Skip to main content

V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction

  • Conference paper
  • First Online:
Book cover Computer Vision – ECCV 2020 (ECCV 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12347))

Included in the following conference series:

Abstract

In this paper, we explore the use of vehicle-to-vehicle (V2V) communication to improve the perception and motion forecasting performance of self-driving vehicles. By intelligently aggregating the information received from multiple nearby vehicles, we can observe the same scene from different viewpoints. This allows us to see through occlusions and detect actors at long range, where the observations are very sparse or non-existent. We also show that our approach of sending compressed deep feature map activations achieves high accuracy while satisfying communication bandwidth requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Draco 3d data compression (2019). https://github.com/google/draco

  2. Ballé, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. In: International Conference on Learning Representations (2018)

    Google Scholar 

  3. Casas, S., Gulino, C., Liao, R., Urtasun, R.: Spatially-aware graph neural networks for relational behavior forecasting from sensor data. arXiv (2019)

    Google Scholar 

  4. Casas, S., Gulino, C., Suo, S., Luo, K., Liao, R., Urtasun, R.: Implicit latent variable model for scene-consistent motion forecasting. In: ECCV (2020)

    Google Scholar 

  5. Casas, S., Luo, W., Urtasun, R.: Intentnet: learning to predict intention from raw sensor data. In: Conference on Robot Learning (2018)

    Google Scholar 

  6. Chai, Y., Sapp, B., Bansal, M., Anguelov, D.: Multipath: multiple probabilistic anchor trajectory hypotheses for behavior prediction. arXiv (2019)

    Google Scholar 

  7. Chen, Q., et al.: DSRC and radar object matching for cooperative driver assistance systems. In: 2015 IEEE Intelligent Vehicles Symposium (IV) (2015)

    Google Scholar 

  8. Chen, Q., Tang, S., Yang, Q., Fu, S.: Cooper: cooperative perception for connected autonomous vehicles based on 3D point clouds. arXiv (2019)

    Google Scholar 

  9. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: a survey of recent developments. Int. J. Robot. Res. 30(11), 1343–1377 (2011)

    Article  Google Scholar 

  10. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: CVPR (2017)

    Google Scholar 

  11. Choi, H., Bajic, I.V.: High efficiency compression for object detection. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2018)

    Google Scholar 

  12. Cui, H., et al.: Deep kinematic models for physically realistic prediction of vehicle trajectories. arXiv (2019)

    Google Scholar 

  13. Davison, A.J., Murray, D.W.: Simultaneous localization and map-building using active vision. PAMI (2002)

    Google Scholar 

  14. Davison, A.J.: Mobile robot navigation using active vision. Advances in Scientific Philosophy Essays in Honour of (1999)

    Google Scholar 

  15. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: NIPS (2015)

    Google Scholar 

  16. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: CVPR (2012)

    Google Scholar 

  17. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70 (2017)

    Google Scholar 

  18. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)

    Google Scholar 

  19. Jain, A., Casas, S., Liao, R., Xiong, Y., Feng, S., Segal, S., Urtasun, R.: Discrete residual flow for probabilistic pedestrian behavior prediction. arXiv (2019)

    Google Scholar 

  20. Jayaraman, D., Grauman, K.: Look-ahead before you leap: end-to-end active recognition by forecasting the effect of motion. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 489–505. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_30

    Chapter  Google Scholar 

  21. Kenney, J.B.: Dedicated short-range communications (DSRC) standards in the united states. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  22. Kim, A., Eustice, R.M.: Active visual slam for robotic area coverage: theory and experiment. Int. J. Robot. Res. 34(4–5), 457–475 (2015)

    Article  Google Scholar 

  23. Kim, S.W., et al.: Multivehicle cooperative driving using cooperative perception: design and experimental validation. IEEE Trans. Intell. Transp. Syst. 16(2), 663–680 (2014)

    Article  Google Scholar 

  24. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: 3rd International Conference on Learning Representations, ICLR 2015, Conference Track Proceedings, San Diego, CA, USA, 7–9 May 2015 (2015)

    Google Scholar 

  25. Li, L., Yang, B., Liang, M., Zeng, W., Ren, M., Segal, S., Urtasun, R.: End-to-end contextual perception and prediction with interaction transformer. In: IROS (2020)

    Google Scholar 

  26. Li, R., Tapaswi, M., Liao, R., Jia, J., Urtasun, R., Fidler, S.: Situation recognition with graph neural networks. In: ICCV (2017)

    Google Scholar 

  27. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.S.: Gated graph sequence neural networks. In: 4th International Conference on Learning Representations, ICLR 2016, Conference Track Proceedings, San Juan, Puerto Rico, 2–4 May 2016 (2016)

    Google Scholar 

  28. Liang, M., Yang, B., Chen, Y., Hu, R., Urtasun, R.: Multi-task multi-sensor fusion for 3D object detection. In: CVPR (2019)

    Google Scholar 

  29. Liang, M., Yang, B., Wang, S., Urtasun, R.: Deep continuous fusion for multi-sensor 3D object detection. In: ECCV (2018)

    Google Scholar 

  30. Liang, M., Yang, B., Zeng, W., Chen, Y., Hu, R., Casas, S., Urtasun, R.: PnpNet: learning temporal instance representations for joint perception and motion forecasting. In: CVPR (2020)

    Google Scholar 

  31. Luo, W., Yang, B., Urtasun, R.: Fast and furious: real time end-to-end 3D detection, tracking and motion forecasting with a single convolutional net. In: CVPR (2018)

    Google Scholar 

  32. Maalej, Y., Sorour, S., Abdel-Rahim, A., Guizani, M.: Vanets meet autonomous vehicles: a multimodal 3D environment learning approach. In: GLOBECOM 2017–2017 IEEE Global Communications Conference (2017)

    Google Scholar 

  33. Manivasagam, S., et al.: Lidarsim: realistic lidar simulation by leveraging the real world. In: CVPR (2020)

    Google Scholar 

  34. Rauch, A., Klanner, F., Rasshofer, R., Dietmayer, K.: Car2x-based perception in a high-level fusion architecture for cooperative perception systems. In: 2012 IEEE Intelligent Vehicles Symposium (2012)

    Google Scholar 

  35. Rawashdeh, Z.Y., Wang, Z.: Collaborative automated driving: a machine learning-based method to enhance the accuracy of shared information. In: 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (2018)

    Google Scholar 

  36. Rhinehart, N., Kitani, K.M., Vernaza, P.: R2p2: a reparameterized pushforward policy for diverse, precise generative path forecasting. In: ECCV (2018)

    Google Scholar 

  37. Rhinehart, N., McAllister, R., Kitani, K., Levine, S.: Precog: prediction conditioned on goals in visual multi-agent settings. arXiv (2019)

    Google Scholar 

  38. Rockl, M., Strang, T., Kranz, M.: V2V communications in automotive multi-sensor multi-target tracking. In: 2008 IEEE 68th Vehicular Technology Conference (2008)

    Google Scholar 

  39. Schlichtkrull, M., Kipf, T.N., Bloem, P., Van Den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: European Semantic Web Conference (2018)

    Google Scholar 

  40. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: ICCV (2015)

    Google Scholar 

  41. Sykora, Q., Ren, M., Urtasun, R.: Multi-agent routing value iteration network. In: ICML 2020 (2020)

    Google Scholar 

  42. Szegedy, C., et al.: Going deeper with convolutions. In: CVPR (2015)

    Google Scholar 

  43. Wei, X., Barsan, I.A., Wang, S., Martinez, J., Urtasun, R.: Learning to localize through compressed binary maps. In: CVPR (2019)

    Google Scholar 

  44. Xiao, Z., Mo, Z., Jiang, K., Yang, D.: Multimedia fusion at semantic level in vehicle cooperactive perception. In: 2018 IEEE International Conference on Multimedia & Expo Workshops (ICMEW) (2018)

    Google Scholar 

  45. Yang, B., Luo, W., Urtasun, R.: Pixor: real-time 3D object detection from point clouds. In: CVPR (2018)

    Google Scholar 

  46. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. arXiv (2017)

    Google Scholar 

  47. Yuan, T., et al.: Object matching for inter-vehicle communication systems-an IMM-based track association approach with sequential multiple hypothesis test. IEEE Trans. Intell. Transp. Syst. 18(12), 3501–3512 (2017)

    Article  Google Scholar 

  48. Yun, S., Choi, J., Yoo, Y., Yun, K., Young Choi, J.: Action-decision networks for visual tracking with deep reinforcement learning. In: CVPR (2017)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge James Tu for valuable contributions in the final paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sivabalan Manivasagam .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 45253 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, TH., Manivasagam, S., Liang, M., Yang, B., Zeng, W., Urtasun, R. (2020). V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and Prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, JM. (eds) Computer Vision – ECCV 2020. ECCV 2020. Lecture Notes in Computer Science(), vol 12347. Springer, Cham. https://doi.org/10.1007/978-3-030-58536-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-58536-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-58535-8

  • Online ISBN: 978-3-030-58536-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics