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                                     Abstract
The combination of data-driven learning methods with formal reasoning has seen a surge of interest, as either area has the potential to bolstering the other. For instance, formal methods promise to expand the use of state-of-the-art learning approaches in the direction of certification and sample efficiency. In this work, we propose a deep Reinforcement Learning (RL) method for policy synthesis in continuous-state/action unknown environments, under requirements expressed in Linear Temporal Logic (LTL). We show that this combination lifts the applicability of deep RL to complex temporal and memory-dependent policy synthesis goals. We express an LTL specification as a Limit Deterministic Büchi Automaton (LDBA) and synchronise it on-the-fly with the agent/environment. The LDBA in practice monitors the environment, acting as a modular reward machine for the agent: accordingly, a modular Deep Deterministic Policy Gradient (DDPG) architecture is proposed to generate a low-level control policy that maximises the probability of the given LTL formula. We evaluate our framework in a cart-pole example and in a Mars rover experiment, where we achieve near-perfect success rates, while baselines based on standard RL are shown to fail in practice.
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	Model-free reinforcement learning
	Deep learning
	Linear temporal logic
	Continuous-state and continuous-action Markov decision processes
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                             Notes
	1.One-shot means that there is no need to master easy tasks first, then compose them together to accomplish a more complex tasks.


	2.On-the-fly means that the algorithm tracks (or executes) the state of an underlying structure (or a function) without explicitly constructing it.
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Appendix: Proof of Theorem 1
Appendix: Proof of Theorem 1
Theorem 1. Let \(\varphi \) be a given LTL formula and \(\mathfrak {M}_\mathfrak {A}\) be the product MDP constructed by synchronising the MDP \(\mathfrak {M}\) with the LDBA \(\mathfrak {A}\) associated with \(\varphi \). Then the optimal stationary Markov policy on \(\mathfrak {M}_\mathfrak {A}\) that maximises the expected return, maximises the probability of satisfying \(\varphi \) and induces a finite-memory policy on the MDP \(\mathfrak {M}\).
Proof. Assume that the optimal Markov policy on \(\mathfrak {M}_\mathfrak {A}\) is \({\pi ^\otimes }^*\), namely at each state \(s^\otimes \) in \(\mathfrak {M}_\mathfrak {A}\) we have
$$\begin{aligned} {\pi ^\otimes }^*(s^\otimes )=\arg \!\!\!\!\sup \limits _{\pi ^\otimes \in \mathcal {D}^\otimes } {U}^{\pi ^\otimes }(s^\otimes )=\arg \!\!\!\!\sup \limits _{\pi ^\otimes \in \mathcal {D}^\otimes }\mathbb {E}^{\pi ^\otimes } [\sum _{n=0}^{\infty } \gamma ^n~ R(s^\otimes _n,a_n)|s^\otimes _0=s^\otimes ], \end{aligned}$$

                    (15)
                

where \(\mathcal {D}^\otimes \) is the set of stationary deterministic policies over the state space \(\mathcal {S}^\otimes \), \(\mathbb {E}^{\pi ^\otimes } [\cdot ]\) denotes the expectation given that the agent follows policy \(\pi ^\otimes \), and \(s_0^\otimes ,a_0,s_1^\otimes ,a_1,\ldots \) is a generic path generated by the product MDP under policy \(\pi ^\otimes \).
Recall that an infinite word \(w \in {\Sigma }^\omega ,~\Sigma =2^\mathcal {AP}\) is accepted by the LDBA \(\mathfrak {A}=(\mathcal {Q},q_0,\Sigma , \mathcal {F}, \varDelta )\) if there exists an infinite run \(\theta \in \mathcal {Q}^\omega \) starting from \(q_0\) where \(\theta [i+1] \in \varDelta (\theta [i],\omega [i]),~i \ge 0\) and, for each \(F_j \in \mathcal {F}\), \( inf (\theta ) \cap F_j \ne \emptyset ,\) where \( inf (\theta )\) is the set of states that are visited infinitely often in the sequence \(\theta \). From Definition 8, the associated run \(\theta \) of an infinite path in the product MDP \(\rho = s^\otimes _0 \xrightarrow {a_0} s^\otimes _1 \xrightarrow {a_1} ...\) is \(\theta = L^\otimes (s^\otimes _0)L^\otimes (s^\otimes _1)...\). From Definition 9 and (10), and since for an accepting run \( inf (\theta ) \,\cap \, F_j \ne \emptyset ,~\forall F_j \in \mathcal {F}\), all accepting paths starting from \(s_0^\otimes \), accumulate infinite number of positive rewards \(r_p\) (see Remark 2).
In the following, by contradiction, we show that any optimal policy \({\pi ^\otimes }^*\) satisfies the property with maximum possible probability. Let us assume that there exists a stationary deterministic Markov policy \({\pi ^\otimes }^+\ne {\pi ^\otimes }^*\) over the state space \(\mathcal {S}^\otimes \) such that probability of satisfying \(\varphi \) under \({\pi ^\otimes }^+\) is maximum.
This essentially means in the product MDP \(\mathfrak {M}_\mathfrak {A}\) by following \({\pi ^\otimes }^+\) the expectation of reaching the point where \( inf (\theta ) \cap F_j \ne \emptyset ,~\forall F_j \in \mathcal {F}\) and positive reward is received ever after is higher than any other policy, including \({\pi ^\otimes }^*\). With a tuned discount factor \(\gamma \), e.g. (1),
$$\begin{aligned} \mathbb {E}^{{\pi ^\otimes }^+} [\sum _{n=0}^{\infty } \gamma ^n~ R(s^\otimes _n,a_n)|s^\otimes _0=s^\otimes ] > \mathbb {E}^{{\pi ^\otimes }^*} [\sum _{n=0}^{\infty } \gamma ^n~ R(s^\otimes _n,a_n)|s^\otimes _0=s^\otimes ] \end{aligned}$$

                    (16)
                

This is in contrast with optimality of \({\pi ^\otimes }^*\) (15) and concludes \({\pi ^\otimes }^*={\pi ^\otimes }^+\). Namely, an optimal policy that maximises the expected return also maximises the probability of satisfying LTL property \(\varphi \). It is easy to see that the projection of policy \({\pi ^\otimes }^*\) on MDP \(\mathfrak {M}\) is a finite-memory policy \(\pi ^*\).    \(\Box \)


 Rights and permissions
Reprints and permissions


 Copyright information
© 2020 Springer Nature Switzerland AG


 About this paper
       



Cite this paper
Hasanbeig, M., Kroening, D., Abate, A. (2020).  Deep Reinforcement Learning with Temporal Logics.

                     In: Bertrand, N., Jansen, N. (eds) Formal Modeling and Analysis of Timed Systems. FORMATS 2020. Lecture Notes in Computer Science(), vol 12288. Springer, Cham. https://doi.org/10.1007/978-3-030-57628-8_1
Download citation
	.RIS
	.ENW
	.BIB

	DOI: https://doi.org/10.1007/978-3-030-57628-8_1

	Published: 25 August 2020

	
                            Publisher Name: Springer, Cham

	
                                Print ISBN: 978-3-030-57627-1

	
                                Online ISBN: 978-3-030-57628-8

	eBook Packages: Computer ScienceComputer Science (R0)


Share this paper
Anyone you share the following link with will be able to read this content:
Get shareable linkSorry, a shareable link is not currently available for this article.


Copy to clipboard

                                Provided by the Springer Nature SharedIt content-sharing initiative
                            







 Publish with us
Policies and ethics



                            
                            
    

                        

                    
                
                
                    
                        
                            
                                
                                    
                                        
                                            Access via your institution
                                            
                                                
                                            
                                        
                                    

                                
                            
                        
                        
                            
                        


                        
                            
                        


                        
                            

                                
                                    
                                        
                                            
 
  
   Buying options

   
    
     	
       
        Chapter
      
	
       
        USD   29.95
       

      
	
       Price excludes VAT (USA)
      


             
      	Available as PDF
	Read on any device
	Instant download
	Own it forever

Buy Chapter
     

    

    
     	
       
        eBook
      
	
       USD   39.99
      
	
       Price excludes VAT (USA)
      


        
      	Available as EPUB and PDF
	Read on any device
	Instant download
	Own it forever

Buy eBook
     

    

    
     	
       
        Softcover Book
      
	
       USD   54.99
      
	
       Price excludes VAT (USA)
      


        
      	Compact, lightweight edition
	Dispatched in 3 to 5 business days
	Free shipping worldwide - see info

Buy Softcover Book
     

    

   

  

  
   Tax calculation will be finalised at checkout

   Purchases are for personal use only
Learn about institutional subscriptions
  

 

 
 


                                        

                                    
                                

                                

                                

                                

                            

                        

                    
                

            
    

        
    


    
        
            Search

            
                
                    
                        Search by keyword or author
                        
                            
                            
                                
                                    
                                
                                Search
                            
                        

                    

                
            

        

    



    
        Navigation

        	
                    
                        Find a journal
                    
                
	
                    
                        Publish with us
                    
                
	
                    
                        Track your research
                    
                


    


    
	
		
			
			
	
		
			
			
				Discover content

					Journals A-Z
	Books A-Z


			

			
			
				Publish with us

					Publish your research
	Open access publishing


			

			
			
				Products and services

					Our products
	Librarians
	Societies
	Partners and advertisers


			

			
			
				Our imprints

					Springer
	Nature Portfolio
	BMC
	Palgrave Macmillan
	Apress


			

			
		

	



		
		
		
	
		
				
						
						
							Your privacy choices/Manage cookies
						
					
	
						
							Your US state privacy rights
						
						
					
	
						
							Accessibility statement
						
						
					
	
						
							Terms and conditions
						
						
					
	
						
							Privacy policy
						
						
					
	
						
							Help and support
						
						
					


		
	
	
		
			
				
					
					54.197.205.107
				

				Not affiliated

			

		
	
	
		
			
		
	
	© 2024 Springer Nature




	





    

    
    
    


