Skip to main content

Localization of a Passive Molecular Transmitter with a Sensor Network

  • Conference paper
  • First Online:
Bio-inspired Information and Communication Technologies (BICT 2020)

Abstract

Macroscale molecular communication (MC), which has a potential for practical applications, is a promising area for communication engineering. In a practical scenario such as monitoring air pollutants released from an unknown source, it is essential to estimate the location of the molecular transmitter (TX). This paper presents a novel Sensor Network-based Localization Algorithm (SNCLA) for passive transmission by using a novel experimental platform which mainly comprises a clustered sensor network (SN) with 24 sensor nodes and evaporating ethanol molecules as the passive TX. With the usage of the SN concept, novel methods can be developed for the problems in macroscale MC by utilizing the wide literature of sensor networks. In SNCLA, Gaussian plume model is employed to derive the location estimator. The parameters such as transmitted mass, wind velocity, detection time and actual concentration are calculated or estimated from the measured signals via the SN to be employed as the input for the location estimator. The numerical results show that the performance of SNCLA is better for stronger winds in the medium. Our findings show that evaporated molecules do not propagate homogeneously through the SN due to the presence of the wind. In addition, the estimation error of SNCLA decreases for higher detection threshold values.

Supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 119E041.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atakan, B.: Molecular Communications and Nanonetworks. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0739-7

  2. Atakan, B., Akan, O.B.: An information theoretical approach for molecular communication. In: Bio-Inspired Models of Network, Information and Computing Systems, Bionetics 2007, 2nd edn., pp. 33–40. IEEE (2007)

    Google Scholar 

  3. Atakan, B., Akan, O.B., Balasubramaniam, S.: Body area nanonetworks with molecular communications in nanomedicine. IEEE Commun. Mag. 50(1), 28–34 (2012)

    Article  Google Scholar 

  4. Atakan, B., Gulec, F.: Signal reconstruction in diffusion-based molecular communication. Trans. Emerg. Telecommun. Technol. 30(12), e3699 (2019)

    Google Scholar 

  5. Briggs, G.A.: Diffusion estimation for small emissions. Atmospheric turbulence and diffusion laboratory, p. 83 (1973)

    Google Scholar 

  6. De Visscher, A.: Air Dispersion Modeling: Foundations and Applications. Wiley, Hoboken (2013)

    Book  Google Scholar 

  7. Eckford, A.W.: Achievable information rates for molecular communication with distinct molecules. In: Bio-Inspired Models of Network, Information and Computing Systems, Bionetics 2007, 2nd edn, pp. 313–315. IEEE (2007)

    Google Scholar 

  8. Farsad, N., Guo, W., Eckford, A.W.: Tabletop molecular communication: text messages through chemical signals. PLoS ONE 8(12), e82935 (2013)

    Article  Google Scholar 

  9. Farsad, N., Kim, N.R., Eckford, A.W., Chae, C.B.: Channel and noise models for nonlinear molecular communication systems. IEEE J. Sel. Areas Commun. 32(12), 2392–2401 (2014)

    Article  Google Scholar 

  10. Farsad, N., Pan, D., Goldsmith, A.: A novel experimental platform for in-vessel multi-chemical molecular communications. In: GLOBECOM 2017–2017 IEEE Global Communications Conference, pp. 1–6. IEEE (2017)

    Google Scholar 

  11. Farsad, N., Yilmaz, H.B., Eckford, A., Chae, C.B., Guo, W.: A comprehensive survey of recent advancements in molecular communication. IEEE Commun. Surv. Tutor. 18(3), 1887–1919 (2016)

    Article  Google Scholar 

  12. Giannoukos, S., Marshall, A., Taylor, S., Smith, J.: Molecular communication over gas stream channels using portable mass spectrometry. J. Am. Soc. Mass Spectrom. 28(11), 2371–2383 (2017)

    Article  CAS  Google Scholar 

  13. Gulec, F., Atakan, B.: Distance estimation methods for a practical macroscale molecular communication system. Nano Commun. Netw. 24, 100300 (2020)

    Article  Google Scholar 

  14. Gulec, F., Atakan, B.: A fluid dynamics approach to channel modeling in macroscale molecular communication. arXiv preprint arXiv:2004.03321 (2020)

  15. Guo, W., Mias, C., Farsad, N., Wu, J.L.: Molecular versus electromagnetic wave propagation loss in macro-scale environments. IEEE Trans. Mol. Biol. Multi-Scale Commun. 1(1), 18–25 (2015)

    Article  Google Scholar 

  16. Hagan, M.T., Menhaj, M.B.: Training feedforward networks with the marquardt algorithm. IEEE Trans. Neural Netw. 5(6), 989–993 (1994)

    Article  CAS  Google Scholar 

  17. Hanna, S.R., Briggs, G.A., Hosker Jr., R.P.: Handbook on atmospheric diffusion. Technical report, National Oceanic and Atmospheric Administration, Oak Ridge, TN, USA (1982)

    Google Scholar 

  18. Hanwei Electronics Co., Ltd.: Technical data of MQ-3 gas sensor (2018)

    Google Scholar 

  19. Huang, J.T., Lai, H.Y., Lee, Y.C., Lee, C.H., Yeh, P.C.: Distance estimation in concentration-based molecular communications. In: Global Communications Conference (GLOBECOM), pp. 2587–2591. IEEE (2013)

    Google Scholar 

  20. Khalid, M., Amin, O., Ahmed, S., Shihada, B., Alouini, M.S.: Communication through breath: aerosol transmission. IEEE Commun. Mag. 57(2), 33–39 (2019)

    Article  Google Scholar 

  21. Kim, N.R., Farsad, N., Chae, C.B., Eckford, A.W.: A universal channel model for molecular communication systems with metal-oxide detectors. In: 2015 IEEE International Conference on Communications (ICC), pp. 1054–1059. IEEE (2015)

    Google Scholar 

  22. Koo, B.H., Lee, C., Yilmaz, H.B., Farsad, N., Eckford, A., Chae, C.B.: Molecular mimo: from theory to prototype. IEEE J. Sel. Areas Commun. 34(3), 600–614 (2016)

    Article  Google Scholar 

  23. Lee, C., et al.: Molecular mimo communication link. In: 2015 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp. 13–14. IEEE (2015)

    Google Scholar 

  24. Lee, C., Yilmaz, H.B., Chae, C.B., Farsad, N., Goldsmith, A.: Machine learning based channel modeling for molecular mimo communications. arXiv preprint arXiv:1704.00870 (2017)

  25. Lin, L., Luo, Z., Huang, L., Luo, C., Wu, Q., Yan, H.: High-accuracy distance estimation for molecular communication systems via diffusion. Nano Commun. Netw. 19, 47–53 (2019)

    Article  Google Scholar 

  26. Lyulin, Y.V., Feoktistov, D.V., Afanas’ev, I.A., Chachilo, E.S., Kabov, O.A., Kuznetsov, G.V.: Measuring the rate of local evaporation from the liquid surface under the action of gas flow. Tech. Phys. Lett. 41(7), 665–667 (2015). https://doi.org/10.1134/S1063785015070251

    Article  CAS  Google Scholar 

  27. McGuiness, D.T., Giannoukos, S., Marshall, A., Taylor, S.: Parameter analysis in macro-scale molecular communications using advection-diffusion. IEEE Access 6, 46706–46717 (2018)

    Article  Google Scholar 

  28. McGuiness, D.T., Giannoukos, S., Taylor, S., Marshall, A.: Experimental and analytical analysis of macro-scale molecular communications within closed boundaries. IEEE Trans. Mol. Biol. Multi-Scale Commun. 5, 44–55 (2019)

    Article  Google Scholar 

  29. Moore, M., Nakano, T., Enomoto, A., Suda, T.: Measuring distance with molecular communication feedback protocols. In: Proceedings of ICST BIONETICS, pp. 1–13 (2010)

    Google Scholar 

  30. Moore, M.J., Nakano, T.: Comparing transmission, propagation, and receiving options for nanomachines to measure distance by molecular communication. In: 2012 IEEE International Conference on Communications (ICC), pp. 6132–6136. IEEE (2012)

    Google Scholar 

  31. Moore, M.J., Nakano, T., Enomoto, A., Suda, T.: Measuring distance from single spike feedback signals in molecular communication. IEEE Trans. Signal Process. 60(7), 3576–3587 (2012)

    Article  Google Scholar 

  32. Munson, B.R., Young, D.F., Okiishi, T.H., Huebsch, W.W.: Fundamentals of Fluid Mechanics. Wiley, Hoboken (2009)

    Google Scholar 

  33. Nakano, T., Eckford, A.W., Haraguchi, T.: Molecular Communication. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  34. Nakano, T., Okaie, Y., Vasilakos, A.V.: Transmission rate control for molecular communication among biological nanomachines. IEEE J. Sel. Areas Commun. 31(12), 835–846 (2013)

    Article  Google Scholar 

  35. Noel, A., Cheung, K.C., Schober, R.: Joint channel parameter estimation via diffusive molecular communication. IEEE Trans. Mol. Biol. Multi-Scale Commun. 1(1), 4–17 (2015)

    Article  Google Scholar 

  36. Oppenheim, A.V.: Discrete-Time Signal Processing. Pearson Education India, Delhi (1999)

    Google Scholar 

  37. Qiu, S., et al.: Long range and long duration underwater localization using molecular messaging. IEEE Trans. Mol. Biol. Multi-Scale Commun. 1(4), 363–370 (2015)

    Article  Google Scholar 

  38. Qiu, S., Guo, W., Wang, S., Farsad, N., Eckford, A.: A molecular communication link for monitoring in confined environments. In: 2014 IEEE International Conference on Communications Workshops (ICC), pp. 718–723. IEEE (2014)

    Google Scholar 

  39. Seinfeld, J.H., Pandis, S.N.: Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Wiley, Hoboken (2016)

    Google Scholar 

  40. Stockie, J.M.: The mathematics of atmospheric dispersion modeling. Siam Rev. 53(2), 349–372 (2011)

    Article  Google Scholar 

  41. Unterweger, H., et al.: Experimental molecular communication testbed based on magnetic nanoparticles in duct flow. In: 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), pp. 1–5. IEEE (2018)

    Google Scholar 

  42. Wang, L., Farsad, N., Guo, W., Magierowski, S., Eckford, A.W.: Molecular barcodes: information transmission via persistent chemical tags. In: 2015 IEEE International Conference on Communications (ICC), pp. 1097–1102. IEEE (2015)

    Google Scholar 

  43. Wang, X., Higgins, M.D., Leeson, M.S.: An algorithmic distance estimation scheme for diffusion based molecular communication systems. In: 2015 IEEE International Conference on Communications (ICC), pp. 1134–1139. IEEE (2015)

    Google Scholar 

  44. Wang, X., Higgins, M.D., Leeson, M.S.: Distance estimation schemes for diffusion based molecular communication systems. IEEE Commun. Lett. 19(3), 399–402 (2015)

    Article  Google Scholar 

  45. Zhai, H., Liu, Q., Vasilakos, A.V., Yang, K.: Anti-ISI demodulation scheme and its experiment-based evaluation for diffusion-based molecular communication. IEEE Trans. Nanobiosci. 17(2), 126–133 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Gulec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gulec, F., Atakan, B. (2020). Localization of a Passive Molecular Transmitter with a Sensor Network. In: Chen, Y., Nakano, T., Lin, L., Mahfuz, M., Guo, W. (eds) Bio-inspired Information and Communication Technologies. BICT 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 329. Springer, Cham. https://doi.org/10.1007/978-3-030-57115-3_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-57115-3_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-57114-6

  • Online ISBN: 978-3-030-57115-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics