
A Hybrid Evolutionary Algorithm
for Reliable Facility Location Problem

Han Zhang , Jialin Liu , and Xin Yao(B)

Guangdong Provincial Key Laboratory of Brain-Inspired Intelligent Computation,
Department of Computer Science and Engineering, Southern University of Science

and Technology, Shenzhen 518055, China
11849181@mail.sustech.edu.cn, {liujl,xiny}@sustech.edu.cn

Abstract. The reliable facility location problem (RFLP) is an impor-
tant research topic of operational research and plays a vital role in the
decision-making and management of modern supply chain and logistics.
Through solving RFLP, the decision-maker can obtain reliable location
decisions under the risk of facilities’ disruptions or failures. In this paper,
we propose a novel model for the RFLP. Instead of assuming allocating
a fixed number of facilities to each customer as in the existing works,
we set the number of allocated facilities as an independent variable in
our proposed model, which makes our model more close to the scenarios
in real life but more difficult to be solved by traditional methods. To
handle it, we propose EAMLS, a hybrid evolutionary algorithm, which
combines a memorable local search (MLS) method and an evolutionary
algorithm (EA). Additionally, a novel metric called l3-value is proposed
to assist the analysis of the algorithm’s convergence speed and exam the
process of evolution. The experimental results show the effectiveness and
superior performance of our EAMLS, compared to a CPLEX solver and
a Genetic Algorithm (GA), on large-scale problems.

Keywords: Reliable facility location problem · Integer programming ·
Hybrid algorithm · Evolutionary algorithm · Local search

1 Introduction

The facility location problem aims at finding the optimal locations for facilities
from a set of candidate location nodes in order to minimize the cost such as the
fixed facility cost and the transposition cost, or to maximize the total revenue.
In general, there are also some constraints to be considered, such as satisfying
all customers’ demands, etc. It is an NP-hard optimization problem [1–3] and

This work was supported by the National Key R&D Program of China (Grant
No. 2017YFC0804003), the National Natural Science Foundation of China (Grant
No. 61976111, 61906083), the Guangdong Provincial Key Laboratory (Grant No.
2020B121201001), the Program for Guangdong Introducing Innovative and Enter-
preneurial Teams (Grant No. 2017ZT07X386), the Science and Technology Innova-
tion Committee Foundation of Shenzhen (Grant No. JCYJ20190809121403553), the
Shenzhen Science and Technology Program (Grant No. KQTD2016112514355531)
and the Program for University Key Laboratory of Guangdong Province (Grant No.
2017KSYS008).

c© The Author(s) 2020
T. Bäck et al. (Eds.): PPSN 2020, LNCS 12270, pp. 454–467, 2020.
https://doi.org/10.1007/978-3-030-58115-2_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58115-2_32&domain=pdf
http://orcid.org/0000-0001-8243-1135
http://orcid.org/0000-0001-7047-8454
http://orcid.org/0000-0001-8837-4442
https://doi.org/10.1007/978-3-030-58115-2_32

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 455

has attracted much attention from researchers in both the scientific community
and engineering field due to its wide application in real world. The facilities
could be hospitals, restaurants, post stations, bus stations, industrial plants,
banks, warehouses, and distribution centers, etc. The facility location decision
has high precedence in the whole logistics decisions and has a great influence
on subsequent operation level decisions [4]. Daskin et al. [1] regards the location
decisions as “the most critical and most difficult of the decisions needed to realize
an efficient supply chain”.

In RFLP, the facility is not always available all the time [1]. One or more of
them may not work from time to time because of disruptions, examples include
natural disasters, inclement weather, destruction of facilities by fire or flood,
expiration of the contract, and any other force majeure factors. In such a sit-
uation, these are facility “failures”. The failures of the facilities will result in
excessive transportation costs because the customers that were considered to
be served by them must be served by other, usually more distant, facilities [1].
Therefore, by solving RFLP, we can get a location decision which can ensure a
certain level of reliability to guarantee customers can get service when facilities’
failures occur.

Many models have been proposed for RFLP, in which all kinds of factors were
taken into account and many of them are formulated for specific applications in
real life. In addition, large-scale RFLP problems have rarely been considered.
The algorithms studied in literature were mainly tested on problems of small
size.

This paper focuses on two aspects: the problem formulation and the algo-
rithm. Based on the work of [5,6], we propose a new reliable facility location-
allocation problem (RFLP) formulation, which does not fix the number of allo-
cated facilities to each customer as a constant and is more close to reality. The
resulted model is a nonlinear 0–1 integer programming model which is more
complicated for traditional methods. In this paper, a hybrid evolutionary algo-
rithm called EAMLS is proposed to solve it. EAMLS combines a memorable
local search method with an evolutionary algorithm, which has a good perfor-
mance on both small-scale and large-scale problems considered in this paper. It
is worth mentioning that the instances used in our experiments are much larger
than the ones used in previous work. Furthermore, a convergence metric l3-value
is proposed for analyzing the algorithm and observing the evolutionary process.

The rest of this paper is organized as follows. Section 2 briefly reviews the
related work of RFLP. In Sect. 3, our new RFLP formulation is introduced. We
proposed a hybrid evolutionary algorithm EAMLS in Sect. 4. Section 5 presents
computational studies, and Sect. 6 concludes.

2 Related Work

By solving a specific RFLP, decision-makers expect to get a robust location deci-
sion which is still economical when some facilities fail under various disruptions.
The research can be divided into two categories according to the method used
to handle facility failure or ensure reliability.

456 H. Zhang et al.

Some works [7–9] use a disruptive scenarios approach to describe facility fail-
ure. In this approach, scenarios contain facility failure information, e.g., simul-
taneously disrupted facility sites, modified customer demands, and facility costs,
etc. The disruptive scenarios approach can describe the facility failure informa-
tion well, but it usually requires plenty of scenarios to cover different disrup-
tive situations, which implies large computational cost, especially for large-scale
problems.

Another approach to ensure reliability is to allocate two or more facilities to
serve each customer [5,6,10,11]. In this approach, the method for reliability is
intuitive and easy to understand. Both a location decision (which contains how
many facilities needed to build and where to build them) and an allocation deci-
sion (which shows how to allocate facilities to serve customers) are determined
before the occurrences of facilities’ disruptions/failures.

Some RFLP models have been proposed, e.g., models proposed by Li et al.
[5] and Snyder and Darskin [6]. Table 1 summarizes the notations used in the
models.

Table 1. Description of notations.

Notations Description Notations Description

I the set of customers, index
by i;

m # of facilities allocated for
each customer;

J the set of candidate location
sites, index by j;

p the facility failure
probability;

NF the set of candidate location
sites that will not fail;

fi the fix cost of j;

F the set of candidate location
sites that may fail;

α weighted parameter;

cij the cost of per unit demand
shipped from j to i;

hi the demands of customer i;

Besides, there are two sets of decision variables: location decision variables
(X) and allocation decision variables (Y):

Xj =
{

1, if candidate location site j is selected;
0, otherwise. (1)

Yijr =
{

1, if j is allocated as the level-r facility to serve i;
0, otherwise. (2)

In Eq. (2), the “level-r” facility j for customer i means the facility j will provide
service only when the front r allocated facilities (from level-0 to level-(r-1)) fail.

A classical RFLP model in [6] is as follows.

Min αw1 + (1 − α)w2 (3)

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 457

Subject to:
w1 =

∑
j∈J

fjXj +
∑
i∈I

∑
j∈J

hicijYij0 (4)

w2 =
∑
i∈I

hi

⎡
⎣ ∑
j∈NF

m−1∑
r=0

cijp
rYijr +

∑
j∈F

m−1∑
r=0

cijp
r(1 − p)Yijr

⎤
⎦ (5)

∑
j∈J

Yijr +
∑

j∈NF

r−1∑
t=0

Yijt = 1 ∀i ∈ I, r = 0, . . . ,m − 1 (6)

Yijr ≤ Xj ∀i ∈ I, j ∈ J, r = 0, . . . , m − 1 (7)

m−1∑
r=0

Yijr ≤ 1 ∀i ∈ I,∀j ∈ J (8)

m = |J | (9)

Xu = 1 (10)

Xj ∈ {0, 1} ∀j ∈ J (11)

Yijr ∈ {0, 1} ∀i ∈ I;∀j ∈ J ; r = 0, . . . ,m − 1 (12)

In this model, there are two objectives in the objective function, w1 is the oper-
ating cost and w2 is the expected failure cost. The objective of the model is to
minimize the weighted sum of the two objectives. Besides, there is an emergency
facility u which will always be selected and not fail, and all customers can get
service from it.

Several shortcomings are observed in the literature:
(1) The number of facilities allocated to each customer (i.e., m in Eq. (9))

is fixed in models of most literature, e.g., m = 2 (i.e., Yij0 and Yij1) in [5] and
m = |J | in [6]. One issue of this allocation setting is the determination of an
appropriate value of m. If m is bigger than the number of selected candidate
location sites, i.e.,

∑
j∈J Xj , it is not in line with the actual situation because

we cannot allocate nonexistent facilities to customers. If we set the value of m
smaller than

∑
j∈J Xj , the value of

∑
j∈J Xj is changed during the exploration

in solution space, therefore it is hard for us to set a suitable m value. If we set
m = 2 directly, which means allocate just one primary facility and one backup
facility to serve each customer, the reliability is a bit weak intuitively.

(2) To our best knowledge, there is a lack of research on the large-scale
problem. The largest problem instance in the related research is 150-node and
the optimization solver such as CPLEX can find near-optimal or even optimal
solutions for the problem.

(3) There is a lack of research on the algorithm which can solve the large-scale
problems efficiently as well.

Correspondingly, this paper:
(1) constructs a new formulation in which a non-fixed allocation setting, i.e.,

m =
∑

j∈J Xj , is used;

458 H. Zhang et al.

(2) proposes a hybrid evolutionary algorithm EAMLS which combines a local
search method with an evolutionary algorithm and performs well on both small-
scale and large-scale problems;

(3) performs experimental studies on large-scale problems whose scale is much
larger than any related literature;

(4) proposes a convergence metric l3-value to help observe the evolutionary
process, adjust parameters and further improve the algorithm.

3 Problem Formulation

We propose a new RFLP formulation in which we set the number of allocated
facilities to each customer as an variable instead of a fixed constant.

The mathematical formulation of our model is as follows, formulated based
on [5,6]. The decision variables are defined by Eqs. (1) and (2).

Min
∑
j∈J

fjXj + α
∑
i∈I

∑
j∈J

m−1∑
r=0

hicijp
r(1 − p)Yijr (13)

Subject to:
m =

∑
j∈J

Xj (14)

m ≥ 2 (15)∑
j∈J

Yijr = 1 ∀i ∈ I; r = 0, . . . ,m − 1 (16)

m−1∑
r=0

Yijr ≤ Xj ∀i ∈ I,∀j ∈ J (17)

Xj ∈ {0, 1} ∀j ∈ J (18)

Yijr ∈ {0, 1} ∀i ∈ I;∀j ∈ J ; r = 0, . . . , m − 1 (19)

The objective function of the model is to minimize the total cost associate with
facilities construction (i.e., the term

∑
j∈J fjXj) and transportation between

the facilities and customers (i.e., the term
∑

i∈I

∑
j∈J

∑m−1
r=0 hicijp

r(1−p)Yijr).
Constraint (14) makes the number of facilities allocated to each customer

(i.e., m) a variable and its value is related to location decision variables (i.e.,
X). Constraint (15) represents at lease two facilities are constructed to ensure
reliability. Constraint (16) assures only one facility can be the level-r supplier
of customer i. Constraint (17) means candidate location site j can be allocated
to customer as a supplier only when it is selected. Constraint (18) and (19) are
standard integrality constraints.

Compared with classical models shown in Sect. 2, the significant difference
in our model is the new non-fixed facility allocation setting, i.e., constraint (14).
In our model, the value of m is not fixed but varies with decision variables X,
therefore it is more realistic, ensures reliability, but makes our model much more
complex and difficult to solve by traditional methods as well.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 459

4 A Hybrid Evolutionary Algorithm: EAMLS

This paper develops a new hybrid evolutionary algorithm EAMLS (Evolutionary
Algorithm with Memorable Local Search) which combines a memorable local
search method and an EA, and a convergence metric l3-value is proposed. In this
section, the structure of EAMLS is explained first, then the design of operators
of the Genetic Algorithm (GA) and EAMLS is introduced. Finally, the details
of l3-value are described.

4.1 EAMLS

Algorithm 1 is the pseudo-code of EAMLS. Compared with the GA, the main
characters of EAMLS contain: (1) no crossover operation; (2) population size
self-adaptation; (3) the combination of a memorable local search (MLS) and
EA; and (4) the adoption of convergence metric l3-value.

In Algorithm 1, variable allNeighborInds stores all non-repeating neighbor-
hood individuals generated by MLS before current generation and is updated at
the end of every generation (Algorithm 1, Line 2 and Line 13). In the evolutionary
process, a new population is generated from the current population after muta-
tion, MLS, and survival selection (Algorithm 1, Lines 5–8), and convergence met-
ric l3-value is calculated (Algorithm 1, Line 9). If l3-value is bigger than a pre-set
threshold β, population size is increased by a pre-set step size p (Algorithm 1, Lines
10–12). The description of the l3-value will be shown in Sect. 4.3.

Algorithm 2 is the pseudo-code of the memorable local search (MLS). First,
we will introduce the definition of the neighborhood. The neighborhood of an
individual is the set of individuals whose Hamming distance is 1 from that

Algorithm 1. Evolutionary Algorithm with Memorable Local Search.
Input: G: number of generations; μ: population size; l: individual length; m: mutation

rate; β: threshold of l3-value; p: step size of population self-adaptation;
Output: bestSol: the best individual in the final population;
1: initPop ← initializePop(μ, l);
2: allNeighborInds ← an empty set;
3: pop ← evaluatePop(initPop);
4: for g = 1 to G do
5: popAfterMutation ← mutation(pop, m);
6: offspring ← evaluatePop(popAfterMuation);
7: offspringLS ← memorableLocalSearch(pop, offspring);
8: pop ← survival(pop, offspring, offspringLS , μ);
9: l3-value ← getl3V alue(pop, allNeighborInds);

10: if l3-value> β then
11: μ ← μ + p;
12: end if
13: add offspringLS to allNeighborInds;
14: end for
15: bestSol ← selectBestIndividual(pop)
16: Return bestSol

460 H. Zhang et al.

Algorithm 2. Memorable Local Search.
Input: pop: the parent population; offspring: the child population generated after

mutation; n: # of individuals which need to check whether to do local search;
indLSed:the set of individuals which have already down local search before this
generation;

Output: offspringLS : the population generated by local search;
1: offspringLS ← an empty set;
2: parentPop ← combine pop and offspring;
3: sortedParentPop ← sort parentPop by fitness increasing order;
4: i ← 0;
5: for j ← 1 to len(sortedParentPop) do
6: if sortedParentPop[j] not in indLSed then
7: neighborInds ← generateNeighbor(sortedParentPop[j]);
8: add neighborInds to offspringLS ;
9: i ← i + 1;

10: if i > n then
11: break;
12: end if
13: end if
14: end for
15: Return offspringLS

individual. In MLS, sort (μ + λ) population (variable sortedParentPop in
Algorithm 2) in decreasing order, i.e., good individuals are in the front. Then
check individuals one by one in sorted (μ + λ) population whether it has been
local-searched before this generation, and do local-search for those have not been
local-searched (Lines 5–7 in Algorithm 2. It looks like that the algorithm remem-
bers all local-searched individuals and that’s why we name it Memorable Local
Search). Exit the loop until the number of new individuals which have been
local-searched in this generation reaches n (Lines 9–12 in Algorithm 2).

4.2 Operator Design of GA and EAMLS

In Sect. 5, we use a GA for comparison. Here some operators’ design for GA and
EAMLS is as follows1:

Representation. This paper uses binary representation. Every bit represents
a location decision variable Xj , j ∈ J .

Population Initialization. Stochastic initialization is used in GA and EAMLS.
Every gene of an individual takes 0 or 1 with equal probability.

Fitness Function. In general, the bigger the fitness value is, the better the indi-
vidual will be. Therefore, the reciprocal of the objective value of the individual
is used as the fitness function.

1 If there is no special statement, that operator is adopted in both GA and EAMLS.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 461

Selection Operator. In GA, roulette wheel selection is used to select parents
to do crossover operation.

Crossover Operator. In GA, a one-point crossover operator is used. For two
parent individuals selected by the selection operator, do crossover operation
according to a pre-set crossover rate.

Mutation Operator. The bit-flipping mutation is used in GA and EAMLS.
During mutation, every gene/bit of one individual mutates with a pre-set muta-
tion rate.

Survival Selection Strategy. We adopt (μ + λ) strategy to select next gen-
eration population from (μ + λ) population, i.e., the mixed population of the
current generation population and the offspring.

Repair Strategy. Repair strategy is working when there are individuals which
do not satisfy the constraint (15). For an individual needed repair, check every
gene in ascending order of fixed cost and change the gene with 0-value to 1 until
the individual satisfies the constraint (15).

How to DetermineY. For one customer, the selected candidate locations (i.e.,
locations whose Xj = 1) are allocated to it in ascending order of distance, which
has been proved the optimal allocation pattern under a certain solution X [6]
and can satisfy the constraints (12), (13), and (15).

4.3 Convergence Metric l3-Value

In order to observe the evolutionary process, a convergence metric l3-value is
proposed.

Algorithm 3 is the pseudo-code of the calculation method of l3-value. The
new population generated after survival selection is checked, and the number of
individuals which also belong to the set allNeighborInds is counted (Lines 2–6
in Algorithm 3). Then we calculate the proportion of these individuals in the
population as l3-value (Line 7 in Algorithm 3). l3-value can be used to measure
the convergence during the evolutionary process. The bigger the l3-value is, the
stronger the evolution converges.

Algorithm 3. Function getl3V alue().
Input: pop: the new population after survival selection; allNeighborInds: the set of

all individuals generated by memorable local search before this generation;
Output: l3-value;
1: num ← 0;
2: for ind ∈ pop do
3: if ind ∈ allNeighborInds then
4: num ← num + 1;
5: end if
6: end for
7: l3-value ← num/len(pop);
8: Return l3-value

462 H. Zhang et al.

5 Computational Studies

Because this paper proposes a new problem, and there are not any algorithms like
EAMLS can be used to compare directly, we compare EAMLS with a GA and
CPLEX (a commercial optimization solver of IBM) on two models: m = 2 and
m =

∑
j∈JXj models. The difference between the two models is the allocation

setting. In the m = 2 model, the number of facilities allocated to each customer,
i.e. m, is fixed to 2, which is adopted in much literature. The m =

∑
j∈JXj

model is proposed by us in this paper and m varies with decision variables X
during the search process. Section 5.1 shows the experimental design, including
instances generation, parameters setting, and experimental environment. The
experiments and results of the m = 2 and m =

∑
j∈JXj models are presented in

Sect. 5.2. Analyses and discussions are given in Sect. 5.3.

5.1 Experimental Design

Instance Generation. This paper generates problem instances uniformly at
random on different scales. The parameters used to generate instances are shown
in Table 2. There are eight 10-node instances, eight 50-node instances, eight 100-
node instances, and four 600-node instances.

Table 2. Parameters used in instances generation

Parameters Ranges

Candidate location coordinate [0,1]

Customer demands {0,1,...,1000}
Fixed cost of facility {500,501,...,1500}
Facility failure probability 0.05

Parameter Setting of Algorithms. Some parameters’ values of GA and
EAMLS are shown in Table 3. Table 4 presents the generation number and pop-
ulation size of GA and EAMLS, which associate with the scale of problem
instances. The values of parameters in Tables 3 and 4 are chosen arbitrarily
on the basis of meeting the following conditions: (1) EAMLS converges at the
end of evolution; (2) the number of fitness evaluations (FEs) of GA is not lower
than EAMLS. Besides, the default parameters of CPLEX are used.

Experimental Environment. The algorithms are implemented in Python 3.7
and run on Dell R370 server which has 2x Intel(R) Xeon(R) CPU E5-2650 v4 @
2.20 GHz CPU, 128G RAM, and CentOS 7.6 operating system.

Statistical Test. We use the Wilcoxon sign rank test to determine whether
the results between EAMLS and other methods have statistically significant
differences. The Wilcoxon sign rank test is a non-parameter test which is suitable
for two related or matched samples and compares data in pair, hence it is suitable
to use here.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 463

Table 3. Some parameters of GA and EAMLS

Parameters Value

Crossover rate for GA, c 0.9

Mutation rate, m 0.1

Local search individual, n 10

l3-value threshold, β 0.8

Step size of population self-adaption, p 100

Table 4. Parameters associate with instance size

Instance scale (# nodes) GA EAMLS

Generation Population size # Generation Population size

10 60 30 10 20

50 200 200 20 20

100 400 200 50 100

600 4600 200 250 200

5.2 Experiments on the m=2 and m=
∑

j∈JXj Models

For the m = 2 model, We compare EAMLS with the GA and CPLEX on small-
scale (10-node), mid-scale (100-node), and large-scale (600-node) instances.
There are 30 runs on small and mid-scale instances and 10 runs on large-scale
instances because of time. The computational results are shown in Table 5.

For the m =
∑

j∈JXj model, we compare EAMLS with the GA and CPLEX
on 50 and 100-node instances, and there are 30 runs on each instance. Table 6 is
the computational results.

5.3 Analyses and Discussions

We compare GA, CPLEX, and EAMLS on different scale (10, 100, and 600-
node) problem instances for m = 2 model whose allocation setting is often used
in literature, and the experimental results are shown in Table 5. Experimental
results on 50 and 100-node instances of the new complicated m =

∑
j∈JXj model

are presented in Table 6.
For m = 2 model, from Table 5, we can see that CPLEX performs the best

on both solution quality and time for small and mid-scale (10 and 100-node)
instances. EAMLS can find solutions as good as CPLEX but need more time.
Although CPLEX can solve small and mid-scale instances fast, it needs more
RAM space as the problem scale increases. For large-scale problem (600-node)
instances, EAMLS can find better solutions in less time compared with GA,
while the CPLEX cannot find a solution.

The new m =
∑

j∈JXj model is more complicated to solve, especially for
CPLEX. Table 6 demonstrates that the performance of EAMLS is better than
GA and CPLEX on both solution quality and time.

464 H. Zhang et al.

T
a
b
le

5
.
C

o
m

p
u
ta

ti
o
n
a
l
re

su
lt

s
o
n

m
=

2
m

o
d
el

1
0

(3
0

ru
n
s)

,1
0
0

(3
0

ru
n
s)

,
a
n
d

6
0
0

(1
0

ru
n
s)

-n
o
d
e

in
st

a
n
ce

s.
A

O
V

is
A

v
er

a
g
e

O
b
je

ct
iv

e
V

a
lu

e.
O

R
is

th
e

O
p
ti

m
a
l

R
a
te

a
n
d

ca
lc

u
la

te
d

b
y

(#
ru

n
s

w
h
ic

h
fi
n
d
in

g
th

e
o
p
ti

m
a
l

so
lu

ti
o
n
)/

(#
a
ll

ru
n
s)

.
G

a
p

is
ca

lc
u
la

te
d

b
y

(A
O

V
(o

th
er

m
et

h
o
d
)-

A
O

V
(E

A
M

L
S
))

/
A

O
V

(E
A

M
L
S
).

W
h
en

G
a
p

is
p
o
si

ti
v
e,

th
e

p
er

fo
rm

a
n
ce

o
f
o
th

er
m

et
h
o
d
s

is
w

o
rs

e
th

a
n

E
A

M
L
S
,

o
th

er
w

is
e

b
et

te
r.

T
h
e

sy
m

b
o
l
“
*
”

in
A

O
V

re
p
re

se
n
ts

th
e

re
su

lt
s
b
et

w
ee

n
E

A
M

L
S

a
n
d

th
a
t
m

et
h
o
d

h
av

e
st

a
ti

st
ic

a
ll
y

si
g
n
ifi

ca
n
t
d
iff

er
en

ce
s.

T
h
e

sy
m

b
o
l
“
-”

re
p
re

se
n
ts

C
P

L
E

X
ca

n
n
o
t

so
lv

e
th

e
in

st
a
n
ce

o
r

th
e

o
p
ti

m
a
l
so

lu
ti

o
n

is
u
n
k
n
ow

n
so

n
o

re
su

lt
s

ca
n

b
e

g
iv

en
.

In
st
a
n
ce

N
o
.
G
A

C
P
L
E
X

E
A
M
L
S

A
O
V

G
a
p
(%

)
O
R

T
im

e
A
O
V

G
a
p
(%

)
O
R

T
im

e
A
O
V

G
a
p
(%

)
O
R

T
im

e

1
0
-1

2
4
6
3
.1
9

0
.0
0

1
.0
0

1
.5
2

2
4
6
3
.1
9

0
.0
0

1
.0
0

0
.4
6

2
4
6
3
.1
9

0
.0
0

1
.0
0

6
.1
4

1
0
-2

2
8
7
4
.0
3

0
.0
0

1
.0
0

1
.5
1

2
8
7
4
.0
3

0
.0
0

1
.0
0

0
.4
1

2
8
7
4
.0
3

0
.0
0

1
.0
0

5
.4
6

1
0
-3

2
6
2
3
.3
5

0
.0
0

1
.0
0

1
.7
4

2
6
2
3
.3
5

0
.0
0

1
.0
0

0
.6
6

2
6
2
3
.3
5

0
.0
0

1
.0
0

5
.4
1

1
0
-4

2
3
2
3
.9
2

0
.0
0

1
.0
0

1
.9
3

2
3
2
3
.9
2

0
.0
0

1
.0
0

0
.4
8

2
3
2
3
.9
2

0
.0
0

1
.0
0

5
.8
6

1
0
-5

2
9
1
7
.8
7

0
.0
0

1
.0
0

2
.4
8

2
9
1
7
.8
7

0
.0
0

1
.0
0

0
.5
0

2
9
1
7
.8
7

0
.0
0

1
.0
0

5
.7
1

1
0
-6

3
1
4
9
.3
1

0
.0
0

1
.0
0

2
.7
2

3
1
4
9
.3
1

0
.0
0

1
.0
0

0
.4
1

3
1
4
9
.3
1

0
.0
0

1
.0
0

5
.5
9

1
0
-7

3
3
2
4
.9
8

0
.0
0

1
.0
0

2
.3
9

3
3
2
4
.9
8

0
.0
0

1
.0
0

0
.5
8

3
3
2
4
.9
8

0
.0
0

1
.0
0

5
.6
4

1
0
-8

3
1
6
5
.8
7

0
.0
0

1
.0
0

2
.1
0

3
1
6
5
.8
7

0
.0
0

1
.0
0

0
.5
2

3
1
6
5
.8
7

0
.0
0

1
.0
0

4
.5
8

1
0
0
-1

1
3
0
2
9
.8
3
*

2
2
.2
8

0
.0
0

2
3
7
4
.8
6

1
0
6
4
5
.8
9

–
0
.1
0

1
.0
0

1
4
.3
0

1
0
6
5
6
.1
1

0
.0
0

0
.8
7

1
4
3
1
.1
7

1
0
0
-2

1
3
1
6
6
.4
4
*

2
0
.9
5

0
.0
0

2
3
7
5
.7
1

1
0
8
8
5
.4
3

0
.0
0

1
.0
0

1
4
.3
1

1
0
8
8
5
.4
3

0
.0
0

1
.0
0

1
3
8
7
.0
1

1
0
0
-3

1
2
9
8
2
.3
7
*

1
6
.9
0

0
.0
0

2
3
9
6
.4
2

1
1
1
0
5
.2
1

0
.0
0

1
.0
0

1
4
.7
6

1
1
1
0
5
.3
9

0
.0
0

0
.9
3

1
5
1
4
.1
2

1
0
0
-4

1
3
3
7
9
.4
1
*

1
6
.6
6

0
.0
0

2
3
8
8
.6
7

1
1
4
6
8
.6
4

0
.0
0

1
.0
0

1
4
.4
2

1
1
4
6
8
.6
4

0
.0
0

1
.0
0

1
3
8
2
.9
1

1
0
0
-5

1
4
5
6
3
.4
6
*

1
6
.3
9

0
.0
0

2
3
9
8
.3
4

1
2
5
0
5
.5
1

–
0
.0
5

1
.0
0

1
4
.8
0

1
2
5
1
2
.2
9

0
.0
0

0
.9
0

1
4
1
5
.6
3

1
0
0
-6

1
3
1
8
9
.7
4
*

1
7
.2
9

0
.0
0

2
4
0
2
.4
4

1
1
2
4
5
.5
5

0
.0
0

1
.0
0

1
4
.0
0

1
1
2
4
5
.5
5

0
.0
0

1
.0
0

1
4
4
7
.1
1

1
0
0
-7

1
2
8
4
1
.3
7
*

1
6
.1
1

0
.0
0

1
6
9
6
.8
5

1
1
0
4
3
.7
0

–
0
.1
5

1
.0
0

1
5
.4
9

1
1
0
5
9
.8
9

0
.0
0

0
.9
0

1
3
2
6
.4
1

1
0
0
-8

1
3
8
8
6
.7
8
*

1
8
.3
0

0
.0
0

1
2
4
2
.2
5

1
1
7
3
2
.4
6

–
0
.0
5

1
.0
0

1
4
.9
4

1
1
7
3
8
.8
3

0
.0
0

0
.8
7

1
1
8
0
.9
1

6
0
0
-1

1
4
4
8
9
6
.9
1
*

2
8
1
.0
4

–
6
5
5
4
2
0
.6
7

–
–

–
–

3
8
0
2
6
.6
5

0
.0
0

–
5
6
4
4
3
2
.0
0

6
0
0
-2

1
4
5
5
0
8
.2
3
*

2
9
3
.1
2

–
6
5
6
8
3
2
.5
0

–
–

–
–

3
7
0
1
3
.7
1

0
.0
0

–
5
7
2
5
6
8
.3
4

6
0
0
-3

1
4
1
4
8
6
.2
8
*

2
8
3
.4
1

–
6
5
4
6
3
2
.0
1

–
–

–
–

3
6
9
0
2
.3
6

0
.0
0

–
5
6
8
8
2
4
.9
6

6
0
0
-4

1
4
1
2
5
6
.3
5
*

2
8
2
.8
0

–
6
5
6
6
5
6
.2
1

–
–

–
–

3
6
9
0
0
.5
2

0
.0
0

–
5
6
8
5
4
6
.9
6

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 465

T
a
b
le

6
.

C
o
m

p
u
ta

ti
o
n
a
l
re

su
lt

s
o
n

m
=

∑
j
∈J

X
j

m
o
d
el

5
0

a
n
d

1
0
0
-n

o
d
e

in
st

a
n
ce

s,
3
0

ru
n
s.

A
O

V
is

A
v
er

a
g
e

O
b
je

ct
iv

e
V

a
lu

e.
G

a
p

is
ca

lc
u
la

te
d

b
y

((
A

O
V

(o
th

er
m

et
h
o
d
)-

A
O

V
(E

A
M

L
S
))

/
A

O
V

(E
A

M
L
S
).

W
h
en

G
a
p

is
p
o
si

ti
v
e,

th
e

p
er

fo
rm

a
n
ce

o
f
o
th

er
m

et
h
o
d
s

is
w

o
rs

e
th

a
n

E
A

M
L
S
,

o
th

er
w

is
e

b
et

te
r.

T
h
e

sy
m

b
o
l

“
*
”

in
A

O
V

re
p
re

se
n
ts

th
e

re
su

lt
s

b
et

w
ee

n
E

A
M

L
S

a
n
d

th
a
t

m
et

h
o
d

h
av

e
st

a
ti

st
ic

a
ll
y

si
g
n
ifi

ca
n
t

d
iff

er
en

ce
s.

In
st

a
n
ce

N
o
.

G
A

C
P

L
E

X
E

A
M

L
S

A
O

V
G

a
p

(%
)

T
im

e
A

O
V

G
a
p

(%
)

T
im

e
A

O
V

G
a
p

(%
)

T
im

e

5
0
-1

7
0
5
3
.7

1
*

0
.6

8
7
1
9
.7

6
1
2
5
8
9
.4

1
*

7
9
.6

9
4
7
1
5
.5

6
7
0
0
6
.2
3

0
.0

0
9
1
.5
2

5
0
-2

7
1
5
4
.9

3
–
0
.1

3
7
2
0
.4

9
1
5
7
3
4
.8

0
*

1
1
9
.6

3
4
4
8
8
.2

6
7
1
6
4
.2
0

0
.0

0
9
0
.7
5

5
0
-3

6
8
9
0
.5

4
*

0
.7

5
7
1
3
.2

5
1
2
6
5
6
.1

3
*

8
5
.0

6
5
2
1
9
.3

3
6
8
3
8
.9
5

0
.0

0
9
1
.1
0

5
0
-4

7
1
6
6
.6

3
0
.0

4
6
9
8
.4

5
1
2
1
4
7
.9

2
*

6
9
.5

8
4
7
0
2
.0

1
7
1
6
3
.4
2

0
.0

0
9
0
.0
4

5
0
-5

6
9
2
9
.2

9
0
.0

3
7
1
4
.8

6
1
1
9
4
6
.3

5
*

7
2
.4

6
5
2
8
1
.2

7
6
9
2
6
.9
5

0
.0

0
8
7
.4
2

5
0
-6

6
5
7
5
.0

9
0
.2

9
6
9
6
.8

0
1
3
2
8
4
.6

9
*

1
0
2
.6

4
4
8
3
6
.4

5
6
5
5
5
.8
7

0
.0

0
9
0
.5
9

5
0
-7

7
1
6
2
.8

3
0
.0

7
6
8
5
.0

4
1
2
4
4
1
.0

0
*

7
3
.8

1
4
4
9
5
.4

1
7
1
5
7
.7
6

0
.0

0
8
1
.1
9

5
0
-8

7
1
7
5
.8

9
*

0
.2

6
6
2
9
.1

9
1
4
4
3
3
.4

1
*

1
0
1
.6

7
4
5
2
2
.3

5
7
1
5
6
.9
9

0
.0

0
7
0
.0
7

1
0
0
-1

1
2
8
9
5
.1

0
*

2
0
.4

7
3
9
7
6
.9

7
1
1
3
7
8
1
.4

5
*

9
6
3
.0

0
1
9
4
5
1
.6

2
1
0
7
0
3
.7
8

0
.0

0
2
2
6
6
.5
0

1
0
0
-2

1
3
0
9
3
.8

0
*

1
9
.7

7
3
8
2
0
.1

1
1
1
0
4
4
1
.8

9
*

9
1
0
.1

8
1
7
1
5
9
.5

7
1
0
9
3
2
.8
9

0
.0

0
2
1
6
8
.5
4

1
0
0
-3

1
3
0
8
2
.3

8
*

1
7
.2

1
2
7
1
9
.6

8
1
1
4
5
7
6
.2

1
*

9
2
6
.5

2
3
5
8
3
6
.9

1
1
1
1
6
1
.5
9

0
.0

0
2
3
3
7
.3
5

1
0
0
-4

1
3
4
8
4
.6

9
*

1
7
.0

4
2
5
5
1
.5

5
9
9
4
8
4
.6

5
*

7
6
3
.5

0
3
5
1
2
9
.7

4
1
1
5
2
1
.1
1

0
.0

0
2
2
1
7
.0
0

1
0
0
-5

1
4
4
8
4
.7

0
*

1
5
.2

2
2
5
7
9
.1

2
1
1
1
3
3
8
.1

5
*

7
8
5
.6

8
1
7
2
4
9
.1

0
1
2
5
7
0
.8
6

0
.0

0
2
2
7
9
.3
5

1
0
0
-6

1
3
3
6
0
.4

1
*

1
8
.2

0
2
6
2
6
.9

7
9
9
3
9
7
.4

6
*

7
7
9
.3

9
1
9
4
3
3
.8

7
1
1
3
0
2
.9
6

0
.0

0
2
2
8
8
.8
2

1
0
0
-7

1
2
8
1
0
.6

0
*

1
5
.2

0
2
5
5
3
.8

3
1
0
5
4
6
0
.2

2
*

8
4
8
.3

2
1
7
2
7
1
.9

5
1
1
1
2
0
.7
8

0
.0

0
2
0
3
6
.5
8

1
0
0
-8

1
3
8
0
9
.1

2
*

1
7
.0

5
2
5
4
8
.3

2
1
1
2
1
7
0
.7

6
*

8
5
0
.8

2
1
8
6
6
7
.8

8
1
1
7
9
7
.2
5

0
.0

0
1
7
9
2
.0
8

466 H. Zhang et al.

According to the observation of computational results, we can get three fea-
tures of EAMLS: (1) For small- and mid-scale problems, the solutions found
by EAMLS are comparable to those found by other methods; (2) For large-
scale problems, EAMLS significantly outperforms other methods; (3) EAMLS
especially performs well on (a) the new complicated model and (b) large-scale
problems. So why is EAMLS effective? Through combining MLS with EA and
using l3-value to guide the population size to grow gradually, EAMLS performs
a full local search while performing a global search, maintains good population
diversity, as well as speeds up the convergence.

Our algorithm EAMLS performs well on large-scale problem instances of both
m = 2 and m =

∑
j∈JXj models, and its advantage will become more apparent

as the problem scale increases. However, the larger the problem, the greater the
number of FEs needed for EAMLS to converge.

6 Conclusion

This paper proposes a new RFLP formulation in which the number of facilities
allocated to each customer (i.e., m) is not fixed but varies with decision variables
X. This non-fixed allocation setting makes the model more close to scenarios in
real life.

A hybrid evolutionary algorithm EAMLS (which can also be viewed as a
memetic algorithm) is proposed to solve the model. Combining a memorable
local search method and EA, EAMLS performs well on the new complicated
model and large-scale problems considered in this paper, and its advantage will
become more obvious as the problem scale increases. Besides, a convergence
metric l3-value is proposed to analyze the algorithm’s convergence speed and
exam the evolutionary process.

Finally, we explore the large-scale problems of the two models. Under what
conditions is a problem a large-scale problem? It is related to the model and
whether the problem can be solved by the exact algorithm efficiently. For the
m = 2 model which allocates a fixed number of facilities to each customer as in the
existing research, we solve large-scale problem instances (600-node) whose scale
is much larger than other literature. For the new complicated m =

∑
j∈J Xj

model, 100-node instances can be treated as large-scale problems because the
exact algorithm or optimization solver cannot solve them effectively. And our
algorithm EAMLS has good performance on large-scale problems considered in
this paper.

In the future, the model which integrates various factors should be stud-
ied, and more complicated FLPs, such as dynamic FLP and FLP under uncer-
tain environments, should be focused. Furthermore, effective meta-heuristic algo-
rithms for large-scale problems should be studied as well.

A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem 467

References

1. Daskin, M.S., Snyder, L.V., Berger, R.T.: Facility location in supply chain design.
In: Langevin, A., Riopel, D. (eds.) Logistics Systems: Design and Optimization,
pp. 39–65. Springer, Boston (2005). https://doi.org/10.1007/0-387-24977-X 2

2. Farahani, R.Z., Hekmatfar, M.: Facility Location: Concepts, Models, Algorithms
and Case Studies. Springer, New York (2009). https://doi.org/10.1007/978-3-7908-
2151-2

3. Owen, S.H., Daskin, M.S.: Strategic facility location: a review. Eur. J. Oper. Res.
111(3), 423–447 (1998)

4. Riopel, D., Langevin, A., Campbell, J.F.: The network of logistics decisions. In:
Langevin, A., Riopel, D. (eds.) Logistics Systems: Design and Optimization, pp.
1–38. Springer, Boston (2005). https://doi.org/10.1007/0-387-24977-X 1

5. Li, Q., Zeng, B., Savachkin, A.: Reliable facility location design under disruptions.
Comput. Oper. Res. 40(4), 901–909 (2013)

6. Snyder, L.V., Daskin, M.S.: Reliability models for facility location: the expected
failure cost case. Transp. Sci. 39(3), 400–416 (2005)

7. Peng, P., Snyder, L.V., Lim, A., Liu, Z.: Reliable logistics networks design with
facility disruptions. Transp. Res. Part B Methodological 45(8), 1190–1211 (2011)

8. Jabbarzadeh, A., Jalali Naini, S.G., Davoudpour, H., Azad, N.: Designing a supply
chain network under the risk of disruptions. Math. Prob. Eng. 2012, 23 pages
(2012). https://doi.org/10.1155/2012/234324. Article ID 234324

9. Du, B., Zhou, H., Leus, R.: A two-stage robust model for a reliable p-center facility
location problem. Appl. Math. Model. 77, 99–114 (2020)

10. Li, Q., Savachkin, A.: A fast tabu search algorithm for the reliable P-median prob-
lem. In: Gao, D., Ruan, N., Xing, W. (eds.) Advances in Global Optimization,
vol. 95, pp. 417–424. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
08377-3 41

11. Afify, B., Ray, S., Soeanu, A., Awasthi, A., Debbabi, M., Allouche, M.: Evolution-
ary learning algorithm for reliable facility location under disruption. Expert Syst.
Appl. 115, 223–244 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons licence and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

https://doi.org/10.1007/0-387-24977-X_2
https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/978-3-7908-2151-2
https://doi.org/10.1007/0-387-24977-X_1
https://doi.org/10.1155/2012/234324
https://doi.org/10.1007/978-3-319-08377-3_41
https://doi.org/10.1007/978-3-319-08377-3_41
http://creativecommons.org/licenses/by/4.0/

	A Hybrid Evolutionary Algorithm for Reliable Facility Location Problem
	1 Introduction
	2 Related Work
	3 Problem Formulation
	4 A Hybrid Evolutionary Algorithm: EAMLS
	4.1 EAMLS
	4.2 Operator Design of GA and EAMLS
	4.3 Convergence Metric l3-Value

	5 Computational Studies
	5.1 Experimental Design
	5.2 Experiments on the m=2 and m=jJXj Models
	5.3 Analyses and Discussions

	6 Conclusion
	References

