Skip to main content

Cardiovascular Disease Epidemiology and Risk Factors: General Concepts

  • Chapter
  • First Online:
Nutraceuticals and Cardiovascular Disease

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 389 Accesses

Abstract

Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. All nations in the world are impacted. The incidence and prevalence of CVD are rising throughout the world, and the socioeconomic cost of this epidemic is straining the health care budgets of all nations. Cardiovascular epidemiology has identified environmental, behavioral, and genetic factors that are associated with either (a) protection from cardiovascular disease (CVD) or (b) increased predisposition to this group of illnesses. Protective factors include regular exercise, increased serum levels of high-density lipoprotein cholesterol, Mediterranean diet, increased consumption of polyunsaturated fats, and moderate alcohol intake. Predisposing factors include increased burden of atherogenic lipoproteins (low-density lipoprotein cholesterol, remnant lipoproteins), smoking, hypertension, insulin resistance and obesity, diabetes mellitus, and heightened systemic inflammatory tone. Cardiovascular epidemiology has made possible the identification of treatable, reversible risk factors for CVD. By testing the impact of specific interventions on individual risk factors in prospective, randomized clinical trials, it has been possible to quantitatively determine the benefits of such treatments compared to either placebo or a different treatment. Cardiovascular epidemiology has shown that risk factors behave essentially the same way in both men and women and people of all races and ethnic groups. Great effort needs to be made to identify patients with risk factor burdens and treat them earlier, more cost effectively, and more aggressively so as to lower the rate of rise in global CVD.

Prepared for publication in

NUTRACEUTICALS AND CARDIOVASCULAR DISEASE: AN EVIDENCE BASED APPROACH FOR CLINICAL PRACTICE (Arrigo F.G. Cicero, Manfredi Rizzo, eds) Springer

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gheorghe A, Griffiths U, Murphy A, Legido-Quigley H, Lamptey P, Perel P. The economic burden of cardiovascular disease and hypertension in low- and middle-income countries: a systematic review. BMC Public Health. 2018;18:975.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Walker IF, Garbe F, Wright J, et al. The economic costs of cardiovascular disease, diabetes mellitus, and associated complications in South Asia: a systematic review. Value Health Reg Issues. 2018;15:12–26.

    Article  PubMed  Google Scholar 

  3. https://www.world-heart-federation.org/resources/cardiovascular-diseases-cvds-global-facts-figures/

  4. https://www.who.int/en/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  5. https://professional.heart.org/idc/groups/ahamah-public/@wcm/@sop/@smd/documentsdownloadable/ucm_503396.pdf

  6. Tsao CW, Vasan RS. Cohort profile: the Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiology. Int J Epidemiol. 2015;44:1800–13.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mahmood SS, Levy D, Vasan RS, Wang TJ. The Framingham Heart Study and the epidemiology of cardiovascular disease: a historical perspective. Lancet. 2014;383:999–1008.

    Article  PubMed  Google Scholar 

  8. Pett KD, Willett WC, Vartiainen E, Katz DL. The seven countries study. Eur Heart J. 2017;38:3119–21.

    Article  PubMed  Google Scholar 

  9. Keys A, Menotti A, Aravanis C, et al. The seven countries study: 2,289 deaths in 15 years. Prev Med. 1984;13:141–54.

    Article  CAS  PubMed  Google Scholar 

  10. Fried LP, Borhani NO, Enright P, et al. The cardiovascular health study: design and rationale. Ann Epidemiol. 1991;1:263–76.

    Article  CAS  PubMed  Google Scholar 

  11. The ARIC Investigators. The Atherosclerosis Risk in Communities (ARIC) Study: design and objectives. Am J Epidemiol. 1989;129:687–702.

    Google Scholar 

  12. Bild DE, Bluemke DA, Burke GL, et al. Multi-ethnic study of atherosclerosis: objectives and design. Am J Epidemiol. 2002;156:871–81.

    Article  PubMed  Google Scholar 

  13. Howard VJ, Cushman M, Pulley L, et al. The reasons for geographic and racial differences in stroke study: objectives and design. Neuroepidemiology. 2005;25:135–43.

    Article  PubMed  Google Scholar 

  14. Wyatt SB, Akylbekova EL, Wofford MR, et al. Prevalence, awareness, treatment, and control of hypertension in the Jackson heart study. Hypertension. 2008;51:650–6.

    Article  CAS  PubMed  Google Scholar 

  15. Sivapalaratnam S, Boekholdt SM, Trip MD, et al. Family history of premature coronary heart disease and risk prediction in the EPIC-Norfolk prospective population study. Heart. 2010;96:1985–9.

    Article  PubMed  Google Scholar 

  16. Assmann G, Schulte H. The prospective cardiovascular Munster (PROCAM) study: prevalence of hyperlipidemia in persons with hypertension and/or diabetes mellitus and the relationship to coronary heart disease. Am Heart J. 1988;116:1713–24.

    Article  CAS  PubMed  Google Scholar 

  17. Aquino EML, Barreto SM, Bensenor IM, et al. Brazilian longitudinal study of adult health (ELSA-Brasil): objectives and design. Am J Epidemiol. 2012;175:315–24.

    Article  PubMed  Google Scholar 

  18. Shim JS, Song BM, Lee JH, et al. Cohort profile: the cardiovascular and metabolic diseases Etiology Research Center Cohort in Korea. Yonsei Med J. 2019;60:804–10.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Nojiri S, Daida H. Atherosclerotic cardiovascular risk in Japan. Jpn Clin Med. 2017;8:1179066017712713.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Weiwei C, Runlin G, Lisheng L, et al. Outline of the report on cardiovascular diseases in China, 2014. Eur Heart J Suppl. 2016;18:F2–F11.

    Article  PubMed  Google Scholar 

  21. Prabhakaran D, Jeemon P, Roy A. Cardiovascular diseases in India. Circulation. 2016;133:1605–20.

    Article  PubMed  Google Scholar 

  22. Kengne AP, Ntyintyane LM, Mayosi BM. A systematic overview of prospective cohort studies of cardiovascular disease in sub-Saharan Africa. Cardiovasc J Afr. 2012;23:103–12.

    Article  PubMed  Google Scholar 

  23. Morales LS, Flores YN, Leng M, Sportiche N, Gallegos-Carrillo K, Salmeron J. Risk factors for cardiovascular disease among Mexican-American adults in the United States and Mexico: a comparative study. Salud Publica Mex. 2014;56:197–205.

    Article  PubMed  Google Scholar 

  24. McAreavey D, Vidal JS, Aspelund T, et al. Midlife cardiovascular risk factors and late-life unrecognized and recognized myocardial infarction detect by cardiac magnetic resonance: ICELAND‐MI, the AGES‐Reykjavik study. J Am Heart Assoc. 2016;5:e002420.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yusuf S, Hawken S, Ounpuu S, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. Lancet. 2004;364:937–52.

    Article  PubMed  Google Scholar 

  26. Ference BA, Ginsberg HN, Graham I, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38:2459–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol. 2005;25:2255–64.

    Article  CAS  PubMed  Google Scholar 

  28. Tabas I, Seimon T, Timmins J, Li G, Lim W. Macrophage apoptosis in advanced atherosclerosis. Ann N Y Acad Sci. 2009;1173(Suppl 1):E40–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Libby P, Ridker PM, Hansson GK. Inflammation in atherosclerosis: from pathophysiology to practice. J Am Coll Cardiol. 2009;54:2129–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Baigent C, Blackwell L, Emberson J, et al. Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet. 2010;376:1670–81.

    Article  CAS  PubMed  Google Scholar 

  31. Cannon CP, Blazing MA, Giugliano RP, et al. Ezetimibe added to statin therapy after acute coronary syndromes. N Engl J Med. 2015;372:2387–97.

    Article  CAS  PubMed  Google Scholar 

  32. Sabatine MS, Giugliano RP, Keech AC, et al. Evolocumab and clinical outcomes in patients with cardiovascular disease. N Engl J Med. 2017;376:1713–22.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz GG, Steg PG, Szarek M, et al. Alirocumab and cardiovascular outcomes after acute coronary syndrome. N Engl J Med. 2018;379:2097–107.

    Article  CAS  PubMed  Google Scholar 

  34. Ference BA, Graham I, Tokgozoglu L, Catapano AL. Impact of Lipids on cardiovascular health. JACC Health Promotion Ser J Am Coll Cardiol. 2018;72:1141–56.

    CAS  Google Scholar 

  35. Packard CJ, Weintraub WS, Laufs U. New metrics needed to visualize the long-term impact of early LDL-C lowering on the cardiovascular disease trajectory. Vasc Pharmacol. 2015;71:37–9.

    Article  CAS  Google Scholar 

  36. Grundy SM, Stone NJ, Bailey AL, et al. AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation, 2019. 2018;139:e1082–143.

    Google Scholar 

  37. Mach F, Baigent C, Catapano AL, et al. ESC/EAS guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk: the task force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). Eur Heart J. 2019:2019.

    Google Scholar 

  38. Toth PP, Barter PJ, Rosenson RS, et al. High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol. 2013;7:484–525.

    Article  PubMed  Google Scholar 

  39. Heinecke JW. The HDL proteome: a marker--and perhaps mediator–of coronary artery disease. J Lipid Res. 2009;50(Suppl):S167–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Brewer HB Jr, Remaley AT, Neufeld EB, Basso F, Joyce C. Regulation of plasma high-density lipoprotein levels by the ABCA1 transporter and the emerging role of high-density lipoprotein in the treatment of cardiovascular disease. Arterioscler Thromb Vasc Biol. 2004;24:1755–60.

    Article  CAS  PubMed  Google Scholar 

  41. Toth P. High-density lipoprotein: epidemiology, metabolism, and antiatherogenic effects. Dis Mon. 2001;47:365–416.

    Article  Google Scholar 

  42. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease–the Framingham Heart Study. Can J Cardiol. 1988;4(Suppl A):5a–10a.

    PubMed  Google Scholar 

  43. Assmann G, Cullen P, Schulte H. The Munster Heart Study (PROCAM). Results of follow-up at 8 years. Eur Heart J. 1998;19(Suppl A):A2–A11.

    PubMed  Google Scholar 

  44. Preiss D, Kristensen SL. The new pooled cohort equations risk calculator. Can J Cardiol. 2015;31:613–9.

    Article  PubMed  Google Scholar 

  45. Coleman RL, Stevens RJ, Retnakaran R, Holman RR. Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes. Diabetes Care. 2007;30:1292–3.

    Article  PubMed  Google Scholar 

  46. Cook NR, Paynter NP, Eaton CB, et al. Comparison of the Framingham and Reynolds Risk scores for global cardiovascular risk prediction in the multiethnic Women’s Health Initiative. Circulation. 2012;125:1748–56, s1–11

    Article  PubMed  PubMed Central  Google Scholar 

  47. Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med. 2011;365:2255–67.

    Article  PubMed  CAS  Google Scholar 

  48. Landray MJ, Haynes R, Hopewell JC, et al. Effects of extended-release niacin with laropiprant in high-risk patients. N Engl J Med. 2014;371:203–12.

    Article  PubMed  CAS  Google Scholar 

  49. Schwartz GG, Olsson AG, Abt M, et al. Effects of Dalcetrapib in patients with a recent acute coronary syndrome. N Engl J Med. 2012;367:2089–99.

    Article  CAS  PubMed  Google Scholar 

  50. Bowman L, Hopewell JC, Chen F, et al. Effects of Anacetrapib in patients with atherosclerotic vascular disease. N Engl J Med. 2017;377:1217–27.

    Article  PubMed  Google Scholar 

  51. Voight BF, Peloso GM, Orho-Melander M, et al. Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study. Lancet. 2012;380:572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, Jensen G, Tybjaerg-Hansen A. Elevated HDL cholesterol is a risk factor for ischemic heart disease in white women when caused by a common mutation in the cholesteryl ester transfer protein gene. Circulation. 2000;101:1907–12.

    Article  CAS  PubMed  Google Scholar 

  53. Yamamoto S, Yancey PG, Ikizler TA, et al. Dysfunctional high-density lipoprotein in patients on chronic hemodialysis. J Am Coll Cardiol. 2012;60:2372–9.

    Article  CAS  PubMed  Google Scholar 

  54. Grundy SM. Atherogenic dyslipidemia associated with metabolic syndrome and insulin resistance. Clin Cornerstone. 2006;8(Suppl 1):S21–7.

    Article  PubMed  Google Scholar 

  55. Budoff M. Triglycerides and triglyceride-rich lipoproteins in the causal pathway of cardiovascular disease. Am J Cardiol. 2016;118:138–45.

    Article  CAS  PubMed  Google Scholar 

  56. Miller MSN, Ballantyne C, Bittner V, et al. Triglycerides and cardiovascular disease: a scientific statement from the American Heart Association. Circulation. 2011;123:2292–333.

    Article  PubMed  Google Scholar 

  57. Chapman MJ, Ginsberg HN, Amarenco P, et al. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: evidence and guidance for management. Eur Heart J. 2011;32:1345–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Toth PP, Philip S, Hull M, Granowitz C. Elevated triglycerides (>/=150 mg/dL) and high triglycerides (200-499 mg/dL) are significant predictors of new heart failure diagnosis: a real-world analysis of high-risk statin-treated patients. Vasc Health Risk Manag. 2019;15:533–8.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Toth PP, Philip S, Hull M, Granowitz C. Elevated triglycerides (>/=150 mg/dL) and high triglycerides (200-499 mg/dL) are significant predictors of hospitalization for new-onset kidney disease: a real-world analysis of high-risk statin-treated patients. Cardiorenal Med. 2019;9:400–7.

    Article  CAS  PubMed  Google Scholar 

  60. Toth PP, Philip S, Hull M, Granowitz C. Association of elevated triglycerides with increased cardiovascular risk and direct costs in statin-treated patients. Mayo Clin Proc. 2019;94:1670–80.

    Article  CAS  PubMed  Google Scholar 

  61. Toth PP, Granowitz C, Hull M, Liassou D, Anderson A, Philip S. High triglycerides are associated with increased cardiovascular events, medical costs, and resource use: a real-world administrative claims analysis of statin-treated patients with high residual cardiovascular risk. J Am Heart Assoc. 2018;7:e008740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Nordestgaard BG, Varbo A. Triglycerides and cardiovascular disease. Lancet. 2014;384:626–35.

    Article  CAS  PubMed  Google Scholar 

  63. Varbo A, Benn M, Nordestgaard BG. Remnant cholesterol as a cause of ischemic heart disease: evidence, definition, measurement, atherogenicity, high risk patients, and present and future treatment. Pharmacol Ther. 2014;141:358–67.

    Article  CAS  PubMed  Google Scholar 

  64. Varbo A, Benn M, Tybjaerg-Hansen A, Jorgensen AB, Frikke-Schmidt R, Nordestgaard BG. Remnant cholesterol as a causal risk factor for ischemic heart disease. J Am Coll Cardiol. 2013;61:427–36.

    Article  CAS  PubMed  Google Scholar 

  65. Joshi PH, Khokhar AA, Massaro JM, et al. Remnant lipoprotein cholesterol and incident coronary heart disease: the Jackson heart and Framingham offspring cohort studies. J Am Heart Assoc. 2016;5

    Google Scholar 

  66. Varbo A, Benn M, Tybjaerg-Hansen A, Nordestgaard BG. Elevated remnant cholesterol causes both low-grade inflammation and ischemic heart disease, whereas elevated low-density lipoprotein cholesterol causes ischemic heart disease without inflammation. Circulation. 2013;128:1298–309.

    Article  CAS  PubMed  Google Scholar 

  67. Bhatt DL, Steg PG, Miller M, et al. Reduction in first and Total ischemic events with Icosapent ethyl across baseline triglyceride tertiles. J Am Coll Cardiol. 2019;74:1159–61.

    Article  PubMed  Google Scholar 

  68. Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics; 2019 update: a report from the American Heart Association. Circulation. 2019;139:e56–e528.

    Article  PubMed  Google Scholar 

  69. Neaton JD, Blackburn H, Jacobs D, et al. Serum cholesterol level and mortality findings for men screened in the multiple risk factor intervention trial. Multiple risk factor intervention trial research group. Arch Intern Med. 1992;152:1490–500.

    Article  CAS  PubMed  Google Scholar 

  70. Franklin SS, Wong ND. Hypertension and cardiovascular disease: contributions of the Framingham Heart Study. 2013;8:49–57.

    Google Scholar 

  71. Schiffrin EL. Novel mechanisms of hypertension and vascular dysfunction. Nat Rev Nephrol. 2018;14:73–4.

    Article  PubMed  Google Scholar 

  72. Sedeek M, Hébert RL, Kennedy CR, Burns KD, Touyz RM. Molecular mechanisms of hypertension: role of Nox family NADPH oxidases. Curr Opin Nephrol Hypertens. 2009;18:122–7.

    Article  CAS  PubMed  Google Scholar 

  73. Safar ME, Boudier HS. Vascular development, pulse pressure, and the mechanisms of hypertension. Hypertension. 2005;46:205–9.

    Article  CAS  PubMed  Google Scholar 

  74. Whelton PK, Carey RM, Aronow WS, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018. 2017;71:e13–e115.

    Google Scholar 

  75. Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Cardiology (ESC) and the European Society of Hypertension (ESH). Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  76. Nerenberg KA, Zarnke KB, Leung AA, et al. Hypertension Canada’s 2018 guidelines for diagnosis, risk assessment, prevention, and treatment of hypertension in adults and children. Can J Cardiol. 2018;34:506–25.

    Article  PubMed  Google Scholar 

  77. Jennings GLR. Recent clinical trials of hypertension management. Hypertension. 2013;62:3–7.

    Article  CAS  PubMed  Google Scholar 

  78. Sever P. Will the recent hypertension trials change the guidelines? J Renin Angiotensin Aldosterone Syst JRAAS. 2017;18:1470320317710891.

    PubMed  Google Scholar 

  79. Dzau VJ, Balatbat CA. Future of hypertension. Hypertension. 2019;74:450–7.

    Article  CAS  PubMed  Google Scholar 

  80. Mills KT, Bundy JD, Kelly TN, et al. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Grundy SM. Does the metabolic syndrome exist? Diabetes Care. 2006;29:1689–92. discussion 1693-6

    Article  PubMed  Google Scholar 

  82. Grundy SM. Metabolic syndrome: connecting and reconciling cardiovascular and diabetes worlds. J Am Coll Cardiol. 2006;47:1093–100.

    Article  CAS  PubMed  Google Scholar 

  83. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. In: Comprehensive physiology, vol. 3; 2013. p. 1–58.

    Google Scholar 

  84. Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Watson RT, Pessin JE. Intracellular organization of insulin signaling and GLUT4 translocation. Recent Prog Horm Res. 2001;56:175–93.

    Article  CAS  PubMed  Google Scholar 

  86. Lteif AA, Han K, Mather KJ. Obesity, insulin resistance, and the metabolic syndrome. Circulation. 2005;112:32–8.

    Article  CAS  PubMed  Google Scholar 

  87. Rocha NG, Templeton DL, Greiner JJ, Stauffer BL, DeSouza CA. Metabolic syndrome and endothelin-1 mediated vasoconstrictor tone in overweight/obese adults. Metabolism. 2014;63:951–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sorrentino FS, Matteini S, Bonifazzi C, Sebastiani A, Parmeggiani F. Diabetic retinopathy and endothelin system: microangiopathy versus endothelial dysfunction. Eye. 2018;32:1157–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Rhee SY, Kim YS. The role of advanced glycation end products in diabetic vascular complications. Diabetes Metab J. 2018;42:188–95.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol. 2014;18(1):14.

    Article  CAS  Google Scholar 

  91. Costabile G, Annuzzi G, Di Marino L, et al. Fasting and post-prandial adipose tissue lipoprotein lipase and hormone-sensitive lipase in obesity and type 2 diabetes. J Endocrinol Investig. 2011;34:e110–4.

    Article  CAS  Google Scholar 

  92. Juntti-Berggren L, Berggren PO. Apolipoprotein CIII is a new player in diabetes. Curr Opin Lipidol. 2017;28:27–31.

    CAS  PubMed  Google Scholar 

  93. Rashid S, Watanabe T, Sakaue T, Lewis GF. Mechanisms of HDL lowering in insulin resistant, hypertriglyceridemic states: the combined effect of HDL triglyceride enrichment and elevated hepatic lipase activity. Clin Biochem. 2003;36:421–9.

    Article  CAS  PubMed  Google Scholar 

  94. Ballantyne CM, Hoogeveen RC, McNeill AM, et al. Metabolic syndrome risk for cardiovascular disease and diabetes in the ARIC study. Int J Obes. 2008;32(Suppl 2):S21–4.

    Article  CAS  Google Scholar 

  95. Dekker JM, Girman C, Rhodes T, et al. Metabolic syndrome and 10-year cardiovascular disease risk in the Hoorn study. Circulation. 2005;112:666–73.

    Article  PubMed  Google Scholar 

  96. Kumar P, Gehi AK. Atrial fibrillation and metabolic syndrome: understanding the connection. J Atrial Fibrillation. 2012;5:647.

    Google Scholar 

  97. Whayne TF Jr. Metabolic syndrome, peripheral vascular disease and coronary artery disease: a concise review. Int J Angiol. 2010;19:e96–9.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cornier MA, Dabelea D, Hernandez TL, et al. The metabolic syndrome. Endocr Rev. 2008;29:777–822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Golbidi S, Mesdaghinia A, Laher I. Exercise in the metabolic syndrome. Oxidative Med Cell Longev. 2012;2012:349710.

    Article  CAS  Google Scholar 

  100. Pitsavos C, Panagiotakos D, Weinem M, Stefanadis C. Diet, exercise and the metabolic syndrome. Rev Diabet Stud: RDS. 2006;3:118–26.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20:12.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Gurka MJ, Filipp SL, DeBoer MD. Geographical variation in the prevalence of obesity, metabolic syndrome, and diabetes among US adults. Nutr Diabetes. 2018;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Scuteri A, Laurent S, Cucca F, et al. Metabolic syndrome across Europe: different clusters of risk factors. Eur J Prev Cardiol. 2015;22:486–91.

    Article  PubMed  Google Scholar 

  104. Palmer MK, Trends in Lipids TPP. Obesity, metabolic syndrome, and diabetes mellitus in the United States: an NHANES analysis (2003-2004 to 2013-2014). Obesity (Silver Spring). 2019;27:309–14.

    Article  CAS  Google Scholar 

  105. DeFronzo RA. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes. 2009;58:773–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nauck MA, Meier JJ. Incretin hormones: their role in health and disease. Diabetes Obes Metab. 2018;20(Suppl 1):5–21.

    Article  CAS  PubMed  Google Scholar 

  107. Fontana L, Eagon JC, Trujillo ME, Scherer PE, Klein S. Visceral fat Adipokine secretion is associated with systemic inflammation in obese humans. Diabetes. 2007;56:1010–3.

    Article  CAS  PubMed  Google Scholar 

  108. Hsia DS, Grove O, Cefalu WT. An update on sodium-glucose co-transporter-2 inhibitors for the treatment of diabetes mellitus. Curr Opin Endocrinol Diabetes Obes. 2017;24:73–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Klip A, McGraw TE, James DE. Thirty sweet years of GLUT4. J Biol Chem. 2019;294:11369–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Sun Y, Liu S, Ferguson S, et al. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin Signaling and hepatic insulin sensitivity in transgenic mice. J Biol Chem. 2002;277:23301–7.

    Article  CAS  PubMed  Google Scholar 

  111. Leon BM, Maddox TM. Diabetes and cardiovascular disease: epidemiology, biological mechanisms, treatment recommendations and future research. World J Diabetes. 2015;6:1246–58.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Hostalek U. Global epidemiology of prediabetes – present and future perspectives. Clin Diabet Endocrinol. 2019;5:5.

    Article  Google Scholar 

  113. Tamayo T, Rosenbauer J, Wild SH, et al. Diabetes in Europe: an update. Diabetes Res Clin Pract. 2014;103:206–17.

    Article  CAS  PubMed  Google Scholar 

  114. Lu J, Wang W, Li M, et al. Associations of hemoglobin A1c with cardiovascular disease and mortality in Chinese adults with diabetes. J Am Coll Cardiol. 2018;72:3224–5.

    Article  PubMed  Google Scholar 

  115. Andersson C, Van Gaal L, Caterson ID, et al. Relationship between HbA1c levels and risk of cardiovascular adverse outcomes and all-cause mortality in overweight and obese cardiovascular high-risk women and men with type 2 diabetes. Diabetologia. 2012;55:2348–55.

    Article  CAS  PubMed  Google Scholar 

  116. Kohner EM. Microvascular disease: what does the UKPDS tell us about diabetic retinopathy? Diabet Med. 2008;25(Suppl 2):20–4.

    Article  PubMed  Google Scholar 

  117. Implications of the United Kingdom prospective diabetes study. Diabetes Care. 2002;25:s28–32.

    Article  Google Scholar 

  118. Marso SP, Daniels GH, Brown-Frandsen K, et al. Liraglutide and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2016;375:311–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Marso SP, Bain SC, Consoli A, et al. Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med. 2016;375:1834–44.

    Article  CAS  PubMed  Google Scholar 

  120. Gerstein HC, Colhoun HM, Dagenais GR, et al. Dulaglutide and cardiovascular outcomes in type 2 diabetes (REWIND): a double-blind, randomised placebo-controlled trial. Lancet. 2019;394:121–30.

    Article  CAS  PubMed  Google Scholar 

  121. Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28.

    Article  CAS  PubMed  Google Scholar 

  122. MPJd W, Kanters E, Kraal G, Hofker MH. Nuclear factor kappaB signaling in atherogenesis. Arterioscler Thromb Vasc Biol. 2005;25:904–14.

    Article  CAS  Google Scholar 

  123. Jain MK, Sangwung P, Hamik A. Regulation of an inflammatory disease: Kruppel-like factors and atherosclerosis. Arterioscler Thromb Vasc Biol. 2014;34:499–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Meijer CA, Le Haen PA, van Dijk RA, et al. Activator protein-1 (AP-1) signalling in human atherosclerosis: results of a systematic evaluation and intervention study. Clin Sci (Lond). 2012;122:421–8.

    Article  CAS  Google Scholar 

  125. Galkina E, Ley K. Vascular adhesion molecules in atherosclerosis. Arterioscler Thromb Vasc Biol. 2007;27:2292–301.

    Article  CAS  PubMed  Google Scholar 

  126. Figueroa XF, Duling BR. Gap junctions in the control of vascular function. Antioxid Redox Signal. 2009;11:251–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Libby P, Pasterkamp G. Requiem for the ‘vulnerable plaque’. Eur Heart J. 2015;36:2984–7.

    PubMed  Google Scholar 

  128. Libby P, Nahrendorf M, Swirski FK. Leukocytes link local and systemic inflammation in ischemic cardiovascular disease: an expanded “Cardiovascular Continuum”. J Am Coll Cardiol. 2016;67:1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Fonseca FA, Izar MC. High-sensitivity C-reactive protein and cardiovascular disease across countries and ethnicities. Clinics (Sao Paulo, Brazil). 2016;71:235–42.

    Article  Google Scholar 

  130. Ridker PM, Bassuk SS, Toth PP. C-reactive protein and risk of cardiovascular disease: evidence and clinical application. Curr Atheroscleros Rep. 2003;5:341–9.

    Article  Google Scholar 

  131. Ridker PM, Danielson E, Fonseca FAH, et al. Rosuvastatin to prevent vascular events in men and women with elevated C-reactive protein. N Engl J Med. 2008;359:2195–207.

    Article  CAS  PubMed  Google Scholar 

  132. Bohula EA, Giugliano RP, Cannon CP, et al. Achievement of dual low-density lipoprotein cholesterol and high-sensitivity C-reactive protein targets more frequent with the addition of ezetimibe to simvastatin and associated with better outcomes in IMPROVE-IT. Circulation. 2015;132:1224–33.

    Article  CAS  PubMed  Google Scholar 

  133. Ridker PM, Cannon CP, Morrow D, et al. C-reactive protein levels and outcomes after statin therapy. N Engl J Med. 2005;352:20–8.

    Article  CAS  PubMed  Google Scholar 

  134. Albert MA, Ridker PM. C-reactive protein as a risk predictor. Circulation. 2006;114:e67–74.

    PubMed  Google Scholar 

  135. Wilson PW, Pencina M, Jacques P, Selhub J, D’Agostino R Sr, O'Donnell CJ. C-reactive protein and reclassification of cardiovascular risk in the Framingham Heart Study. Circ Cardiovasc Qual Outcomes. 2008;1:92–7.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Ridker PM. Clinical application of C-reactive protein for cardiovascular disease detection and prevention. Circulation. 2003;107:363–9.

    Article  PubMed  Google Scholar 

  137. Ridker PM, Everett BM, Thuren T, et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;377:1119–31.

    Article  CAS  PubMed  Google Scholar 

  138. Hill NR, Fatoba ST, Oke JL, et al. Global prevalence of chronic kidney disease – a systematic review and meta-analysis. PLoS One. 2016;11:e0158765.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Tonelli M, Karumanchi SA, Thadhani R. Epidemiology and mechanisms of Uremia-related cardiovascular disease. Circulation. 2016;133:518–36.

    Article  CAS  PubMed  Google Scholar 

  140. Nauta FL, Scheven L, Meijer E, et al. Glomerular and tubular damage markers in individuals with progressive albuminuria. Clin J Am Soc Nephrol. 2013;8:1106–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Abbate M, Zoja C, Remuzzi G. How does proteinuria cause progressive renal damage? J Am Soc Nephrol. 2006;17:2974–84.

    Article  CAS  PubMed  Google Scholar 

  142. Huxley RR, Woodward M. Cigarette smoking as a risk factor for coronary heart disease in women compared with men: a systematic review and meta-analysis of prospective cohort studies. Lancet. 2011;378:1297–305.

    Article  PubMed  Google Scholar 

  143. Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 2015;46:328–38.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter P. Toth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Toth, P.P. (2021). Cardiovascular Disease Epidemiology and Risk Factors: General Concepts. In: Cicero, A.F., Rizzo, M. (eds) Nutraceuticals and Cardiovascular Disease. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-62632-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62632-7_1

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-62631-0

  • Online ISBN: 978-3-030-62632-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics