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Abstract. Model-based testing is a widely-used vital technique for test-
ing software running in a complex environment. In this paper, we pro-
pose extensions to existing model-based tools to apply this technique
to software that employs the MQ Telemetry Transport (MQTT) proto-
col for transmitting messages, commonly used in the Internet of Things
(IoT) environment. First, in the finite state machine used for generat-
ing test cases in a model-based testing framework, we introduce a type
of transition that is triggered when receiving MQTT messages. Second,
we extend the finite-state machine so that it produces test cases that
reflect the characteristics of IoT software – a large number of relatively
simple devices communicate with servers. Third, the concept of time is
introduced into the finite state machine. Naturally, this is necessary for
verifying the properties of software that runs for a long time. Moreover,
to facilitate such verification, both real-time and virtual time are intro-
duced. We implemented these extensions into a model-based testing tool,
Modbat, and conducted a small experiment to confirm the feasibility,
gaining positive results.

1 Introduction

The model-based testing techniques have now been widely accepted as an effi-
cient testing technique. This technique systematically generates test cases from
software models, and hence, high-quality test suites that cover corner cases are
obtained. The authors applied this technique to cloud software [1] to show that
it fits distributed software.

Along with cloud software, IoT software is also attracting attention in the
field of distributed systems. In typical IoT systems, small devices, such as sensors
participate. The number of devices is usually large, individual devices are not
very reliable, and some are prone to failure. The network connecting these devices
and the servers is often unreliable.

The aim of this research is to generate test cases for software that runs in such
an environment, such as controlling devices, by sending messages to the devices,
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receiving messages from the devices, analysing the messages, them or managing
the device status. More specifically, we concentrate on software systems that use
the MQ Telemetry Transport (MQTT) [2] protocol as our system under test
(SUT).

The input to such software is dependent on the status of the environment
– devices, network, or other factors that affect the input, such as temperature
or time of day. Devices for IoT are usually connected to the Internet wirelessly.
However, the network communication may become unstable if the devices are
far from the router or base station, or if the devices are mobile. In addition, if
the size of the battery or antenna of the devices is small, the risk of malfunction
due to battery exhaustion or communication failure increases. Owing to the
instability of communication and device operation, a number of devices move
asynchronously in IoT systems. These features make it challenging to conduct
an integrated test of the entire system.

Model-based testing is potentially a good choice to address the testing of
such systems. By modelling these factors with transition systems, we can expect
various test cases to be generated. This research proposes extensions for model-
based testing to support the testing of IoT systems. Our method consists of three
approaches.

First, we support MQTT message communication. We propose a method to
describe the subscription at the level of the model and enable setting the arrival
of a message as a guard condition.

Second, to model the behaviour of a number of devices, we make it possi-
ble to share a model (a finite state machine) for many devices. The number of
devices operating in IoT systems tends to be large, and the simulation of the
individual behaviour would consume enormous computational resources. There-
fore, we propose a method to handle them collectively using a transition system.
In our approach, the condition of individual devices is treated as a distribution
of states in an integrated model. Through this extension, model-based testing
scales to large systems. This extension makes model-based testing scalable to an
increase in the number of devices.

Third, we introduce the notion of the timeout, which enables us to describe
systems that are affected by time. A timeout is a kind of guard condition that
is enabled by the passage of time. Using this extension, the model can describe
timing properties, such as waiting for a particular input for a limited time. As
an implementation of this extension, it is possible to pass real-time given by
a transition system. However, this method causes time to wait without doing
anything during the test, which makes the test time-consuming. Thus, we pro-
pose an implementation that manages virtual time and skips the time passage.
We also propose a function to wait real-time for some part of the test because
running the whole test of actual systems in virtual time can cause a problem.

We implemented these extensions in model-based testing tool Modbat [3]. In
addition, we created test models using these extensions and conducted experi-
ments to examine our contribution to the speedup of test execution time.

The remainder of this paper is organized as follows. Section 2 provides
the background, Sect. 3 describes our proposed extensions to Modbat, Sect. 5
presents the results of experiments, and Sect. 6 concludes.
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A previous version [4] of this paper was presented, without peer review, at a
Japanese domestic workshop.

2 Background

2.1 Modbat

Our study uses the model-based testing tool Modbat [3,5]. This tool uses a model
called the extended finite state machine (EFSM) [6] described in a domain-
specific language (DSL) based on Scala [7]. EFSM offers the advantage that
transition functions are integrated with the runtime environment, and complex
data structures or callback functions can be embedded in the model directly [8].

The application of Modbat to real systems includes testing of libraries with
non-blocking I/O and exceptions. A previous study [9] found a bug in the Java
network library java.nio, and also a race condition in rupy, a high-performance
lightweight HTTP server [10]. Another study [1] detected multiple defects in the
Apache ZooKeeper, which is a service for maintaining configuration information,
naming, and providing distributed synchronization and group services [11].

2.2 MQTT

MQTT is a widely used transport protocol designed for IoT systems. It is sup-
ported as one of the principal protocols by many IoT development platforms
such as Amazon AWS IoT [12], Microsoft Azure IoT Hub [13], IBM IoT Plat-
form [14], and many more. MQTT (the latest version as of this manuscript is
v5.0) is an official OASIS standard [15].

Compared to traditionally used protocols such as HTML, MQTT is
lightweight and thus suitable for devices typically used in the IoT environments
because the battery consumption is lower.

An MQTT system consists of a server called a broker and clients. It employs
a publish/subscribe model. As an example, let us consider a thermometer as an
MQTT client. When it reports the current temperature, instead of sending the
data to each client who is interested in it, the thermometer “publishes” the data
in a “topic name”, such as temperature/japan/tokyo. The actual data goes
to the broker. Other clients who are interested in the data declare that they
“subscribe” to the topic beforehand. Thus, the broker can pass the data to the
subscribers.

2.3 Related Work

Model-based testing uses abstract models to generate test cases automatically.
Typically, concrete test cases are generated from a test model created by a user.
There are many model-based testing tools such as Modbat, Spec Explorer [16]
and MaTeLo [17].

In this paper, we used the term “model-based testing” in the sense where
test cases are generated from finite state machines. Although many model-based
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testing tools, such as Modbat, MISTA [18] and MoMuT::UML [19] fall into
this category, any technique that is based on models or that involves models are
generally called model-based testing. For example, models used in FMBT [20] are
written in a language that describes pre-post conditions. Tcases [21] generates
test cases from XML documents that describe functions and input value ranges.

Testing MQTT software is a widely researched topic. Many are interested in
verifying MQTT brokers and libraries for MQTT clients. In [22], a performance
analysis of MQTT is carried out using statistical model checker UPPAAL-SMC.

In [23], a model-based testing technique is applied to MQTT software. The
main target is server software, namely, MQTT brokers. A model was obtained
through the active automata learning method, then it was used to generate
test cases, and they are applied to several MQTT brokers, and found 18 bugs
in total. This research is different from ours as our target is not servers but
clients of MQTT, but it suggests that model-based testing is suitable for testing
MQTT software.

We have previously attempted [24] to incorporate the concept of time into
Modbat. In that research, we introduced the modifier stay for transitions, mean-
ing that the next transition is disabled for a specified amount of time, after the
modified transition. It worked in many cases, but was not compatible with our
newly introduced subscription-triggered transition. Therefore, we introduced a
new modifier timeout with different semantics in this paper.

3 Extensions to Modbat

In this section, we describe our main contributions to this study. We have
extended Modbat so that:

– sending and receiving MQTT messages can be written in models.
– the following two important concepts can be written in models:

• Time
• Number of devices

In the following subsections, we discuss each of these features.

3.1 Subscription-Triggered Transition

Because our target is software that uses MQTT, our model should be able to
handle MQTT messages. Sending messages can be written in methods attached
to transitions in the original Modbat system, without any further help. Receiving
messages is what we need to handle.

We introduce into the Modbat model a type of transition that is triggered
when an MQTT message arrives. In other words, an MQTT message can be
regarded as a precondition for invoking this type of transition. An MQTT topic
should be specified for a transition. Thus, the transition “subscribes” the topic.
Let s be a state of an EFSM and be the source of a transition of this type.
If the current state of an EFSM is s and a message of the topic arrives, then
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class Class1(...) extends Model { ...

"A" -> "B" := { ...

publish("topic1", "msg 1") ...

}

"B" -> "B" := { ...

publish("topic4", "msg 2"); ...

} subscribe "topic3"

"B" -> "A" := { ...

} subscribe "topic2"

... }

Fig. 1. Subscription-triggerd transition

the transition is invoked, and the message is available in the method attached
to the transition. On the other hand, if s is not the current state, the message
is ignored (for this EFSM). This behaviour is compatible with the fact that
an MQTT client can receive messages only when it subscribes the topic of the
messages.

Figure 1 shows a code snippet and a diagram for a model called con-
troller. It has two states A and B. The transition from B to A has a guard
subscribe"topic2", meaning that it is only fired when an MQTT message
with topic topic2 is received. The transition from A to B calls publish in its
attached method, which sends a message to a running MQTT broker.

3.2 State Distribution

In frameworks of model-based testing based on extended finite system machines
(EFSM), test cases correspond to paths in the EFSM. To generate test cases on
the fly, Modbat keeps the “current state” and moves it along enabled transitions.
We can have two or more EFSMs for a system when we have several objects to
be considered to generate test cases. In such cases, each EFSM has its current
state.

In our application of Modbat for testing MQTT-based software, it is natural
to model the behaviour of an IoT device (MQTT clients) with an EFSM. As
mentioned above, it is already possible for the original Modbat to have an EFSM
for each MQTT client. However, there are several issues to be considered.

First, in IoT environments, the number of MQTT clients may increase. They
share an EFSM, but the current states are different. We may be interested in the
situation as a whole rather than the state of individual devices. For example, if
the EFSM has two states representing normal and failure, we may be interested
in the number of devices that are in the failure state. The current Modbat EFSM
is not suitable as it assumes independent EFSMs.

Second, in the current implementation of Modbat, a dedicated thread is
allocated to each EFSM. Therefore, simulating many devices will result in poor
performance.
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"A" -> "X" := { ... } subscribe(topic1)

"A" -> "Y" := { ... } subscribe(topic2)

"A" -> "Z" := { ... } timeout(10*Const.min)

"B" -> "X" := { ... } timeout(2*Const.hour, 8*Const.hour)

"C" -> "X" := { ... } realTimeout(30*Const.sec)

Fig. 2. Transitions with timeout

To address these issues, we have introduced a new type of EFSM. Concep-
tually, it is a collection of EFSMs that share the same states, transitions and
actions. Therefore, it has many current states, or in other words, each state
keeps the number of “instances” that stay on the state. The number of instances
in each state can be retrieved and used to describe specifications; such as “the
ratio of broken devices is less than 3%”. Moreover, in order to handle the time-
out behaviour (see Sect. 3.3 for details), Modbat tracks the number of instances
that enter the state in each time slice.

3.3 Timeout

Many systems behave depending on time. Some sensor systems may send their
reports periodically, for example, once in an hour. Some control systems may
wait for a message from devices that it monitors for a certain period of time,
and if no message comes in, it may judge that the device is out of order.

To describe these types of system behaviour, we introduced the concept of
timeout into the Modbat model.

Formally, timeout is a property of transitions, with the amount of time. For
example, in Fig. 2, a ten-minute timeou t is attached to the transition from A
to Z. The transition is fired 10 min after an instance enters A if no message with
topic topic1 or topic2 is arrived during the period. Another type of timeout has
two parameters, such as the one from B to X. In this case, the expiration time is
chosen randomly between 2 h and 8 h.

One state can have at most one transition with timeout attached, so there
are no races between transitions.

3.4 Virtual and Real Timeout

Waiting for all timeouts in real time would not be realistic. We cannot wait for
four hours when we conduct a system test. An obvious workaround would be to
reduce time by a fixed percentage, but it is not ideal for the following reasons.

First, even with a reduced rate, we still suffer from unnecessary waiting
time, which will not become zero. Second, some timeouts absolutely require
the specified amount of time. For example, we have MQTT message exchanges
between our running models, and it takes some time for a message to be delivered.
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Fig. 3. Changes in the main loop of Modbat

Therefore, if we try to decide whether a device is in failure state by sending a
message and receiving a response, we need to wait for a specific time, and it
cannot be reduced for speed-up.

Therefore, we have introduced two different types of timeout: real and virtual.
A real timeout expires only when the specified amount of time elapses physically.
On the other hand, when a virtual timeout is stored, we record the expiration
time for the timeout. When the system enters a status where no other transition
can be (immediately) invoked, then all the pending virtual timeouts are checked,
and the current time is “skipped” to the earliest expiration time.

We also have EFSMs with more than one instance, as described in Sect. 3.2.
Instances that share the same current state may have different expiration times.
Therefore, simply counting the number of instances in a state is not sufficient.
However, if we kept expiration time for each instance independently, the advan-
tage of collecting instances would be lost. To address this issue, we internally
define a value timeSlice and split time with this interval. Instances that fall
into the same interval are regarded as a group, and a representative timeout
expiration time is recorded for the group.

4 Implementation

The introduction of three extensions had a major impact on the main loop of
Modbat. The original main loop, shown in the left-hand side of Fig. 3, is rather
simple: it chooses one of the enabled transitions randomly and executes it, while
there are such transitions.

We modified the main loop is as follows: It first chooses a state with enabled
transitions (without timeout or subscription), if there is some. If two or more
enabled transitions exist, it divides instances staying on the state according to
the weight (probability) of the transitions, and execute them. Once, it becomes a
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situation where there are no enabled transitions, Modbat checks whether sched-
uled tasks (transitions with timeout whose source state has waiting instances)
exist. If all scheduled tasks are in virtual time, Modbat advances the virtual time
to the earliest expiration time. If there is one with a real timeout, Modbat sleeps
until the earliest timeout expiration time (including virtual time). If a message
arrives while sleeping, Modbat wakes up and fires transition that subscribes the
topic of the message. The right-hand side of Fig. 3 illustrates the modified main
loop.

A task is scheduled when a model instance enters a state, which does not have
enabled transitions but has a transition with a timeout. If the timeout has only
one expiration time, it is simply recorded with the number of model instances.
If the timeout has two parameters, the model instances are evenly divided into
groups according to the value of timeSlice, which is configurable by the user, and
the expiration time for each group is recorded.

The virtual timeout is implemented using an Akka mock scheduler [25]. This
scheduler provides basic features for handling virtual time, such as skipping a
fixed amount of time. We implemented the necessary features for Modbat, such
as advancing the virtual time spontaneously, on top of this scheduler.

5 Evaluation

To demonstrate the effectiveness of our methods, we conducted a small experi-
ment. First, we designed a small MQTT application and built the corresponding
Modbat models to confirm that the features introduced in this paper are suffi-
cient to describe the testing environment. Second, we ran the model to see the
following:

– whether the virtual timeout works as expected so that the runtime is shorter
than the case of real time,

– whether the multi-instance EFSM works as expected so that it reduces the
runtime compared to many single-instance EFSMs.

These experiments test a system of smart wattmeters. This system consists
of meters and a controller communicating through MQTT. The meters measure
electric power in all rooms in a house. The controller receives the data, sums
them, and reports the total electrical power to the user. There is a probability
that some meters may be broken. When the controller detects some broken
meters, it sends an alarm to the operator of the system.

In these experiments, we tested the behaviour of the controller. We verified
that the controller reports the correct value and that it provides a warning if
and only if some meters are broken.

5.1 Models

A model of the smart house consists of five types of model instances, as shown
in Figs. 1, 2 and 4. Meter has multiple instances, while the other four models
have only one instance each.
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Fig. 4. Models used in the experiments

Top-Level. The instance of this model is created at the start of the simulation.
It launches instances of other models in the transition from state init to state
run. After waiting for some virtual time in run, it sends an MQTT message that
notifies the end of the test session to a topic called end. All the states in other
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models have a transition subscribing to this topic, which leads an instance to
the final state of the model. (Related transitions and states are omitted in the
figures.)

Meter. A meter is installed in each room. At first, all meters are running cor-
rectly. Each meter measures the electric power in the room, and reports it to the
controller every twenty minutes, using topic m-report. After the transition, each
meter returns back to the run state with probability 90% and goes to the broken
state with probability 10%, which means the meter is broken. Meter instances in
the broken state report watt to the controller repeatedly like correctly-running
meters, but they report an incorrect value. If a meter is broken, it will not be
repaired during the simulation.

Controller. The controller receives messages from meters, sum them up, and
reports the result to the user every hour. First, the controller sends a message to
the timer using topic t-start. Then, it waits until the timer notifies the passage
of one hour using a message with topic t-ring. While waiting, the controller
receives values from the meters through messages with topic m-report and sums
them up. In addition, if the received value is much higher or much lower than
the average of previously received values, the controller assumes that the meter
that sent the irregular value is broken, and publishes an alarm message to the
user using topic c-alarm. After a message from the timer arrives, the controller
reports the summed value to the user.

Timer. The timer starts when it receives a message with topic t-start. After
waiting for one hour by virtual time, it publishes a message that tells the passage
of one hour with topic t-ring. Considering the time of MQTT communications,
the timer waits for a brief duration of real-time before and after publishing the
message.

User. This is a model of a tester of the controller. The user subscribes topics
m-report and c-alarm. It asserts that the value reported to m-report is correct
and that the controller publishes a message to c-alarm if and only if some meters
are broken.

5.2 Experiments and Results

We conducted two experiments to demonstrate the effectiveness of the methods
described in the previous chapter. The experiments show the speedup of the test
execution time by introducing virtual time and the shared model. We performed
experiments on Ubuntu 16.04 on Oracle Virtual Box. The host OS is Windows 10
Pro, running on a machine with Intel Core i7-6600U CPU and 8GB memory.

To evaluate the effect of virtual time on test time, we run the tests of the
models described above with two variants. One uses keyword timeout for the
timeout of the transition from state run to end in model Top-Level (from now
on referred to as transition end-trans), which means the test is executed in
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virtual time. The other uses keyword realTimeout for transition end-trans,
which means the test is executed in real time. We have converted the value of
timeout of end-trans and have run tests for each value.

The results are shown on the left-hand side of Table 1. Execution time is the
average of five runs. The execution time of the code with timeout is shortened,
while that of the code with realTimeout is approximately the same as the
timeout of end-trans.

Table 1. The results of experiments

Amount Execution time (sec)

Virtual Real

1 min 3.9 62.2

10 min 3.5 602.2

# of devices Execution time (sec)

Indiv. Shared

10 3.1 3.3

100 20.0 13.3

200 37.0 18.4

1000 137.4 36.4

We also conducted an experiment to evaluate the effect of introducing models
with two or more instances. In this experiment, we run the tests of the same
models as the first experiment with two types of source code. The two codes are
different in how to handle the model of devices. One operates the instances of
the meters individually, and the other operates a distribution of the meters.

The results are shown on the right-hand side of Table 1. As the number of
devices increases, the execution time is faster when managing by distribution in
comparison to running instances individually.

6 Conclusion

We proposed extensions for model-based testing for IoT systems and imple-
mented them in a model-based testing tool Modbat. The first extension makes
it possible for transitions to be fired when an MQTT message is received. By the
second extension, we can have models that reflect the status of many instances.
Two types of timeout features, real and virtual, are introduced as the third
extension. We have built a small experimental test environment that uses the
extensions and confirms that it works as expected functionally and shows per-
formance improvements compared to the original version.

Future tasks include providing a virtual time library for SUTs. Currently, if
an SUT issues the sleep method, then it naturally sleeps real-time. Instead, if
the SUT uses the library, virtual time is applied when running under Modbat
while keeping the original behaviour (sleep) on production.

Another direction is implementing dedicating MQTT broker for Modbat.
This will allow the user, when testing the MQTT broker is out of the scope, to
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remove real-time timeout for communication, and enable Modbat to run com-
pletely in virtual time. In addition, this extension will make it easier to simulate
an unstable network by controlling packet loss or delay of delivery in Modbat.
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