
Chapter 3

Modeling Cardiac Mechanics on a Sub-Cellular
Scale

Åshild Telle1, Samuel T. Wall1 and Joakim Sundnes1

Abstract We aim to extend existing models of single-cell mechanics to the EMI
framework, to define spatially resolved mechanical models of cardiac myocytes
embedded in a passive extracellular space. The models introduced here will be
pure mechanics models employing fairly simple constitutive laws for active and
passive mechanics. Future extensions of the models may include a coupling to the
electrophysiology and electro-diffusion models described in the other chapters, to
study the impact of spatially heterogeneous ion concentrations on the cell and tissue
mechanics.

3.1 Introduction

A vast range of models have been developed for the force development of cardiac
and skeletal muscle, on the scale of a single cross bridge (10), myofilament (3), sar-
comere (2), and the complete cell (13). The scales involved and the main functional
units considered on each scale are schematically illustrated in Figure 3.1. Common
to most existing models is the fact that they focus on a single spatial scale, and any
coupling between scales is fairly crudely represented. As an example, the model by
Rice et al. (13) is essentially a model of a single sarcomere (Fig. 3.1 D), which is
normalized and then scaled to yield a realistic force output for cell- and tissue-level
mechanics applications. Other models provide detailed descriptions of mechanisms
and interactions on a molecular level (Fig. 3.1 F)(4; 3), and are able to capture many
of the characteristic non-linearities of muscle cell mechanics. However, key aspects
of mechanical activation and force-length relationships are still not fully understood,
and they may be the result of interactions between individual sarcomeres and myofib-
ril bundles. A few attempts have been made at modeling interactions at this scale, and
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Fig. 3.1: The heart (A) is mainly composed of cardiac muscle cells, also called
cardiomyocytes (B). Each cell (C) is composed of long tubes of sarcomeres (D), in
which the thin and thick myofilaments overlap in layers (E). The interaction between
these (F) causes the cardiac muscle to contract in a process called the cross-bridge
cycle.

have shown potentially interesting emergent behaviours (2; 11). Furthermore, heart
failure and other pathologies are linked with heterogeneous intracellular calcium
concentration resulting from disruptions of the calcium regulation system. Describ-
ing the effect of such heterogeneities on the cell contraction and force development
requires spatially resolved mechanics models on the sub-cellular scale.

Finite element models of contracting myocytes have been proposed (8; 14), and have
been used to explore the impact of model assumptions, calcium heterogeneity, and
boundary conditions. The model presented by Ruiz-Baier et al. (14) describes the
individual myocyte as a hyperelastic material, and uses an active strain approach
to describe the contraction. Both the passive and active mechanical properties are
assumed to be homogeneous, but sub-cellular heterogeneities can easily be intro-
duced. We here propose to extend the single myocyte model in (14) to include the
extracellular domain, and to model collections of cells, based on similar ideas used
for the electrophysiology model presented in (17; 18) and (7, Chapter 1).
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3.2 Models and Methods

The motion and deformation of the heart can be described by the classical theory of
non-linear solid mechanics. The primary unknown in our computational model will
be the displacement vector u, which for each material point describes the difference
between its current and original position. We have u = x−X , where X is the original
(reference) position of a point, and x is its position after the deformation. From
the displacement vector we can define the deformation gradient F = ∂x/∂X =
I + ∂u/∂X , which is an essential quantity describing the deformation of a solid. See
for instance (6) for a detailed introduction to non-linear solid mechanics.

A characteristic feature of the heart and other muscles is that they contract and deform
even in the absence of external loads. The overall deformation and mechanical state
of the heart depends both on this active contraction and on the passive mechanical
properties of the tissue. There are two main approaches for modeling the coupling
of active and passive mechanics in cardiac tissue, often referred to as active strain
and active stress. Both approaches are based on modeling the active and passive
contributions separately, then combining them into a complete coupled model.

In the active strain approach, the active-passive coupling is incorporated through a
multiplicative decomposition of the deformation gradient F into active and passive
components, F = FpFa. Here, Fa represents an active deformation governed by the
cell state, and Fp is a passive elastic deformation which ensures compatibility with
loads and kinematic boundary conditions. The active stress approach is based on an
additive split of the stress tensor into its active and passive components. In terms of
the first Piola-Kirchhoff stress tensor P, the stress is written as P = Pp + Pa, where
Pa is a function of the cellular activation state and Pp is a standard elastic stress
derived from a strain energy function.

Both of these approaches have their strengths and weaknesses. In general, the active
strain approach is considered to be more suitable for deriving mathematically well-
behaved constitutive laws, while the active stress concept is more easily coupled to
biophysically detailed models of cell contraction.

3.2.1 Fundamental Equations

In this study we will primarily use the active stress approach, but for completeness
we also present the equations arising from the active strain approach. This model
can be derived as a direct extension of the single myocyte model in (14), using a
similar approach as in (17; 18) to consider both the intra- and extracellular domains:
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Fig. 3.2: Illustration of the intra- and extracellular domains for a single cell and its
surroundings.

a : ∇ · Pi = 0, b : Pi =
∂Ψi

∂Fi
, c : Fi = Fp

i Fa
i , in Ωi,

d : ∇ · Pe = 0, e : Pe =
∂Ψe

∂Fe
, in Ωe,

f : ui = ue, g : ni · Pi = ne · Pe, on Γ,
h : ne · Pe = 0, on ∂Ωe,T,
i : u = 0, on ∂Ωe,D.

(3.1)

Here, Ωi and Ωe are the intra- and extracellular domains, respectively, Γ is the inter-
face between the domains, with the normal vector ni pointing out of the intracellular
domain and ne out of the extracellular domain. Finally, ∂Ωe,T and ∂Ωe,D are the
parts of the outer boundary ∂Ωe subject to traction- and displacement boundary con-
ditions, respectively. See Figure 3.2 for a sketch of a typical computational domain,
including a single cell and its immediate surroundings. Following (14), we here
apply the active strain approach to incorporate active contraction of the myocyte,
where the intracellular deformation gradient Fi is decomposed as described above.
The passive part is assumed to be hyper-elastic and derived from a strain energy
function, see for instance (6) for details. A common choice for the active part is
Fa
i = diag((1 − γ), (1 − γ)−1/2, (1 − γ)−1/2), where γ describes the fiber contraction

and is a function of the cell activation state. For a more detailed introduction and
discussion of active strain models, we refer to (1).

The active stress model is the most widely used approach for modeling coupled
active and passive mechanics on tissue level, and this is the approach we will employ
in the subsequent numerical experiments. In the present context the active stress
model involves a decomposition of the intracellular first Piola-Kirchhoff stress Pi

into a passive elastic part Pp
i and an active part Pa

i . The passive stress is derived
from a strain energy function in the usual way, while the active stress is a function of
the cell activation state. For the simplified model considered here we write the active
stress as a function of time and the local fiber stretch λ, but the approach can easily
be extended to include detailed biophysical models of the contractile mechanisms.
The full active stress model may be written as
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a : ∇ · Pi = 0, b : Pi =
∂Ψi

∂F + Pa
i (t, λ), in Ωi,

c : ∇ · Pe = 0, d : Pe =
∂Ψe

∂Fe
, in Ωe,

e : ui = ue, f : ni · Pi = ne · Pe, on Γ,
g : ne · Pe = 0 on ∂Ωe,T,
h : u = 0 on ∂Ωe,D.

(3.2)

Both approaches treat the extracellular domain in the same way, as a passive hyper-
elastic material governed by a strain energy function Ψe. As given by (3.1) f-g and
(3.2) g-h we assume continuity of stresses Pi,Pe and displacements ui,ue across
the cell membrane Γ, implying that the membrane itself has no stiffness. The outer
boundary Ωe is assumed to be stress free, with Dirichlet conditions applied to parts
of the boundary to avoid rigid body motion. Models for the active stress Pa

i come
in many forms, including simple phenomenological models as well as detailed bio-
physical models of cell electro-mechanics (12; 13). For the present study we apply
a simple model where the active stress is derived from a (pseudo-) strain energy in
the same way as the passive stress:

Pa
i =
∂Ψa

i

∂F
. (3.3)

Here, Ψa
i is given by

Ψa
i =

Tactive(t)
2

λ2,

where λ = | |Fe1 | | is the stretch in the so-called fiber direction (i.e. the main orienta-
tion of the muscle cells), defined by the unit vector e1, and Tactive(t) is a prescribed
function defining the active contractile force as a function of time.

3.2.2 Specific Model Choices

In this section we describe specific choices of the constitutive laws describing active
and passive material properties in the models above, to arrive at a complete model
that can be solved for the deformations and stresses. As noted above, we will in the
following only consider the active stress model, given by (3.2). For the strain energy
defining the passive stress-strain relationships we have applied a model from (19),
which belongs to the family of models first presented by Guccione et al. (5). The
same form of strain energy is used in the intra- and extracellular domains, but we
allow the material parameters to be different. Both domains are modeled as nearly
incompressible, with volume changes during deformations controlled by a penalty
term. We have

Ψi = Ci(eQi − 1) + κ(J ln J − J + 1) x ∈ Ωi, (3.4)
Ψe = Ce(eQe − 1) + κ(J ln J − J + 1) x ∈ Ωe, (3.5)
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where Qi,Qe are functions depending on components of the Green-Lagrange strain
tensor E = 1

2 (F
T F − I):

Q j =b f , jE2
11 + bt , j(E2

22 + E2
33 + E2

23 + E2
32)

+b f s, j(E2
12 + E2

21 + E2
13 + E2

31). (3.6)

Furthermore Cj, b f , j, bt , j , and b f s, j , for j = i, e are material parameters characteriz-
ing the material’s stiffness to the various strain modes, κ is a penalty parameter that
controls the volume changes, and J = det F. For a fully incompressible deformation
we have J = 1, and in our nearly incompressible model we tune the parameter κ to
keep J ≈ 1.

In its most general form, the materials described by (3.4)-(3.6) are are transversely
isotropic, which is a special case of orhtotropic materials. While an orthotropic
material has different mechanical properties in three different directions, a trans-
versely isotropic material is isotropic in planes normal to a characteristic direction.
Passive cardiac tissue is known to behave as an orthortopic material (9), with the
three directions dictated by the orientation and organization of the myocytes. How-
ever, a transversely isotropic material is shown to be a good approximation, with
material isotropy in planes normal to the fiber direction, the main orientation of
the muscle cells. The details of the intra- and extracellular material behavior in our
micro-structural model are less well-studied, and the degree of anisotropy has not
been characterized. From the microstructure of the contractile apparatus occupying
most of the intracellular space (see Figure 3.1) it is natural to assume anisotropic
behavior, but the exact degree of aniostropy is not known. As a starting point, we set
the intracellular material parameters to

b f ,i = 8, bt ,e = 2, b f s,e = 4. (3.7)

For the extracellular space we assume isotropic material behaviour, setting

b f ,e = bt ,e = b f s,e = 1. (3.8)

The bulk compressibility was set to κ = 1000 kPa in both domains, while we explored
different values of the scaling parameters Ci and Ce, to be specified below.

For the active stress model defined in (3.3) we have used a pre-computed transient
tension Tactive(t) as shown in Figure 3.3. The curve was computed using the model
of Rice et al. (13) with default parameters, which outputs a normalized force. This
value was then scaled such that the peak value reaches 2 kPa, giving a reasonable
contractile stress for our application.



34 Telle et al.

Fig. 3.3: Transient tension Tactive(t) over time (left), first computed in (13), then
scaled to give values on a reasonable scale. In the intracellular domain the active
tension is homogeneously set to this value; in the extracellular domain there is no
such tension, implemented as being set to zero for all time steps.

3.2.3 Numerical Methods

The problem defined by (3.2) is solved with the displacement u as the primary
unknown. To solve the system with the finite element method, it is convenient to
formulate it as a single PDE defined over the entire domain Ω = Ωi ∪ Ωe. Such a
formulation is not possible for the strong form of the PDEs, so we first need to derive
the weak form of the equations. Starting with (3.2)a, we define a suitable vector
function space V(Ωi) defined over the intracellular domain, multiply the equation
with a test function v ∈ V(Ωi) and integrate by parts, to arrive at a weak formulation∫

Ωi

Pi · ∇vdx −

∫
Γ

(ni · Pi)v = 0.

This equation is to be satisfied for all v ∈ V(Ωi). Performing the same steps for the
extracellular domain, and using the boundary condition (3.2)g on the outer boundary,
we get ∫

Ωe

Pe · ∇vdx −

∫
Γ

(ne · Pe)v = 0.

This equation should hold for all test functions v ∈ V(Ωe), where V(Ωe) is a suitable
space of functions defined over the domain Ωe. Using similar arguments as in (15),
we can define a function space V(Ω) as the set of functions defined over Ω that
belong to both V(Ωi) and V(Ωe) and are continuous over Γ. With this definition, we
may add the two weak forms above to obtain∫

Ωi

Pi · ∇vdx −

∫
Γ

(ni · Pi)v +

∫
Ωe

Pe · ∇vdx −

∫
Γ

(ne · Pe)v = 0.

Which is to be satisfied for all v ∈ V(Ω). Since ne = −ni , the surface integrals over
Γ cancel because of (3.2)f. We can also use (3.2)e to define a single displacement
field over Ω, and we are left with the following weak form: Find u ∈ V(Ω) such that

Time (ms)

2.0

1.6

1.2

0.8

0.4

0.0

0 200 400 600 800 1000

A
ct

iv
e 

st
re

ss
 (

kP
a)



3 EMI Mechanics 35

Fig. 3.4: A: Volume element of one single cell; lines indicate cross section area. B:
Cross section along longitudial direction of the cell. C: Volume element, 5 x 5 cells;
lines indicate cross section area. D: Cross section along longitudial direction of the
cells.

∫
Ω

P · ∇vdx = 0, (3.9)

is satisfied for all v ∈ V(Ω). with P defined by (3.2)b and (3.2)d in the respective
domains.

3.3 Results

We here present a number of numerical experiments to illustrate the general behav-
ior of the models defined above. The code is implemented using FEniCS, and an
archieved version of the code is available, see (16).

For the simulations we used two different meshes; one representing a single cell
and one representing a sheet of five by five cells, see Figure 3.4. Both meshes
include subdomains defining the intra- and extracellular domains, separated by the
cell membrane. To avoid rigid body motion, we keep a few points in the middle fixed.
The rest of the boundary is kept unloaded to allow free contraction of the cells.

A B

DC
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For each experiment we calculated the Green-Lagrange strain tensor E and the
Cauchy stress tensor σ, given by

σ =

{
|F |−1PiFT x ∈ Ωi

|F |−1PeFT otherwise.

On matrix form we can can write these out as

E =
⎡⎢⎢⎢⎢⎣
E11 E12 E13
E21 E22 E23
E31 E32 E33

⎤⎥⎥⎥⎥⎦ σ =

⎡⎢⎢⎢⎢⎣
σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33

⎤⎥⎥⎥⎥⎦
and for each of these we present plots for the first and the middle components,
(E11, E22, σ11, σ22), which characterize strain and stress in the fiber and cross-fiber
directions.

Fig. 3.5: Tracking points, for which we evaluate functions of interest across various
experiments. The points are uniformly distributed on a line from one corner to the
middle, in the xy-direction, corresponding to the cross-section shown in Figure 3.4.
Two of them are both located in the extracellular subdomain, and one should expect
them to show different patterns than the three located in the intracellular subdomain.

We first considered a single cell, and simulated contraction over a single cardiac
cycle with homogeneous active force applied throughout the cell. For this simulation
we chose parameter values Ce = Ci = 0.5. The results are presented in Figure 3.6,
where we observe that the deformation follows the expected pattern of a contraction
in the longitudinal direction of the cell. Furthermore, in spite of the homogeneous
applied active stress we see slight spatial variations in the deformation state, resulting
from the discontinuity of active force across the cell membrane.

Similar patterns are observed in the simulation of the sheet of 25 cells, shown in
Figure 3.7. In this experiment the same active stress transient through the intracel-
lular domain of all the cells, with the same material parameters. We still observe
spatial variations in the deformation pattern – each cells is affected by mechanical
deformation around them.

We then considered two cases where we kept all parameters but one fixed, exploring
the choices of material stiffness parameters Ce and Ci . The results are presnted in
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Fig. 3.6: First and middle components of the Cauchy stress tensor σ and Green-
Lagrange strain E , for a single cell. The plots to the left shows values plotted over
time, for the first 500 ms (out of 1000), following tracking points as shown in Figure
3.5. The plots to the right shows values over a cross-section as shown in Figure
3.4, as the active tension reaches it’s peak value. The grey rectangle indicates initial
configuration.

Figures 3.8 and 3.9. These simulations were again performed on a mesh representing
a single cell, with active force applied as described above. For the first experiment
we kept Ce fixed at 0.5, changing Ci; that is, we let the material stiffness in the extra-
cellular domain remain the same while increasing the stress/strain scaling parameter
in the intracellular domain. As Ci increases the material becomes stiffer, and for the
same active stress applied, one should expect less contraction. This can indeed be
observed; both components of the Cauchy stress tensor (in magnitude) and the strain
tensor decreases everywhere, and for the last three parameter choices there is almost
no difference in deformation. On the other hand, we still apply an active stress in the
intracellular domain, and we observe that the strain close to the membrane doesn’t
change much even if it changes everywhere else.

For the next experiment we changed to keeping Ci = 0.5 constant, while increasing
Ce. We can observe higher Cauchy stress for the first component, and lower Cauchy
stress for the second component, with increasing values of Ce. The strain decreases
for both components. This is exactly as expected – in one end of the spectrum, having
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Fig. 3.7: First and middle components of the Cauchy stress tensor σ, and and Green-
Lagrange strain E , for 5 x 5 cells. Values are plotted over the cross-section as shown
in 3.4, as the active tension reaches it’s peak value. The grey rectangle indicates
initial configuration.

Ce = 0.5, one would expect the extracellular subdomain to not affect the intracellular
domain as it’s rather flexible. For a given tension in the intracellular domain, it will
just move along quite easily, while the overall behaviour in the whole domain is
governed by the contraction inside the cell. As Ce increases, the material is modeled
as stiffer and hence constrain the movement more. For very high values the material
is so stiff that it hardly moves, efficiently keeping the membrane close to fixed.

3.4 Discussion

We have presented a general framework for modeling cardiac mechanics on a sub-
cellular scale, by extending a model of the type defined in (14) to the extracellular
domain. A series of preliminary numerical experiments demonstrate that the model
behaves as expected, with the discontinuity across the cell membrane giving rise
to spatially varying deformation fields even though both the active stress and other
model parameters are spatially homogeneous over the intracellular domain.

The main purpose of this work was to present the model framework and to illustrate
the general behaviour of the model, while more detailed investigations and model
extensions are left for future studies. A complete list of model limitations and poten-
tial extensions would be too extensive to present here, but it is worth commenting on
a few of the most obvious ones. First, the model derivation above included a number
of simplifying assumptions on the mechanical properties of the cell membrane and
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Fig. 3.8: First and middle components of the Cauchy stress tensor σ and Green-
Lagrange strain E , for a single cell, as we vary the parameter Ci , which defines the
stiffness of the material in the intracellular domain. Panel A shows spatial variation
over a cross-section of the cell (see Figure 3.4), at peak. Panel B shows how the
value, at peak, changes in given tracking points (see Figure 3.5).
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Fig. 3.9: First and middle components of the Cauchy stress tensor σ and Green-
Lagrange strain E , for a single cell, as we vary the parameter Ce, which defines the
stiffness of the material in the extracellular domain. Panel A shows spatial variation
over a cross-section of the cell (see Figure 3.4), at peak. Panel B shows how the
value, at peak, changes in given tracking points (see Figure 3.5).
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the two domains. The continuity of stress across the cell membrane implies that
the membrane itself has no stiffness, which is obviously incorrect, but it may be
a reasonable assumption for many applications. The impact of different membrane
mechanical properties should be explored further in a future study. Similarly, both
the intra- and extracellular domains are assumed to be hyperelastic materials, which
is probably a fairly crude approximation of the actual behaviour. In reality both of
these domains are complex compositions of fluids and various embedded proteins
structures, and the material behavior is most likely quite complex. Visco-elastic ma-
terial models could potentially be a more accurate description than the hyper-elastic
models applied here, but the required level of detail and material model complexity
remains to be determined. Finally, we have here assumed that both domains are
initially in a stress-free resting state, while experiments have shown that the extra-
cellular matrix shrinks considerably when the myocytes are removed. Thus indicates
that the resting state is actually an equilibrium state with non-zero stress in both
domains, and accurately capturing the overall mechanical behaviour may require
including this pre-stress in the model.

In general, the level of detail and complexity of the model formulation will be dictated
by the application. Some applications may require further development of the model
along the lines suggested above, while for studies of a more qualitative nature the
simplest version would be sufficient. One obvious application of the developed model
framework, where a fairly simple model would probably give interesting results, is
to study the impact of heterogeneities in calcium concentration and mechanical
properties on the contractile properties of cells and tissue.
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