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Abstract. Several applications result in a gray level image partitioned
into different regions of interest. However, the human brain has diffi-
culty in recognizing many levels of gray. In some cases, this problem is
alleviated with the attribution of artificial colors to these regions, thus
configuring an application in the area of visualization and graphic pro-
cessing responsible for categorizing samples using colors. However, the
task of making a set of distinct colors for these regions stand out is
a problem of the NP-hard class, known as the pseudo-coloring problem
(PsCP). In this work, it is proposed to use the well-known meta-heuristic
Genetic Algorithm together with operators specialized in the local search
for solutions as well as self-adjusting operators responsible for guiding
the parameterization of the technique during the resolution of PsCPs.
The proposed methodology was evaluated in two different scenarios of
color assignment, having obtained the best results in comparison to the
techniques that configure the state of the art.

Keywords: Genetic Algorithm · Local search · Adaptive operator ·
Visualization · Pseudo-coloring problem

1 Introduction

Many problems today consist of extracting visual patterns from images that are
only available in gray levels. Thus, in this type of situation, a professional should
view an image that presents details in the same tones and infer complex classi-
fication hypotheses. However, studies show that human vision has difficulty in
differentiating monochrome tones [15]. This fact is related to the low capacity of
the brain to categorize signals of similar frequencies. Therefore, many researchers
have dedicated themselves to the development of specialized methodologies for
assigning artificial colors to images originally arranged in gray levels to facilitate
the extraction of visual patterns. For example, we can see advances in detecting
edges in sonar images [2], detecting tumors in the chest [11], detecting weapons
in baggage [10], visual enhancement of medical images [18], etc.
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In the aforementioned works, the central strategy used in the visual enhance-
ment of information consists of the generation of a set of colors, which must be
as distinct as possible, with a different coloring attributed to each region of the
evaluated image. This situation is known as the Pseudo-Colorization Problem
(PsCP), or construction of high contrast sets [7]. The main complication pre-
sented in PsCP is the similarity between colors used. That is, neighboring regions
in an image may have similar colors and, consequently, their visualization may
be compromised. To solve this need it is necessary to use some optimization
technique in order to distance the colors used as far as possible. However, this
optimization becomes unfeasible as the number of regions in the image increases,
since this problem is contained in the class of problems NP-hard. In this way,
many authors mitigate the problem with the use of meta-heuristics. Radlak and
Smolka [17] propose a methodology using a measure of color contrast optimized
with a Genetic Algorithm (GA). The method performs searches in the RGB
color domain, making neighboring regions colored with the most distinct colors
possible. However, simplified versions of GA can present several problems such
as inefficient search and premature convergence [22].

To get around these problems, Asadzadeh [3] proposes aLSGA, which consists
of a GA that uses specialized operators in local search to solve the combinatory
problem Job Shop Scheduling. In detail, the author presents a GA with a local
search operator who works in conjunction with the mutation operator and a
local search operator who performs massive exploitation in search space. The
methodology proved to be superior to traditional GA and similar evolutionary
methods in solving this problem, which also belongs to the NP-hard class. In
this work, we propose to improve aLSGA so that it is specialized in the PsCP
solution. Also, we propose the addition of adaptive rules [23], [13], [19] so that the
method developed makes automatic adjustments during its execution to perform
the search process without premature convergence or inefficient search.

The paper is organized into 6 sections. Specifically, in Sect. 2 we describe
the mathematical formulation of PsCP. In Sect. 3, the details of the proposed
algorithm and each of the operators that compose it are presented. In Sect. 4,
experiments, results, and comparison with other methods in the literature are
presented in two different test scenarios. Finally, in Sect. 5, conclusions and pos-
sible directions for future work are presented.

2 Formulation of Pseudo-Coloring Problem

In this work, we will adopt a model similar to that of Radlak and Smolka [17]
to approach PsCP. To this end, the objective is to allocate to a I image, already
segmented into K disjoint regions, a set of K colors so that these colors are
as distinct as possible in neighboring image regions. Mathematically, let I1, I2,
..., IK be the pre-segmented sub-regions of I, and the neighborhood matrix Δ
whose coordinates δi,j are equal to 1 if the region Ii is neighbor to Ij or δi,j are
equal to 0 if the region Ii is not neighbor to Ij or in the case of i = j. Thus, the
situation consists in determining a set of K colors C = {c1, c2, ..., cK} to coloring
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the regions of I such that the value of the function F of Eq. (1) is the largest
possible value, configuring this problem in a maximization problem.

F (C):= min {δi,j · d(ci, cj) | δi,j �= 0, i, j ∈ {1, 2, ...,K}} , (1)

in which d(·, ·) is a distance function in some color space.
Specifically, each color ci ∈ C is represented by a triple of integer values

that define the RGB coloration to be associated to the region Ii. Thus, each
color ci belongs to the sRGB set , which in this work is represented by the set
{0, 1, ..., 255}3, and, consequently, C ⊂ {0, 1, ..., 255}3·K . Furthermore, it is com-
mon to define the distance function d(·, ·) to be the Euclidean distance between
colors in the perceptually uniform color space CIELAB [8] with illuminant D50,
since this space is favorable for performing visual distinction of colors [14].

3 Local Search Adaptive Genetic Algorithm for PsCP

In this section, we describe in detail the proposed algorithm, which was developed
specifically to present good solutions for PsCP. In such a way that each operator
of the method has in its description the explanation of the idea that composes
the technique so that the reproducibility is done without difficulty. For the best
of our knowledge, there is no record in the specialized literature of any GA-
based technique that has a dedicated operator in carrying out a massive local
search around the same individual and that its functioning is adjusted with
an applied adaptative operator for the PsCP. Thus, this work has the main
purpose of introducing a technique with these characteristics, which is entitled
Local Search Adaptive Genetic Algorithm (LSAGA). Therefore, we present, in
summary, the contributions of this work:

1. An adaptation of the Asadzadeh method [3] to PsCP. In particular, a new
operator of massive local search for the best individual in the population is
proposed;

2. Addition of an adaptation operator, inspired by [13], which coordinates the
use of the basic operators of the algorithm in order to avoid premature con-
vergence and optimize the method’s exploitation and exploration capacity,

3. The advancement of experimental results in benchmarks that define the state-
of-the-art.

3.1 Chromosome Decoding

In [17], three chromosome populations evolve in parallel in a GA, one dedicated
to the R component, another to the G component and another to the B com-
ponent of each of the K segmented regions in I. In our work, we propose that a
single population of chromosomes is evolved during the execution of the method.
In detail, each chromosome in the proposed modeling is associated with a set of
colors for the regions in I. That is, each gene on a chromosome is formed by a
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color in sRGB which must be associated with a specific region of I. Mathemati-
cally, the genetic representation of a C chromosome adopted in this work follows
the definition of Eq. (2).

C = [(R1, G1, B1) , (R2, G2, B2) , ..., (RK , GK , BK)] , (2)

in which (Ri, Gi, Bi) ∈ sRGB is the color to be associated with the region Ii.
It is important to note that, in practice, the proposed encoding models the

chromosome as a vector of 3 · K coordinates with values between 0 and 255 and
not a subset of K colors in sRGB. As a consequence of this, the coordinates
of each chromosome carry an order that refers to the sub-regions of I. That is,
the first three coordinates of a chromosome represent the RGB color of the first
region of I, the subsequent three coordinates represent the RGB color of the
second region of I, and so on.

3.2 Fitness Function

The genetic representation proposed in the Sect. 3.1 makes it natural to
define the fitness function as a simple isomorphism with the F function
of the Eq. (1). Mathematically, we define the fitness of a chromosome C =
[(R1, G1, B1) , (R2, G2, B2) , ..., (RK , GK , BK)] ∈ sRGBK the function F̄ , pre-
sented in Eq. (3).

F̄ : sRGBK −→ R+

(c1, c2, ..., cK) �−→ F̄ (c1, c2, ..., cK) := F ({c1, c2, ..., cK})
. (3)

3.3 Selection Process

The process of selecting individuals in evolutionary methods is important to
ensure that individuals who are better adapted, or with better fitness value,
have a greater chance of exchanging genetic information, or reproducing, during
the crossover operator. Besides, the selection method is responsible for preserving
individuals with good fitness values during the generation of new populations of
the algorithm. In this paper, we make use of the roulette wheel method ensuring
that the best individual in the current population will reproduce [21] and will
also be transferred to the new population.

3.4 Crossover Operator

To ensure that the exchange of genetic information between two individuals is
defined by valid colors, it is important that the individuals generated in the
crossover process respect the limits of sRGB. For this, we propose an extension
of the well-known convex crossover [9], in which each of the colors represented
by the generated individuals is the result of the random convex combination of
the colors represented by their parents. Specifically, two intermediate offsprings
are generated, K̂id1 and K̂id2, which are the result of the convex combination
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between each of the parents’ colors, Parent1 and Parent2, and therefore belong
to R

3K . Then, these individuals are projected in the feasible space sRGBKusing
the function projsRGBK (·), which projects a given vector from R

3K to the clos-
est vector belonging to sRGBK . This projection determines the Kid1 and Kid2

offsprings generated in this operator.

3.5 Mutation Operator

The mutation operator proposed in this work is based on the local search proce-
dures presented for the first time in [3] and [16] to solve production scheduling
problems. Our technique is an improvement that consists of the combination of
these two methodologies. Therefore, the proposed mutation process consists of
the eventual application of one of the following mutation subroutines:

– Mut1: In this case, successive NMut1 applications of a mutation function, ran-
domly determined in a set of mutation functions, are carried out on a chro-
mosome so that the beneficial perturbation are maintained and the method
proceeds from them;

– Mut2: Unique and definitive application of a mutation function.

Thus, as soon as an individual is generated in the crossover operator, it
has a probability pmut of going through the mutation process. If selected, the
individual also has a probability pLS of going through a local search procedure,
represented by the subroutine Mut1, and a probability 1 − pLS of receiving an
only perturbation according to the subroutine Mut2.

In Mut1, a group of mutation functions in the form of fmut(·, ·) : sRGB ×
{1, 2, ...,K}2 −→ sRGB must be defined. For this, we propose the use of the three
most used mutation functions in solving combinatorial problems [3]: fswap(·, ·),
finvert(·, ·) and finsert(·, ·). In Fig. 1, an example of the perturbation caused by
these functions on the same individual is presented. As these functions only
perform permutations between the coordinates of a chromosome, it do not com-
promise the feasibility of the solutions generated.

Fig. 1. Schematic diagram of the functioning of three mutation functions on the same
chromosome C.

In Mut2, we propose to use only one mutation function. In this case, a sim-
ple Gaussian perturbation [4], fGauss (·), in which all genes on the chromosome
receives a slightly random increase or decrease.



354 R. C. Contreras et al.

3.6 Massive Search Operator

This type of operator intends to carry out a more elaborate and systematic
search around an individual from the population that presents a good adap-
tation, looking for neighbors of the same who are similar, but that has better
fitness value. In other words, massive local search operators assume that around
a good individual there may be better individuals more probability than in ran-
dom regions of space. In [3], this operator performs successive swaps between
the coordinates of the best individual in the population, maintaining beneficial
perturbations. In our work, we propose a new massive local search operator
specialized in looking for colors similar to the colors represented by the best
individual in a population, through successive Gaussian perturbations. Specifi-
cally, considering CBest = (c1, c2, ..., cK) as the best individual in the population,
the procedure consists of performing the following three steps for all colors ci:

– Step 1: The color ci receives a random addition, making it lighter;
– Step 2: The perturbation is maintained only if it is beneficial, increasing the

fitness value from CBest,
– Step 3: If ci was not modified in the previous step, then a random decrease

in ci is made, making it darker, which should only be maintained if it is
beneficial.

3.7 Adaptive Rules

Adaptation strategies to control the occurrence of crossover and mutation are
well-known methodologies in the specialized literature used to increase the
genetic variability of the population and, consequently, prevent the occurrence
of premature convergence. These techniques consist of changing the probability
of mutation and crossover to control the ability of the meta-heuristic to properly
perform exploitation and exploration, respectively. To this end, we propose to
adjust the probabilities of mutation and crossover according to the improvement
in the fitness value that individuals in a population have in relation to the fit-
ness of the previous population. To model this improvement, we propose to use a
measure based on how much the population of one generation of the method has
improved compared to the population of the previous generation. Specifically,
we propose that the improvement be measured by a weighted average between
the differences of the following measures of two consecutive generations of the
method: the average of the population’s fitness values (μ), the best fitness (Λ),
and the worst fitness (λ). Besides, this average should be multiplied by the stan-
dard deviation value of the current generation’s fitness values, since this measure
is a direct representation of the variability of the current population. Thus, the
mathematical representation of the measure that represents the fitness improve-
ment between two consecutive generations of the method is the value Improveit,
defined in Eq. (4).

Improveit := σit · ω1 |μit − μit−1| + ω2 |Λit − Λit−1| + ω3 |λit − λit−1|
ω1 + ω2 + ω3

, (4)
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in which, “it” is the current generation of the method.
In this work, we consider that the most important measure to be considered

is the difference between the best fitness values from one generation to the next.
For this reason, we have adopted: (ω1, ω2, ω3) := (1, 3, 1).

If the improvement is not contained between Improvemin and Improvemax,
then adaptive rules that control the probability of mutation and the probability
of crossover must be applied with the intention of controlling the exploitation
and exploration of the method, respectively. In detail, the adopted adaptive rules
are applied in two cases:

– Improveit < Improvemin: In this case, 10% is added to the mutation proba-
bility value and 10% is reduced to the crossover probability value.

– Improveit > Improvemax: In this case, 10% is reduced to the mutation prob-
ability value and 10% is added to the crossover probability value.

3.8 Proposed Algorithm

The proposed method consists of using all the operators described in this text
so that its structure consists of the standard scheme of a GA with additional
operators. That is, the method generates an initial population of colors, selects
individuals for reproduction, performs the crossover of these individuals, applies
the mutation operator to a percentage of the population, performs a massive
search in the region of the best individual, generates a new population with the
best individuals and assesses the need to change the initial parameters using
adaptive rules. Each of these steps is performed a fixed number of times.

4 Experiments and Results

To evaluate the proposed methodology, we defined two distinct test scenarios,
as done in [17]. In the first scenario, the proposed method is evaluated on a
set of images from the real world. In the second scenario, the proposed method
is evaluated at 24 abstract images in which its sub-regions are fully-connected.
Thus, the experiments must confirm that the proposed method obtains the best
performance applied to real and synthetic problems.

4.1 Setup and Implementation

To perform the tests, the authors of [17] provided us their GA code. Thus, in
all tests of this work, the technique compared is the technique of [17] and, for
this reason, our technique has the most similar configuration possible with the
configuration of the GA method. In detail, we use 30 individuals per population,
which are taken randomly at sRGBK ; we started the technique with mutation
probability pmut = 0.1 and crossover probability p× = 0.85; 50% of individuals
selected for mutation must go through the local search process (pLS = 0.5), with
NMut1 = K; improvement limits are Improvemin = 0.01 and Improvemax = 122.5;
and the method runs for 104 generations. The computational implementation
was done in the MATLAB environment on an i5-4460 PC with 8 GB of ram.
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4.2 First Scenario

In this first case study, the proposed technique was evaluated on three images,
originally arranged in gray levels, which are shown in the left column of Fig. 2.
In detail, the images presented that make up the evaluation benchmark are:
“brain” (Fig. 2a), with K = 6; “two brains” (Fig. 2e), with K = 31; and “mosaic”
(Fig. 2i), with K = 100. The technique used for comparison is the basic GA [17]
as it is the most recent technique and more similar to the proposed method.1

Besides, two versions of the material developed in this work are evaluated, one
disregarding the adaptive rules, the Local Search Genetic Algorithm (LSGA),
and another technique considering these rules, the LSAGA. The best coloring
obtained by each of these techniques after 50 executions of each one, is shown
in Fig. 2.

(a) Original image. (b) GA. (c) LSGA. (d) LSAGA.

(e) Original image. (f) GA. (g) LSGA. (h) LSAGA.

(i) Original image. (j) GA. (k) LSGA. (l) LSAGA.

Fig. 2. Pseudo-Colored Images.

In all the raws of the images in Fig. 2 it is possible to see an evolution in the
ease of detecting a greater number of regions if we observe the image in greyscale
for the colored version by LSAGA. For example, concerning the images of the
two brains (Figs. 2e–2h), we can see that basic GA presents some confusion in
the colored regions in shades of pink and red in the midwest region of the image.
Something similar occurs with the coloring obtained by LSGA in the central-east

1 The technique presented in [6] is not used for comparison, since it performs opti-
mization on pre-defined palettes and not on the sRGB space.
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region of Fig. 2g, in which we can see that very dark shade of blue is close to a
colored region in black. These complications are completely circumvented in the
color obtained by the proposed LSAGA method.

Numerical evaluations confirm the superior performance of the proposed
methodology. In detail, in Table 1, a set of statistical measures about the fitness
value of each technique is presented after 50 executions of each. In all evaluated
images, our LSAGA achieve the greatest best result in all cases, and also achiev-
ing the greatest worst fitness in two cases. Besides, on all occasions, our LSAGA
achieved the best fitness average. This confirms that the adaptation operator
tends to guide the LSGA to better solutions. In contrast, in the image “mosaic”,
which have a larger number of regions, we can see that the standard deviation
(STD) of the fitness values of GA is the smallest. This is precisely because the
solutions obtained by GA are restricted to a domain of lower fitness values since
the average values presented by this technique are around 25 units less than the
average values of the proposed techniques considering the image “mosaic”.

Table 1. Statistics about the fitness in the first test scenario. Bold numbers are the
best values in each situation.

Image Method Max Min Mean STD Average of time
(seconds)

Brain LSAGA 111.5897 103.424 109.5214 2.356342 44.4965625

LSGA 111.5897 93.81592 107.9427 3.930504 33.9584375

GA 110.4434 88.66374 100.2385 5.252312 66.953125

Two Brains LSAGA 105.3691 74.19344 87.03895 6.229127 158.64375

LSGA 103.2438 74.92773 85.71574 6.917277 144.0959375

GA 92.47527 62.60709 78.36654 6.915184 97.70625

Mosaic LSAGA 83.7881 61.2706 73.5591 6.286933 989.3925

LSGA 81.51334 56.41686 72.11558 5.776788 936.844375

GA 53.89128 43.38659 48.73923 2.475167 331.4825

With respect to time, in the case of the image “brain”, the low number of
regions (K = 6) causes the proposed methodology to present low complexity
and, therefore, achieve better results in a shorter computational time, since the
technique does not build a population for each RGB color component, as basic
GA does. However, in more complex images, our methodology still achieves
better results, but the computational time taken by these is longer than the time
taken by the basic GA. This fact is due to the exaggerated number of generations
for our techniques, as can be seen in the convergence analysis presented in Fig. 3,
in which the evolution of the best fitness of the techniques in each of the evaluated
images is represented. Note that our technique needs less than 20% of the total
number of generations to achieve a result that is higher or at least close to the
result obtained by GA with the 104 generations. Therefore, it is clear that the
proposed methodology takes less time than GA to obtain a satisfactory solution
in all images.
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(a) Brain image. (b) Two brains image. (c) Mosaic image.

Fig. 3. Convergence analysis.

4.3 Second Scenario

The second scenario consists of evaluating the proposed techniques in 24 syn-
thetic and abstract images, which are divided into fully-connected regions. In
this evaluation, we compared the proposed techniques (LSGA and LSAGA),
with basic GA [17] and a Greedy Algorithm [5]. Table 2 shows the maximum
dissimilarity between K colors (fitness value) presented by each technique after
50 executions.

Table 2. Max distance of colors in a fully-connected images. Green numbers are the
best values in raw and red numbers are the worst values in raw.

Regions (K) LSAGA LSGA GA [17] Greedy Algorithm [17]

2 249.2 249.2 249.2 233.85

3 166.11 166.11 166.11 164.64

4 130.64 129.64 130.21 129.64

5 111.59 111.59 111.43 108.81

6 102.58 102.58 102.48 93.78

7 94.7 93.75 93.04 86.95

8 86.15 86.13 84.78 80.03

9 81.49 80.43 78.68 74.45

10 77.8 74.9 74.65 71.92

11 69.43 68.1 66.71 65.77

12 65.61 64.65 64.84 61.86

13 64.26 62.5 63.13 57.79

14 60.89 59.1 58.8 57.32

15 57.16 56.7 53.52 55.27

16 55.82 51.53 51.01 53.4

17 53.56 52.55 49.67 51.32

18 50.56 50.47 48.17 49.42

19 50.5 48.24 45.08 47.9

20 49.26 45.83 44.67 47.57

21 45.68 44.78 42.66 46.54

22 46.36 44.87 41.63 44.23

23 43.62 43.28 41.3 44.74

24 43.86 42.22 39.77 43.61

25 43.09 41.82 38.55 41.98
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In this scenario, LSAGA presented the best performance in 22 of the 24
images considered, having tied only in the first two (K = 2 and K = 3). In
addition, LSGA had the worst performance on only one occasion (K = 4), and
on other occasions, the Greedy Algorithm had the worst performance on images
with the least number of regions (2 ≤ K ≤ 14) and GA had the worst perfor-
mance in the most complex images (15 ≤ K ≤ 24). This demonstrates that the
proposed methodology is robust both in images with a smaller number of regions
and in images with a larger number of regions, surpassing the performance of
GA and Greedy Algorithm in this case study.

5 Conclusion

In this work, we propose an adaptation of a GA with operators dedicated to
local search and the adaptation of parameters to solve the well-known PsCP.
All the necessary steps for the operation of the proposed method were presented
with the amount of detail sufficient to make the technique reproducible.

As in [17], we evaluated the proposed material in two test scenarios: one
consisting of images from the real world and the other with synthetic images
with fully-connected regions. In both cases, the proposed methods, LSGA and
LSAGA, exceeded the best techniques available in the specialized literature. In
particular, the LSAGA method presents the best results in all the case studies of
this work. This is due to the use of the adaptation rules in addition to the local
search procedures, which helps the method to avoid premature convergence and
to keep the genetic variability of the population high.

In future work, we intend to evaluate the addition of more elaborated diver-
sity control operators at LSGA, such as operators with predator-prey models
[12] or operators based on fuzzy rules [1]. Also, we intend to expand this work
using the methodology proposed in real problems present in the literature that
make direct use of artificial coloring such as weapon detection [20].
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