Google Scholar 

  44. H.L. Zhang,m A.K. Pradhan, Atomic data from the Iron Project. VI. Collision strengths and rate coefficients for Fe II. Astron. & Astrophys. 293, 953 (1995)

    Google Scholar 

  45. F.P. Keenan, A. Hibbert, P.G. Burke, K.A. Berrington, Fine-structure populations for the \(^{6}{\rm D}\) ground state od Fe II. Astrophys. J. 332, 539 (1988)

    Article  Google Scholar 

  46. K.A. Berrington, P.G. Burke, A. Hibbert, M. Mohan, K.L. Baluja, Electron impact excitation of Fe\(^{+}\) using the R-matrix method incorporating fine-structure effects. J. Phys. B: At. Mol. Phys. 21, 339 (1988)

    Article  Google Scholar 

  47. E.M. Verner, D.A. Verner, K.T. Korista, J.W. Ferguson, F. Hamann, G.J. Ferland, Numerical Simulations of Fe II Emission Spectra. Astrophys. J. Suppl. Ser. 120, 101 (1999)

    Article  Google Scholar 

  48. R.T. Smyth, C.A. Ramsbottom, F.P. Keenan, G.J. Ferland, C.P. Ballance, Towards converged electron-impact excitation calculations of low-lying transitions in Fe II. Mon. Not. Roy. Astro. Soc. 483, 654 (2018)

    Google Scholar 

  49. R. Shingal, B.H. Bransden, Charge transfer, target excitation and ionizationin H\(^{+}\) - Na(3s) collisions. J. Phys. B: At. Mol. Phys. 20, 4815 (1987)

    Article  Google Scholar 

  50. J.S. Allen, L.W. Anderson, C.C. Lin, Cross-sections for excitation of sodium by impact of H\(^+\), H\(_2^+\), H\(_3^+\), and H\(^-\) ions. Phys. Rev. A 37, 349 (1988)

    Article  Google Scholar 

  51. C.F. Fischer, The Hatree-Fock Method for Atoms (Wiley, New York, USA, 1977)

    Google Scholar 

  52. K. Igenbergs, J. Schweinzer, I. Bray, D. Bridi, F. Aumayr, Database for inelastic collisions of sodium atoms with electrons, protons, and multiply charged ions. At. Data Nucl. Data Tables 94, 981 (2008)

    Article  Google Scholar 

  53. W. Jitschin, S. Osimitsch, D.W. Mueller, H. Reihl, R.J. Allan, O. Scholler, H.O. Lutz, Excitation of the Na 3p state by proton impact. J. Phys. B: At. Mol. Phys. 19, 2299 (1986)

    Article  Google Scholar 

  54. M.S. Pindzola, S.D. Loch, Proton Impact Excitation of the Na atom. J. Phys. B: At. Mol. Opt. Phys. 52, 025202 (2019)

    Article  Google Scholar 

  55. O. Denis-Alpizar, T. Stoecklin, P. Halvick, M.L. Dubernet, Rotational relaxation of CS by collision with ortho- and para-H\(_2\) molecules. J. Chem. Phys. 139, 204304 (2013)

    Article  Google Scholar 

  56. B. Yang, P. Zhang, C. Qu, P.C. Stancil, J.M. Bowman, N. Balakrishnan, R.C. Forrey, Inelastic vibrational dynamics of CS in collision with H\(_2\) using a full-dimensional potential energy surface. Phys. Chem. Chem. Phys. 20, 28425 (2018)

    Article  Google Scholar 

  57. O. Denis-Alpizar, T. Stoecklin, S. Guilloteau, A. Dutrey, New rate coefficients of CS in collision with para and ortho-H\(_2\) and astrophysical implications. Mon. Not. Roy. Astro. Soc. 478, 1811 (2018)

    Article  Google Scholar 

  58. T.B. Adler, G. Knizia, H.J. Werner, A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127, 221106 (2007)

    Article  Google Scholar 

  59. H.-J. Werner. T.B. Adler, F.R. Manby, General orbital invariant MP2-F12 theory. J. Chem. Phys. 126, 164102 (2007)

    Google Scholar 

  60. T.H. Dunning Jr., Gaussian basis set for use in correlated molecular calculations, I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007 (1989)

    Google Scholar 

  61. T.H. Dunning Jr., K.A. Peterson, A.K. Wilson, Gaussian basis sets for use in correlated molecular calculations. X. The atoms aluminum through argon revisted. J. Chem. Phys. 114, 9244 (2001)

    Google Scholar 

  62. F. Weigend, A. Köhn, C. Hättig, Efficient use of the correlation consistent basis sets in resolution of the identity MP2 calculations. J. Chem. Phys. 116, 3175 (2002)

    Article  Google Scholar 

  63. C. Hättig, Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple-f basis sets for H to Ar and QZVPP basis sets for Li to Kr. Optimization of auxiliary basis sets for RI-MP2 and RI-CC2 calculations: Core–valence and quintuple - \(\zeta \) basis sets for H to Ar and QZVPP basis sets for Li to Kr. Phys. Chem. Chem. Phys. 7, 59 (2005)

    Google Scholar 

  64. EMSL basit set exchange. https://bse.pnl.gov/bse/portal 2018

  65. D. Feller, K.A. Peterson, J.G. Hill, Calibration study of the CCSD(T)-F12a/b methods for C\(_2\) and small hydrocarbons. J. Chem. Phys. 133, 184102 (2010)

    Article  Google Scholar 

  66. S.F. Boys, F. Bernardi, The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol. Phys. 19, 553 (1970)

    Google Scholar 

  67. R.V. Krems, TwoBC - quantum scattering program (University of British Columbia, Vancouver, Canada, 2006)

    Google Scholar 

  68. B.R. Johnson, Multichannel log-derivative method for scattering calculations. J. Comp. Phys. 13, 445 (1973)

    Article  MATH  Google Scholar 

  69. B.H. Yang, P. Zhang, X. Wang, P.C. Stancil, J.M. Bowman, N. Balakrishnan, R.C. Forrey, Inelastic vibrational dynamics of CO in collision with H\(_2\) using a full-dimensional potential energy surface. Nat. Commun. 6, 6629 (2015)

    Article  Google Scholar 

  70. B.E. Turner, Vibrationally excited CS in IRC + 10216. Astron. & Astrophys. 182, L15 (1987)

    Google Scholar 

  71. J.L. Highberger, A.J. Apponi, J.H. Bieging, L.M. Ziyrys, J.G. Mangun, Millimeter observations of vibrationally excited CS toward IRC +10216: a new circumstellar maser? Astrophys. J. 544, 881 (2000)

    Article  Google Scholar 

  72. N.A. Patel et al., Submillimeter narrow emission lines from the inner envelope of IRC + 10216. Astrophys. J. 692, 1205 (2009)

    Article  Google Scholar 

  73. J.P. Fonfría, M. Agúndez, J. Cernicharo, M.J. Richter, J.H. Lacy, Carbon chemistry in IRC+10216: infrared detection of diacetylene. Astrophys. J. 852, 80 (2018)

    Article  Google Scholar 

  74. J.F. Babb, R.T. Smyth, B.M. McLaughlin, Dicarbon formation in collisions between two carbon atoms. Astrophys. J. 876, 38 (2019)

    Article  Google Scholar 

  75. S. Prasad, W.T. Huntress, A model for gas phase chemistry in interstellar clouds. I - The basic model, library of chemical reactions, and chemistry among C, N, and O compounds. Astrophys. J. Suppl. Ser. 43, 1 (1980)

    Google Scholar 

  76. T.J. Millar, A. Bennett, J.M.C. Rawlings, P.D. Brown, S.B. Charnley, Gas phase reactions and rate coefficients for use in astrochemistry - The UMIST ratefile. Astrophys. J. Suppl. Ser. 87, 585 (1991)

    Google Scholar 

  77. C.M. Andreazza, P.D. Singh, Formation of Si\(_2\), C\(_2\), C\(_2^+\) and N\(_2^+\) by radiative association. Mon. Not. Roy. Astro. Soc. 287(2), 287–292 (1997)

    Article  Google Scholar 

  78. N.V. Golubev, D.S. Bezrukov, M. Gustafsson, G. Nyman, S.V. Antipov, Formation of the SiP Radical through Radiative Association. J. Phys. Chem. A 117(34), 8184–8188 (2013)

    Article  Google Scholar 

  79. R.C. Forrey, J.F. Babb, P.C. Stancil, B.M. McLaughlin, Formation of silicon monoxide by radiative association: the impact of resonances. J. Phys. B: At. Mol. Opt. Phys. 49(18), 184002 (2016)

    Article  Google Scholar 

  80. M. Cairnie, R.C. Forrey, J.F. Babb, P.C. Stancil, B.M. McLaughlin, Rate constants for the formation of SiO by radiative association. Mon. Not. Roy. Astro. Soc. 471(2), 2481 (2017)

    Article  Google Scholar 

  81. R.J. Pattillo, R. Cieszewski, P.C. Stancil, R.C. Forrey, J.F. Babb, J.F. McCann, B.M. McLaughlin, Photodissociation of CS from excited rovibrational levels. Astrophys. J. 858(1), 10 (2018)

    Article  Google Scholar 

  82. R.C. Forrey, J.F. Babb, P.C. Stancil, B.M. McLaughlin, Rate constants for the formation of CS by radiative association. Mon. Not. Roy. Astro. Soc. 479(4), 4727 (2018)

    Article  Google Scholar 

  83. C.M. Andreazza, E.P. Marinho, P.D. Singh, Radiative association of C and P, and Si and P atoms. Mon. Not. Roy. Astro. Soc. 372, 1653 (2006)

    Article  Google Scholar 

  84. A. Tanabashi, T. Hirao, T. Amano, P.F. Bernath, The swan system of C\(_{2}\): a global analysis of fourier transform emission spectra. Astrophys. J. Suppl. Ser. 169, 472–484 (2007)

    Article  Google Scholar 

  85. P. Bornhauser, R. Marquardt, C. Gourlaouen, G. Knopp, M. Beck, T. Gerber, J.A. van Bokhoven, P.P. Radi, Perturbation-facilitated detection of the first quintet-quintet band in C\(_{\rm 2}\). J. Chem. Phys. 142(9), 094313 (2015)

    Article  Google Scholar 

  86. R.M. Macrae, Puzzles in bonding and spectroscopy: the case of dicarbon. Sci. Prog. 99(1), 1–58 (2016)

    Article  Google Scholar 

  87. T. Furtenbacher, I. Szabó, A.G. Császár, P.F. Bernath, S.N. Yurchenko, J. Tennyson, Experimental energy levels and partition function of the \(^{12}\)C\(_2\) molecule. Astrophys. J. Suppl. Ser. 224(2), 44 (2016)

    Article  Google Scholar 

  88. I. Cherchneff, A. Sarangi, Molecules in Supernova Ejecta. In José Cernicharo and Rafael Bachiller, editors, The Molecular Universe of IAU Symposium, Vol. 280, pp. 228–236 (2011)

    Google Scholar 

  89. A. Sarangi, M. Matsuura, E.R. Micelotta, Dust in supernovae and supernova remnants I: formation scenarios. Space Sci. Rev. 214(3), 63 (2018)

    Article  Google Scholar 

  90. F.J. Abellán et al., Very deep inside the SN 1987a core ejecta: molecular structures seen in 3d. Astrophys. J. 842(2), L24 (2017)

    Article  Google Scholar 

  91. A. Sluder, M. Milosavljević, M.H. Montgomery, Molecular nucleation theory of dust formation in core-collapse supernovae applied to SN 1987A. Mon. Not. Roy. Astro. Soc. 480, 5580–5624 (2018)

    Google Scholar 

  92. T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic-Structure Theory (Wiley, New York, USA, 2000)

    Book  Google Scholar 

  93. H.J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M. Schütz, et al., molpro, version 2015.1, a package of ab initio programs, 2015. See http://www.molpro.net

  94. J.K. Knipp, Quadrupole-quadrupole interatomic forces. Phys. Rev. 53, 734–745 (1938)

    Article  Google Scholar 

  95. T.Y. Chang, Moderately long - range interatomic forces. Rev. Mod. Phys. 39(4), 911–942 (1967)

    Article  Google Scholar 

  96. M. Boggio-Pasqua, A.I. Voronin, P. Halvick, C.J. Rayez, Analytical representations of high level ab initio potential energy curves of the C\(_2\) molecule. J. Molec. Struct.: THEOCHEM 531(1-3), 159–167 (2000)

    Google Scholar 

  97. S.V. ONeil, P. Rosmus, H-J. Werner, The radiative lifetime of A \(^{1}{u}\) C\(_{2}\). J. Chem. Phys. 87(5), 2847–2853 (1987)

    Google Scholar 

  98. S.R. Langhoff, C.W. Bauschlicher, A.P. Rendell, A. Komornicki, Theoretical study of the radiative lifetime of the A \(^{1}\varPi _{u}\) state of C\(_{2}\). J. Chem. Phys. 92(5), 3000–3004 (1990)

    Article  Google Scholar 

  99. D.L. Kokkin, G.B. Bacskay, T.W. Schmidt, Oscillator strengths and radiative lifetimes for C\(_2\): Swan, Ballik-Ramsay, Phillips, and d\(^2\varPi _g\)\(\leftarrow \) c\(^3\Sigma _u^+\) systems. J. Chem. Phys. 126(8), 084302 (2007)

    Article  Google Scholar 

  100. J.F. Babb, A. Dalgarno, Radiative association and inverse predissociation of oxygen atoms. Phys. Rev. A 51, 3021–3026 (1995)

    Article  Google Scholar 

  101. F.A. Gianturco, Giorgi P. Gori, Radiative association of LiH ( X\(^{1}\varSigma ^+\)) from electronically excited lithium atoms. Phys. Rev. A 54(5), 4073–4077 (1996)

    Article  Google Scholar 

  102. J.F. Babb, K.P. Kirby, Molecule Formation in Dust-poor Environments, in Molecular Astrophysics of Stars and Galaxies, page 11, ed. by T.W. Hartquist, D.A. Williams (Clarendon Press, Oxford, UK, 1998)

    Google Scholar 

  103. R.D. Cowan, The Theory of Atomic Structure and Spectra (University of California Press, Berkeley, California, USA, 1981)

    Book  Google Scholar 

  104. L.J. Curtis, Atomic Structure and Lifetimes: A Conceptual Approach (Cambridge University Press, Cambridge, UK, 2003)

    Book  Google Scholar 

  105. J.K.G. Watson, Hönl-London factors for multiplet transitions in Hund’s case a or b. J. Mol. Spec. 253, 5 (2008)

    Article  Google Scholar 

  106. C. Amiot, Fourier spectroscopy of the \(^{12}\)C\(_2\), \(^{13}\)C\(_2\), and \(^{12}\)C\(^{13}\)C \((0--0)\) Swan bands. Astrophys. J. Suppl. Ser. 52, 329–340 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

A Müller acknowledges support by Deutsche Forschungsgemeinschaft under project number Mu-1068/20. B M McLaughlin acknowledges support from the US National Science Foundation through a grant to ITAMP at the Harvard-Smithsonian Center for Astrophysics, the University of Georgia at Athens for the award of an adjunct professorship, and Queen’s University Belfast for a visiting research fellowship (VRF). ITAMP is supported in part by a grant from the NSF to the Smithsonian Astrophysical Observatory and Harvard University. M S Pindzola acknowledges support by NSF and NASA grants through Auburn University. P C Stancil acknowledges support from NASA grants through University of Georgia at Athens. The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputer hazel hen at Höchstleistungsrechenzentrum Stuttgart (www.hlrs.de). This research also used computational resources at the National Energy Research Scientific Computing Center (nersc) in Berkeley, CA, USA. The Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, provided additional computational resources, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725. The Advanced Light Source is supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. M. McLaughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

McLaughlin, B.M. et al. (2021). PAMOP2: State-of-the-Art Computations for Atomic, Molecular and Optical Processes. In: Nagel, W.E., Kröner, D.H., Resch, M.M. (eds) High Performance Computing in Science and Engineering '19. Springer, Cham. https://doi.org/10.1007/978-3-030-66792-4_3

Download citation

Publish with us

Policies and ethics