Skip to main content

Generating Videos of Zero-Shot Compositions of Actions and Objects

  • Conference paper
  • First Online:
Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12357))

Included in the following conference series:

Abstract

Human activity videos involve rich, varied interactions between people and objects. In this paper we develop methods for generating such videos – making progress toward addressing the important, open problem of video generation in complex scenes. In particular, we introduce the task of generating human-object interaction videos in a zero-shot compositional setting, i.e., generating videos for action-object compositions that are unseen during training, having seen the target action and target object separately. This setting is particularly important for generalization in human activity video generation, obviating the need to observe every possible action-object combination in training and thus avoiding the combinatorial explosion involved in modeling complex scenes. To generate human-object interaction videos, we propose a novel adversarial framework HOI-GAN which includes multiple discriminators focusing on different aspects of a video. To demonstrate the effectiveness of our proposed framework, we perform extensive quantitative and qualitative evaluation on two challenging datasets: EPIC-Kitchens and 20BN-Something-Something v2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akata, Z., Reed, S., Walter, D., Lee, H., Schiele, B.: Evaluation of output embeddings for fine-grained image classification. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  2. Anderson, P., Fernando, B., Johnson, M., Gould, S.: SPICE: semantic propositional image caption evaluation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 382–398. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_24

    Chapter  Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  4. Bansal, A., Ma, S., Ramanan, D., Sheikh, Y.: Recycle-GAN: unsupervised video retargeting. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_8

    Chapter  Google Scholar 

  5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (ICLR) (2019)

    Google Scholar 

  6. Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  7. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: IEEE Winter Conference on Applications of Computer Vision (WACV) (2018)

    Google Scholar 

  8. Chao, Y.W., Wang, Z., He, Y., Wang, J., Deng, J.: HICO: a benchmark for recognizing human-object interactions in images. In: IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  9. Damen, D., et al.: Scaling egocentric vision: the EPIC-KITCHENS dataset. In: European Conference on Computer Vision (ECCV) (2018)

    Google Scholar 

  10. Delaitre, V., Fouhey, D.F., Laptev, I., Sivic, J., Gupta, A., Efros, A.A.: Scene semantics from long-term observation of people. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 284–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_21

    Chapter  Google Scholar 

  11. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems (NIPS) (2015)

    Google Scholar 

  12. Denton, E.L., et al.: Unsupervised learning of disentangled representations from video. In: Advances in Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  13. Desai, C., Ramanan, D.: Detecting actions, poses, and objects with relational phraselets. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 158–172. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_12

    Chapter  Google Scholar 

  14. Ebdelli, M., Le Meur, O., Guillemot, C.: Video inpainting with short-term windows: application to object removal and error concealment. IEEE Trans. Image Process. 24(10), 3034–3047 (2015)

    Article  MathSciNet  Google Scholar 

  15. Elhoseiny, M., Saleh, B., Elgammal, A.: Write a classifier: zero-shot learning using purely textual descriptions. In: IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  16. Farhadi, A., Endres, I., Hoiem, D., Forsyth, D.: Describing objects by their attributes. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  17. Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People watching: human actions as a cue for single view geometry. Int. J. Comput. Vis. (IJCV) 110, 259–274 (2014). https://doi.org/10.1007/s11263-014-0710-z

    Article  Google Scholar 

  18. Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  20. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  21. Grabner, H., Gall, J., Van Gool, L.: What makes a chair a chair? In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2011)

    Google Scholar 

  22. Granados, M., Kim, K.I., Tompkin, J., Kautz, J., Theobalt, C.: Background inpainting for videos with dynamic objects and a free-moving camera. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 682–695. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_49

    Chapter  Google Scholar 

  23. Guadarrama, S., et al.: YouTube2Text: recognizing and describing arbitrary activities using semantic hierarchies and zero-shot recognition. In: IEEE International Conference on Computer Vision (ICCV) (2013)

    Google Scholar 

  24. Gupta, A., Davis, L.S.: Objects in action: an approach for combining action understanding and object perception. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2007)

    Google Scholar 

  25. He, J., Lehrmann, A., Marino, J., Mori, G., Sigal, L.: Probabilistic video generation using holistic attribute control. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 466–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_28

    Chapter  Google Scholar 

  26. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  27. Hsieh, J.T., Liu, B., Huang, D.A., Fei-Fei, L.F., Niebles, J.C.: Learning to decompose and disentangle representations for video prediction. In: Advances in Neural Information Processing Systems (NIPS) (2018)

    Google Scholar 

  28. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  29. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceeding of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  30. Johnson, J., Gupta, A., Fei-Fei, L.: Image generation from scene graphs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  31. Johnson, J., et al.: Image retrieval using scene graphs. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

  32. Kalchbrenner, N., et al.: Video pixel networks. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  33. Kalogeiton, V., Weinzaepfel, P., Ferrari, V., Schmid, C.: Joint learning of object and action detectors. In: IEEE International Conference on Computer Vision (ICCV). IEEE (2017)

    Google Scholar 

  34. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  35. Kato, K., Li, Y., Gupta, A.: Compositional learning for human object interaction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 247–264. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_15

    Chapter  Google Scholar 

  36. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks (2017)

    Google Scholar 

  37. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  38. Kjellström, H., Romero, J., Kragić, D.: Visual object-action recognition: Inferring object affordances from human demonstration. Comput. Vis. Image Underst. (CVIU) 115(1), 81–90 (2011)

    Article  Google Scholar 

  39. Krishna, R., et al.: Visual genome: connecting language and vision using crowdsourced dense image annotations. Int. J. Comput. Vis. (IJCV) 123, 32–73 (2017). https://doi.org/10.1007/s11263-016-0981-7

    Article  MathSciNet  Google Scholar 

  40. Lampert, C.H., Nickisch, H., Harmeling, S.: Learning to detect unseen object classes by between-class attribute transfer. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2009)

    Google Scholar 

  41. Lei Ba, J., Swersky, K., Fidler, S., et al.: Predicting deep zero-shot convolutional neural networks using textual descriptions. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  42. Liang, X., Lee, L., Dai, W., Xing, E.P.: Dual motion GAN for future-flow embedded video prediction. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  43. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  44. Lu, C., Krishna, R., Bernstein, M., Fei-Fei, L.: Visual relationship detection with language priors. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 852–869. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_51

    Chapter  Google Scholar 

  45. Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: International Conference on Machine Learning (ICML) (2013)

    Google Scholar 

  46. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. In: International Conference on Learning Representations (ICLR) (2016)

    Google Scholar 

  47. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  48. Miyato, T., Koyama, M.: cGANs with projection discriminator. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  49. Newell, A., Deng, J.: Pixels to graphs by associative embedding. In: Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  50. Newson, A., Almansa, A., Fradet, M., Gousseau, Y., Pérez, P.: Video inpainting of complex scenes. SIAM J. Imaging Sci. 7(4), 1993–2019 (2014)

    Article  MathSciNet  Google Scholar 

  51. Niklaus, S., Mai, L., Liu, F.: Video frame interpolation via adaptive separable convolution. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  52. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  53. van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  54. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Conference on Empirical Methods in Natural Language Processing (EMNLP) (2014)

    Google Scholar 

  55. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text-to-image synthesis. In: International Conference on Machine Learning (ICML) (2016)

    Google Scholar 

  56. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  57. Saito, M., Matsumoto, E., Saito, S.: Temporal generative adversarial nets with singular value clipping. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  58. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  59. Shen, Y., Lu, F., Cao, X., Foroosh, H.: Video completion for perspective camera under constrained motion. In: International Conference on Pattern Recognition (ICPR) (2006)

    Google Scholar 

  60. Sigurdsson, G.A., Russakovsky, O., Gupta, A.: What actions are needed for understanding human actions in videos? In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  61. Srivastava, N., Mansimov, E., Salakhudinov, R.: Unsupervised learning of video representations using LSTMs. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  62. Stark, L., Bowyer, K.: Achieving generalized object recognition through reasoning about association of function to structure. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 13(10), 1097–1104 (1991)

    Article  Google Scholar 

  63. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  64. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  65. Villegas, R., Yang, J., Hong, S., Lin, X., Lee, H.: Decomposing motion and content for natural video sequence prediction. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  66. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: Advances in Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  67. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static images using variational autoencoders. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 835–851. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_51

    Chapter  Google Scholar 

  68. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: video forecasting by generating pose futures. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  69. Wang, T.C., Liu, M.Y., Tao, A., Liu, G., Kautz, J., Catanzaro, B.: Few-shot video-to-video synthesis. In: Advances in Neural Information Processing Systems (NeurIPS) (2019)

    Google Scholar 

  70. Wang, T.C., et al.: Video-to-video synthesis. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  71. Xian, Y., Lorenz, T., Schiele, B., Akata, Z.: Feature generating networks for zero-shot learning. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  72. Xian, Y., Schiele, B., Akata, Z.: Zero-shot learning-the good, the bad and the ugly. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  73. Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  74. Xu, D., Zhu, Y., Choy, C.B., Fei-Fei, L.: Scene graph generation by iterative message passing. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)

    Google Scholar 

  75. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  76. Yao, B., Fei-Fei, L.: Modeling mutual context of object and human pose in human-object interaction activities. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2010)

    Google Scholar 

  77. Zellers, R., Yatskar, M., Thomson, S., Choi, Y.: Neural motifs: scene graph parsing with global context. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  78. Zhang, H., et al.: StackGAN: text to photo-realistic image synthesis with stacked generative adversarial networks. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  79. Zhao, J., Mathieu, M., LeCun, Y.: Energy-based generative adversarial network. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  80. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  81. Zhu, Y., Elhoseiny, M., Liu, B., Peng, X., Elgammal, A.: A generative adversarial approach for zero-shot learning from noisy texts. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

Download references

Acknowledgements

This work was done when Megha Nawhal was an intern at Borealis AI. We would like to thank the Borealis AI team for participating in our user study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megha Nawhal .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 54282 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nawhal, M., Zhai, M., Lehrmann, A., Sigal, L., Mori, G. (2020). Generating Videos of Zero-Shot Compositions of Actions and Objects. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12357. Springer, Cham. https://doi.org/10.1007/978-3-030-58610-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58610-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58609-6

  • Online ISBN: 978-3-030-58610-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics