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Abstract

Joint action in the sphere of human–human interrelations
may be a model for human–robot interactions. Human–
human interrelations are only possible when several pre-
requisites are met, inter alia: (1) that each agent has a
representation within itself of its distinction from the
other so that their respective tasks can be coordinated;
(2) each agent attends to the same object, is aware of
that fact, and the two sets of “attentions” are causally
connected; and (3) each agent understands the other’s
action as intentional. The authors explain how human–
robot interaction can benefit from the same threefold
pattern. In this context, two key problems emerge. First,
how can a robot be programed to recognize its distinction
from a human subject in the same space, to detect when a
human agent is attending to something, to produce signals
which exhibit their internal state andmake decisions about
the goal-directedness of the other’s actions such that the
appropriate predictions can be made? Second, what must
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humans learn about robots so they are able to interact
reliably with them in view of a shared goal? This dual
process is here examined by reference to the laboratory
case of a human and a robot who team up in building a
stack with four blocks.
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Introduction

In this chapter, we present what is it to implement a joint
action between a human and a robot. Joint action is “a so-
cial interaction whereby two or more individuals coordinate
their actions in space and time to bring about a change in
the environment.” (Sebanz et al. 2006: 70). We consider
this implementation through a set of needed coordination
processes to realize this joint action: Self-Other Distinction,
Joint Attention, Understanding of Intentional Action, and
Shared Task Representation. It is something that we have
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already talked about in Clodic et al. (2017) but we will
focus here on one example. Moreover, we will speak here
about several elements that are components of a more global
architecture described in Lemaignan et al. (2017). We in-
troduce a simple human-robot collaborative to illustrate our
approach. This example has been used as a benchmark in a
series of workshop “toward a Framework for Joint Action”
(fja.sciencesconf.org) and is illustrated in Fig. 1. A human
and a robot have the common goal to build a stack with four
blocks. They should stack the blocks in a specific order (1,
2, 3, 4). Each agent participates in the task by placing his/its
blocks on the stack. The actions available to each agent are
the following: take a block on the table, put a block on the
stack, remove a block from the stack, place a block on the
table, and give a block to the other agent.

This presentation is a partial point of view regarding what
is and can be done to implement a joint action between a robot
and a human since it presents only one example and a set of

software developed in our lab. It only intends to explain what
we claim is needed to enable a robot to run such a simple
scenario.

At this point, it has to be noticed that from a philosophical
point of view, we have been taught that some philosophers
such as Seibt (2017) stressed that the robotics intentionalist
vocabulary that we use is considered as problematic espe-
cially when robots are placed in social interaction spaces. In
the following, we will use this intentionalist vocabulary in
order to describe the functionalities of the robot, such as “be-
lieve” and “answers,” because this is the way we describe our
work in robotics and AI communities. However, to accom-
modate the philosophical concern, we would like to note that
this can be considered as shorthand for “the robot simulates
the belief,” “the robot simulates an answer,” etc. Thus, when-
ever robotic behavior is described with a verb that normally
characterizes a human action, these passages can be read as
a reference to the robot’s simulation of the relevant action.

Fig. 1 A simple human–robot interaction scenario: A human and a
robot have the common goal to build a stack with four blocks. They
should stack the blocks in a specific order (1, 2, 3, 4). Each agent
participates in the task by placing his/its blocks on the stack. The actions

available to each agent are the following: take a block on the table, put
a block on the stack, remove a block from the stack, place a block on
the table, and give a block to the other agent. Also, the human and the
robot observe one another. Copyright laas/cnrs https://homepages.laas.
fr/aclodic
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Self-Other Distinction

The first coordination process is Self-Other Distinction.
It means that “for shared representations of actions and
tasks to foster coordination rather than create confusion,
it is important that agents also be able to keep apart
representations of their own and other’s actions and
intentions” (Pacherie 2012: 359).

Regarding our example, it means that each agent should be
able to create and maintain a representation of the world for
its own but also from the point of view of the other agent. In
the following, we will explain what the robot can do to build
this kind of representation. The way a human (can) builds
such representation for the robot agent (and on which basis)
is still an open question.

Joint Attention

The second coordination process is Joint Attention. Attention
is the mental activity by which we select among items in our

perceptual field, focusing on some rather than others (see
Watzl 2017). In a joint action setting, we have to deal with
joint attention, which is more than the addition of two per-
sons’ attention. “The phenomenon of joint attention involves
more than just two people attending to the same object or
event. At least two additional conditions must be obtained.
First, there must be some causal connection between the
two subjects’ acts of attending (causal coordination). Second,
each subject must be aware, in some sense, of the object as
an object that is present to both; in other words, the fact that
both are attending to the same object or event should be open
or mutually manifest (mutual manifestness)” (Pacherie 2012:
355).

On the robot side, it means that the robot must be able to
detect and represent what is present in the joint action space,
i.e., the joint attention space. It needs to be equipped with
situation assessment capabilities (Lemaignan et al. 2018;
Milliez et al. 2014).

In our example, illustrated in Fig. 2, it means that the robot
needs to get:

Fig. 2 Situation Assessment: the robot perceives its environment,
builds a model of it, and computes facts through spatial reasoning to
be able to share information with the human at a high level of abstrac-

tion and realizes mental state management to infer human knowledge.
Copyright laas/cnrs https://homepages.laas.fr/aclodic
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Fig. 3 What can we infer
viewing this robot? There is no
standard interface for the robot so
it is difficult if not impossible to
infer what this robot is able to do
and what it is able to perceive
(from its environment but also
from the human it interacts with).
Copyright laas/cnrs https://
homepages.laas.fr/aclodic

• its own position, that could be done for example by posi-
tioning the robot on a map and localizing it with the help
of its laser (e.g., using amcl localization (http://wiki.ros.
org/amcl) and gmapping (http://wiki.ros.org/gmapping))

• the position of the human with whom it interacts with
(e.g., here it is tracked through the use of a motion capture
system, that’s why the human wears a helmet and a wrist
brace. So more precisely, in this example, the robot has
access to the head position and the right hand position)

• the position of the objects in the environment (e.g., here,
a QR-code (https://en.wikipedia.org/wiki/QR_code) has
been glued on each face of each block. These codes, and
so, the blocks are tracked with one of the robot cameras.
We get the 3D position of each block in the environment
(e.g., with http://wiki.ros.org/ar_track_alvar))

However, each position computed by the robot is given as
x, y, z, and theta position in a given frame.We cannot imagine
to use such information to elaborate a verbal interaction with
the human: “please take the block at position x = 7.5 m,
y = 3.0 m, Z = 1.0 m, and theta = 3.0 radians in the frame
map...”. To overcome this limit, we must transform each po-
sition in an information that is understandable by (and hence
shareable with) the human, e.g., (RedBlock is On Table). We
can also compute additional information such as (GreenBlock
is Visible By Human) or (BlueBlock is Reachable By Robot).
This is what we call “spatial reasoning.” Finally, the robot
must also be aware that the information available to the
human can be different from the one it has access to, e.g.,
an obstacle on the table can prevent her/him to see what is on

the table. To infer the human knowledge, we compute all the
information not only from the robot point of view but also
from the human position point of view (Alami et al. 2011;
Warnier et al. 2012; Milliez et al. 2014), it is what we call
“mental state management.”

On the human side, we can infer that the human is able
to have the same set of information from the situation. But
joint attention is more than that. We have to take into account
“mutual manifestness,” i.e., “(...) each subject must be aware
in some sense, of the object as an object that is present to
both; in other words the fact that both are attending to the
same object or event should be open or mutually manifest...”
(Pacherie 2012: 355). It raises several questions. How can
a robot exhibit joint attention? What cues the robot should
exhibit to let the human to infer that joint attention is met?
How can a robot know that the human it interacts with is
really involved in the joint task? What are the cues that
should be collected by the robot to infer joint attention? These
questions are still open questions. To answer them, we have
to work particularly on the way to make the robot more
understandable and more legible. For example, viewing this
robot in Fig. 3, what can one infer about its capabilities?

Understanding of Intentional Action

“Understanding intentions is foundational because it pro-
vides the interpretive matrix for deciding precisely what it
is that someone is doing in the first place. Thus, the exact
same physical movement may be seen as giving an object,

https://homepages.laas.fr/aclodic
https://homepages.laas.fr/aclodic
http://wiki.ros.org/amcl
http://wiki.ros.org/amcl
http://wiki.ros.org/gmapping
https://en.wikipedia.org/wiki/QR_code
http://wiki.ros.org/ar_track_alvar
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sharing it, loaning it, moving it, getting rid of it, returning
it, trading it, selling it, and on and on—depending on the
goals and intentions of the actor” (Tomasello et al. 2005:
675). Understanding of intentional action could be seen as
a building block of understanding intentions, it means that
each agent should be able to read its partner’s actions. To
understand an intentional action, an agent should, when
observing a partner’s action or course of actions, be able to
infer their partner’s intention. Here, when we speak about
partner’s intention we mean its goal and its plan. It is linked
to action-to-goal prediction (i.e., viewing and understanding
the on-going action, you are able to infer the underlying goal)
and goal-to-action prediction (i.e., knowing the goal you are
able to infer what would be the action(s) needed to achieve
it).

On the robot side, it means that it needs to be able to
understand what the human is currently doing and to be able
to predict the outcomes of the human’s actions, e.g., it must
be equipped with action recognition abilities. The difficulty
here is to frame what should and can be recognized since the
spectrum is vast regarding what the human is able to do. A
way to do that is to choose to consider only a set of actions
framed by a particular task.

On the other side, the human needs to be able to un-
derstand what the robot is doing, be able to infer the goal
and to predict the outcomes of the robot’s actions. It means,
viewing a movement, the human should be able to infer what
is the underlying action of the robot. That means the robot
should perform movement that can be read by the human.
Before doing a movement, the robot needs to compute it,
it is motion planning. Motion planning takes as inputs an
initial and a final configuration (for manipulation, it is the

position of the arms; for navigation, it is the position of the
robot basis). Motion planning computes a path or a trajectory
from the initial configuration to the final configuration. This
path could be possible but not understandable and/or legible
and/or predictable for the human. For example, in Fig. 4,
on the left, you see a path which is possible but should be
avoided if possible, the one on the right should be preferred.

In addition, some paths could be also dangerous and/or not
comfortable for the human, as illustrated in Fig. 5. Human-
aware motion planning (Sisbot et al. 2007; Kruse et al.
2013; Khambhaita and Alami 2017a, b) has been developed
to enable the robot to handle the choice of a path that is
acceptable, predictable, and comfortable to the human the
robot interacts with.

Figure 6 shows an implementation of a human-aware
motion planning algorithm (Sisbot et al. 2007, 2010; Sisbot
and Alami 2012) which takes into account safety, visibility,
and comfort of the human. In addition, this algorithm is able
to compute a path for both the robot and the human, which
can solve a situation where a human action is needed or can
be used to balance effort between the two agents.

However, it is not sufficient. When a robot is equipped
with something that looks like a head, for example, people
tend to consider that it should act like a head because people
anthropomorphize. It means that we need to consider the
entire body of the robot and not only the base or the arms of
the robot for the movement even if it is not needed to achieve
the action (e.g., Gharbi et al. 2015; Khambhaita et al. 2016).
This could be linked to the concept of coordination smoother
which is “any kind of modulation of one’s movements that
reliably has the effect of simplifying coordination” (Vesper
et al. 2010, p. 1001).

Fig. 4 Two final positions of the
arm of the robot to get the object.
The one at right is better from an
interaction point of view since it
is easily understandable by the
human. However, from a
computational point of view (and
even from an efficiency if we just
consider the robot action that
needs to be performed) they are
equivalent. Consequently, we
need to take these features
explicitly into account when
planning robot motions. That is
what human-aware motion
planning aims to achieve.
Copyright laas/cnrs https://
homepages.laas.fr/aclodic
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Fig. 5 Not “human-aware”
positions of the robot. Several
criteria should be taken into
account, such as safety, comfort,
and visibility. This is for the
hand-over position but also for
the overall robot position itself.
Copyright laas/cnrs https://
homepages.laas.fr/aclodic

Fig. 6 An example of human-aware motion planning algorithm com-
bining three criteria: safety of the human, visibility of the robot by the
human, and comfort of the human. The three criteria can be weighed

according to their importance with a given person, at a particular
location or time of the task. Copyright laas/cnrs https://homepages.laas.
fr/aclodic
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Shared Task Representations

The last coordination process is shared task representations.
As emphasized by Knoblich and colleagues (Knoblich et al.
2011), shared task representations play an important role in
goal-directed coordination. Sharing representations can be
considered as putting in perspective all the processes already
described, e.g., knowing that the robot and the human track
the same block in the interaction scene through joint attention
and that the robot is currently moving this block in the
direction of the stack by the help of intentional action under-
standingmake sense in the context of the robot and the human
building a stack together in the framework of a joint action.

To be able to share task representations, we need to
have the same ones (or a way to understand them). We
developed a Human-Aware Task Planner (HATP) based on
Hierarchical Task Network (HTN) representation (Alami et
al. 2006; Montreuil et al. 2007; Alili et al. 2009; Clodic et
al. 2009; Lallement et al. 2014). The domain representation
is illustrated in Fig. 7, it is composed of a set of actions
(e.g., placeCube) and a set of tasks (e.g., buildStack) which
combine action(s) and task(s). One of the advantages of such
representation is that it is human readable. Here, placeCube

(Agent R, Cube C, Area A) means that for an Agent R, to
place the Cube C in the Area A, the precondition is that R has
in hand the Cube C and the effects of the action is that R has
no more the Cube C in hand but the object C is on the stack of
Area A. It is possible to add cost and duration to each action
if we want to weigh the influence of each of the actions.

On the other hand, BuildStack is done by adding a cube
(addCube) and then continue to build the stack (buildStack).
Then each task is also refined until we get an action. HATP
computes a plan both for the robot and the human (or hu-
mans) it interacts with as illustrated in Fig. 8. The work-
load could be balanced between the robot and the human;
moreover, the system enables to postpone the choice of the
actor at execution time (Devin et al. 2018). However, one
of the drawbacks of such representation is that it is not
expandable. Once the domain is written, you cannot modify
it. One idea could be to use reinforcement learning. However,
reinforcement learning is difficult to use “as is” in a human–
robot interaction case. The reinforcement learning system
needs to test any combination of actions to be able to learn the
best one which could lead to nonsense behavior of the robot.
This can be difficult to interpret for the human it interacts
with and it will be difficult for him to interact with the robot,

Fig. 7 HATP domain definition for the joint task buildStack and defi-
nition of the action placeCube: The action placeCube for an Agent R,
a Cube C in an Area A, could be defined as follows. The precondition
is that Agent R has the Cube C in hand before the action, the effect of
the action is that Agent R does not have the Cube C anymore and the

cube C is on the stack in Area A. Task buildStack combines addCube
and buildStack. Task addCube combines getCube and putCube. Task
getCube could be done either by picking the Cube or doing a handover.
Copyright laas/cnrs https://homepages.laas.fr/aclodic
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Fig. 8 HATP shared (human and robot) plan example for the stack of cubes example. Copyright laas/cnrs https://homepages.laas.fr/aclodic

and will lead to learning failure. To overcome this limitation,
we have proposed to mix the two approaches by using HATP
as a bootstrap for a reinforcement learning system (Renaudo
et al. 2015; Chatila et al. 2018).

With a planning system as HATP, we have a plan for
both the robot and the human it interacts with but this is
not enough. If we follow Knoblich and colleagues (Knoblich
et al. 2011) idea, shared task representations do not only
specify in advance what the respective tasks of each of the
coagents are, they also provide control structures that allow
agents to monitor and predict what their partners are doing,
thus enabling interpersonal coordination in real time. This
means that the robot not only need the plan, but also ways to
monitor this plan. Besides the world state (cf. Fig. 2 section
regarding situation assessment) and the plan, we developed a
monitoring system that enables the robot to infer plan status
and action status both from its point of view and from the
point of view of the human as illustrated Fig. 9 (Devin and
Alami 2016; Devin et al. 2017). With this information, the
robot is able to adapt its execution in real time. For example,
there may be a mismatch between action status on the robot
side and on the human side (e.g., the robot waiting for an
action from the human). Equipped with this monitoring, the
robot can detect the issue and warn. The issue can be at plan
status level, e.g., the robot considering that the plan is no
longer achievable while it detects that the human continues
to act.

Conclusion

We have presented four coordination processes needed to
realize a joint action. Taking these different processes into
account requires the implementation of dedicated software:
self-other distinction → mental state management; joint at-
tention → situation assessment; understanding of intentional
action → action recognition abilities as well as human-
aware action (motion) planning and execution; shared task
representations→ human-aware task planning and execution
as well as monitoring.

The execution of a joint action requires not only for the
robot to be able to achieve its part of the task but to achieve
it in a way that is understandable to the human it interacts
with and to take into account the reaction of the human if
any. Mixing execution and monitoring requires making some
choices at some point, e.g., if the camera is needed to do an
action, the robot cannot use it to monitor the human if it is
not in the same field of view. These choices are made by the
supervision systemwhich manages the overall task execution
from task planning to low-level action execution.

We talked a little bit about how the human was managing
these different coordination processes in a human–robot in-
teraction framework and about the fact that there was still
some uncertainty about how he was managing things. We
believe that it may be necessary in the long term to give the
human the means to better understand the robot at first.

https://homepages.laas.fr/aclodic
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Fig. 9 Monitoring the human side of the plan execution: besides the
world state, the robot computes the state of the goals that need to be
achieved, the status of the on-going plans as well of each action. It is

done not only from its point of view but also from the point of view of
the human. Copyright laas/cnrs https://homepages.laas.fr/aclodic

Finally, what has been presented in this chapter is partial
for at least two reasons. First, we have chosen to present
only work done in our lab but this work already covers the
execution of an entire task and in an interesting variety of
dimensions. Second, we make the choice to not mention the
way to handle communication or dialog, to handle data man-
agement or memory, to handle negotiation or commitments
management, to enable learning, to take into account social
aspects (incl. privacy) or even emotional ones, etc. However,
it gives a first intuition to understand what needs to be taken
into account to make a human–robot interaction successful
(even for a very simple task).
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