
Systematic Generation of Diverse
Benchmarks for DNN Verification

Dong Xu(B) , David Shriver , Matthew B. Dwyer ,
and Sebastian Elbaum

University of Virginia,
Charlottesville, VA 22904, USA
{dx3yy,dls2fc,matthewbdwyer,

selbaum}@virginia.edu

Abstract. The field of verification has advanced due to the interplay of
theoretical development and empirical evaluation. Benchmarks play an
important role in this by supporting the assessment of the state-of-the-
art and comparison of alternative verification approaches. Recent years
have witnessed significant developments in the verification of deep neural
networks, but diverse benchmarks representing the range of verification
problems in this domain do not yet exist. This paper describes a neural
network verification benchmark generator, GDVB, that systematically
varies aspects of problems in the benchmark that influence verifier perfor-
mance. Through a series of studies, we illustrate how GDVB can assist in
advancing the sub-field of neural network verification by more efficiently
providing richer and less biased sets of verification problems.

Keywords: Neural network · Verification · Benchmark · Covering
array

1 Motivation

Advances in machine learning have enabled training of deep neural networks
(DNN) that are capable of realizing complex functions that rival or exceed the
performance of human-built software, e.g., [27,32,41]. This success has led sys-
tem developers to deploy, or consider deployment of, DNN models in critical
systems, e.g., [12,39,53]. Consequently, the verification of correctness proper-
ties of DNNs has become a key challenge to assuring autonomous systems, and
the research community has risen to this challenge. In the three years since
Katz et al. [30] presented ReLuplex at CAV 2017, researchers have published
more than 20 DNN verification approaches supporting different properties and
DNN architectures and spanning a range of algorithmic approaches [9,13,14,18–
20,22,29–31,36,45,46,50,56,59–63]. While DNN verification has its own unique
challenges, it is also a recent example in the long-history of domain-specific ver-
ification research, e.g., for hardware [25], software [17], real-time systems [58],
and cryptographic protocols [40], and can benefit from the experience of these
communities.
c© The Author(s) 2020
S. K. Lahiri and C. Wang (Eds.): CAV 2020, LNCS 12224, pp. 97–121, 2020.
https://doi.org/10.1007/978-3-030-53288-8_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-53288-8_5&domain=pdf
http://orcid.org/0000-0001-5643-7197
http://orcid.org/0000-0003-0208-6517
http://orcid.org/0000-0002-1937-1544
http://orcid.org/0000-0001-9592-1352
https://doi.org/10.1007/978-3-030-53288-8_5

98 D. Xu et al.

A key lesson learned by the community is that despite the fact that veri-
fication emphasizes the development of theoretical and algorithmic techniques,
advances in verification research often arise from understanding how different
algorithmic and implementation approaches compare – a process that requires
empirical study. Empirical study in verification is common, but unlike many
other fields of computer science, for decades it has organized verification tool
competitions that serve as a regular and long-running form of community-driven
empirical study. Researchers tracked the progress of SMT solvers over a span
of 6 years at these community-driven empirical studies and found that repeat-
edly “a certain solver presents a key idea that improves the performance in a
particular division, and this idea is implemented by most solvers” in the follow-
ing year [7]. Enabling the type of comparative studies that drive such advances
requires verification benchmarks – a fact that the verification community has
recognized for at least 25 years, e.g., [8,10,33,43,55].

Benchmarking in verification has evolved in response to the demands of
empirical study within the field, e.g., [1–4], to support two objectives: (A1)
assessment of the state-of-the-art and (A2) comparison of alternative approaches.
In support of these, the verification community has favored benchmarks that:
(R1) are diverse in structure and difficulty; (R2) represent verifier use
cases; and (R3) evolve as verification technology advances.

The verification benchmarking and competition literature suggests that these
requirements are widely accepted. For example, the TPTP benchmark’s stated
goals include R1 (“contains problems varying in difficulty”), R2 (“spans a diver-
sity of subject matters”), and R3 (“is up-to-date”, “provides a mechanism for
adding new problems”) [54]. Moreover, these requirements are promoted, either
explicitly or implicitly, by many of the regularly held verification competitions.
To meet R1 and R2 SAT competitions construct benchmarks that include prob-
lems from six different domains: software, hardware, A.I, obstruction, combina-
torial challenges, and theorem proving [4]. SAT competitions since 2017 have
instituted a bring your own benchmarks policy that requires verifier developers
to submit 20 new benchmarks with at least 10 that are “not too easy” or “too
hard” – which helps to address R1 and R3. SMT competitions have used selec-
tion criteria that are biased towards these same requirements, e.g., “balancing
the difficulty of benchmarks” [7].

Verification competitions have undoubtedly been a positive force for develop-
ing high-quality verification benchmarks, but prior to their existence researchers
were forced to develop their own “benchmarks” – a collection of verification
problems on which they evaluate their techniques and perhaps others. This is
the situation that the subfield of DNN verification finds itself in.

The risk in letting technique developers choose their own benchmark is
selection bias – that the selected problems do not represent a broad or impor-
tant population of problems. For example, if an SMT benchmark were selected
based on the constraints generated by symbolic execution tools they would be
structurally biased, consisting only of conjunctive formula. As another example,

Systematic Generation of Diverse Benchmarks for DNN Verification 99

if a SAT benchmark were generated randomly it is likely that a large portion of
the benchmark would not represent realistic use cases.

Good benchmarks are expensive to develop, e.g., [11], but they are an invalu-
able resource for advancing a research community. When well designed they seek
to balance requirements R1-R3 and to support a fair and accurate assessment of
the state-of-the-art and comparison between alternative algorithmic and imple-
mentation approaches. This paper reports on GDVB, the first framework for
systematic Generation of DNN V erification problem Benchmarks, that meets
the de-facto requirements for verification benchmarks, R1–R3, in order to sup-
port objectives A1–A2 for the rapidly evolving field of DNN verification.

GDVB takes a generative approach to benchmark development – an app-
roach that has risen in popularity in recent years [5,35,64]. Unlike, other gener-
ative benchmark approaches GDVB seeks to systematically cover variations in
verification problems that are known to influence verifier performance. Towards
that end, GDVB is parameterized by: (1) a set of factors known to influence the
performance of DNN verifiers; (2) a coverage goal that determines the combina-
tion of factors that should be reflected in the benchmark; and (3) a seed verifi-
cation problem from which a set of variant problems are generated. From these
parameters, it computes a constrained mixed-level covering array [15] defining a
set of factor-value tuples. Each tuple defines how the seed verification problem
can be transformed to give rise to a verification problem capable of exposing
performance variation in a DNN verifier.

As a benchmark generator GDVB naturally meets requirement R3. By start-
ing from a seed network representing a DNN verification use case, GDVB is guar-
anteed to meet R2. As we discuss in Sect. 4, the use of factors allows GDVB
to produce systematically diverse verification problems both in terms of struc-
ture and difficulty in order to meet requirement R1. Moreover, GDVB offers
the potential to reduce selection bias in performing evaluations of DNN veri-
fiers, since it assures coverage of a space of performance related factors. Finally,
GDVB is designed to support the rapidly evolving field of DNN verifiers by
allowing the generation of benchmarks, e.g., from new seeds as verifiers improve,
as new performance factors are identified, and to target challenge problems in
different DNN domains, e.g., regression models for autonomous UAV naviga-
tion [39,53].

The contributions of this paper are: identification of the need for unbiased
and diverse benchmarks for DNN verification; a study of factors that affect the
performance of DNN verification tools (Sect. 3); the specification of a verification
benchmark as the solution to a constrained mixed-level covering array problem
(Sect. 4); the GDVB algorithm for computing a benchmark from a verifica-
tion problem by transforming the neural network and correctness specification
(Sect. 4.3); the evaluation of GDVB on multiple state-of-the-art DNN verifiers
using different seed verification problems that demonstrates how GDVB results
can support the evaluation of DNN verifiers (Sect. 5); and the GDVB tool.

100 D. Xu et al.

2 Background and Related Wok

Deep Neural Networks (DNN). A DNN is trained to accurately approxi-
mate a target function, f : Rd → R

r. A network, n : Rd → R
r, is comprised of

a graph of L hidden layers, l1, . . . , lL, along with an input layer, lin = l0, and
output layer, lout = lL+1. Each hidden layer defines an independent function,
where their composition when applied to the output of lin generates values in
lout that define the network output.

Hidden layers are, generally, comprised of a set of neurons that accumulate
a weighted sum of their inputs from the prior layer and then apply an activation
function to determine how to non-linearly scale that sum to compute the output
from the layer. A variety of different activation functions have been explored in
the literature, including: rectified linear units (ReLU), sigmoid, and tanh.

The design of a DNN involves choosing an appropriate set of layer types, e.g.,
convolutional, maxpooling, fully-connected, the instantiation of those layers, e.g.,
the number of neurons, the specific activation function, and the definition of how
layers are interconnected. Together these comprise the DNN architecture [23].

Networks are trained using a variety of algorithmic strategies with the goal
of minimizing the loss in the approximation of the learned function relative to
some proxy for f , e.g., labeled training data. The training process is stochastic,
e.g., initial weight values are randomized, which leads to variation in n even
when architecture, training algorithm, and training data are fixed.

Section 3 reveals how DNN architecture can influence verification perfor-
mance.

DNN Specifications. Given a network n : Rd → R
r, a property, φ, defines a

set of constraints over the inputs, φx , and an associated set of constraints over
the outputs, φy. Verification of n seeks to prove: ∀x ∈ R

d : φx(x) ⇒ φy(N(x))
where N(x) is running the neural network n with input x.

Specifying behavioral properties of DNNs is challenging and is an active
area of research [24]. In [30], a set of 188 purely conjunctive properties, of the
form described above, were defined for a simple neural network, with 7 inputs,
encoding of a rule set for autonomous aircraft collision avoidance (ACAS). In
[44,59,60], properties expressing output range invariants were used, for example,
that the steering angle never exceeded an absolute value of 30◦. Much of the work
on DNN verification has focused on local robustness properties [50–52], which
state that for a selected target input the output of the network is invariant for
other inputs within a specified distance of the target.

Section 3 reveals how the specification can influence verification performance.

DNN Verification Methods and Tools. There are a variety of different
algorithmic and implementation approaches taken to verifying the validity of a
DNN with respect to a stated correctness property.

Systematic Generation of Diverse Benchmarks for DNN Verification 101

Definition 1. A DNN verification problem, 〈n, φ〉, is comprised of a DNN, n,
and a property specification, φ. The outcome of a verification problem for a DNN
verifier indicates whether n |= φ is valid, invalid, or unknown – indicating that
the problem cannot be determined to be either valid or invalid.

A recent DNN verification survey [37], classifies approaches as being based on
reachability, optimization, and search algorithms – or their combination. Reach-
ability methods begin with a symbolic encoding of an input set and compute,
for each layer, a symbolic encoding of the output set. They vary in the symbolic
encodings used, e.g., intervals, polyhedra, and in the degree of overapproximation
they introduce [22,46,50,63]. Optimization methods formulate verification as an
optimization problem whose solution implies the validity of φ [9,19,38,45,56,62].
Search methods work in combination with reachability and optimization, by
decomposing the input space to formulate verification sub-problems that are
discharged by the above techniques [13,14,18,20,29,30,59–61].

In this paper, we use implementations of the following verifiers: ERAN [50],
BaB [14], Neurify [59], Planet [20], and ReLuplex [30].

Verification Benchmarking. We covered the broad landscape of work on
benchmark development for verification in (Sect. 1). There have been efforts to
develop benchmarks within a variety of different verification problem domains,
e.g. hardware [25], software [17], real-time systems [58], cryptographic proto-
cols [40], and for different encodings of verification problems, e.g., model check-
ing [33], SAT [4], SMT [8], and theorem proving [55].

In recent work on DNN verification, researchers have shared collections of
examples that, in a sense, serve as informal benchmarks and permit comparative
evaluation, e.g. [30,50]. While valuable, these examples were not intended to, and
do not, comprise a benchmark meeting requirements R1–R3. To our knowledge,
GDVB is the first approach to achieving those goals for DNN verification.

For several years, the SAT community has been exploring scalable bench-
marks, e.g., [21,35]. For instance, to explore conflict-driven clause learning
(CDCL) SAT solver performance, Elffers et al. [21] used crafted parameterized
benchmarks that can be scaled with respect to different factors that may influ-
ence performance. We conduct a similar domain analysis of factors, but focus
on the landscape of DNN verification algorithms developed to date. Like this
line of work, GDVB advocates a scalable approach to benchmark generation. As
described in Sect. 4, GDVB starts with seed problems that are challenging for
current verifiers and “scales them down”, but it can also be applied to start with
easier seed problems and “scale them up” as more typical of the prior work on
scalable benchmarking.

Verification Benchmark Ranking. The verification community has explored
a variety of ranking schemes for assessing the cost-effectiveness of techniques. A
key challenge is that verification techniques vary not only in their cost, e.g.,
time to produce a verification result, but also in their accuracy, e.g., whether

102 D. Xu et al.

they produce an unknown result. For example, SAT competitions have employed
a range of scoring models, e.g., purse-based ranking, solution-count ranking
(SCR), careful ranking, and penalized average runtime (PAR2) [6]. SCR, which
counts the number of solved problem instances and uses verification time as a
tie breaker [57], is the scoring system of choice [1,4]. In Sect. 5, we report DNN
verifier performance using both SCR and PAR2 scoring systems.

Covering Arrays. In Sect. 3 we explore factors that influence DNN verifier
performance. Studying all their combinations would be cost prohibitive, so we
consider weaker notions of coverage.

A covering array defines a systematic method for testing how combinations
of parameter values influence system performance [16]. A covering array is an
N × k array. The k columns represent factors that may influence performance
and cells can take on v levels – defining settings for factors. The N rows of
the array define combinations of factor-levels. Arrays are defined to achieve a
strength of the coverage, t. t = 2 defines pairwise strength, which means that all
pairs of levels for all factors are present in some row of the covering array.

We require a richer form of covering array that permits the number of levels
to vary with different factors, i.e., a mixed-level covering array (MCA), and
that can constrain specified factor-level combinations, e.g., by forbidding their
inclusion in the MCA. By modeling each factor as a variable and its levels as
the domain of the variable, one can express constraints as propositional logic
formulae over equality terms; if the levels are ordered then richer underlying
theories can be applied. A constrained-MCA defines an MCA that is consistent
with a given constraint, C.

Definition 2. Constrained Mixed-level Covering Array (Definition 2.9
from [15])
CMCA(N ; t, k, (|v1|, |v2|, ..., |vk|), C) is an N × k array on |v| symbols, where
|v| =

∑k
i=0 |vi|, with the following properties: 1) Each column i(1 ≤ i ≤ k) con-

tains only elements from a set Si of size |vi|, 2) the rows of each N × t subarray
cover all t-tuples of values from the t columns at least one time, and 3) all rows
are models of C.

Transforming Neural Networks. The GDVB approach manipulates factors
that influence DNN verifier performance to construct a diverse benchmark. For
DNN construction, we leverage a recent approach, R4V [47], that given an origi-
nal DNN and an architectural specification automates the transformation of the
DNN and uses distillation [28] to train it to closely match the test accuracy of
the original DNN. R4V transformation specifications can be written to change a
number of architectural parameters of a network including: the input dimension,
the range of values for each input dimension, the number of layers, the number
of neurons per layer, the number of convolutional kernels, and the stride and
padding of a convolutional layer.

Systematic Generation of Diverse Benchmarks for DNN Verification 103

3 Identifying Factors that Influence Verifier Performance

As discussed in Sect. 1 the verification community has acted to create poli-
cies that incentivize diverse benchmarks. Diversity is desirable in a benchmark
because it (a) demonstrates the range of applicability of a verification technology
and (b) exposes performance variation within and across verification technolo-
gies. Consider, that the SMT competition benchmark selection process seeks
to “include equal numbers of satisfiable and unsatisfiable benchmarks at differ-
ent levels of difficulty” [7]. This is due to the fact that the SMT community
understands that the satisfiability or unsatisfiability of a benchmark problem is
a factor that influences verifier performance1.

GDVB seeks to make factors influencing verifier performance explicit and to
manipulate them to generate a diverse benchmark. To determine an initial set of
factors for DNN verifiers we began with an analysis of the literature, which iden-
tified several candidate factors, and then conducted a targeted and exploratory
factor study to identify whether manipulating a factor could influence some
performance measure of some DNN verifier. This study only aims to identify
such factors and does not seek to characterize the complex relationship between
factors and DNN verifier performance; for example, we do not aim to capture
a comprehensive set of factors, assess the independence of or relations between
factors, or rank factors in terms of their degree of influence. A richer and more
detailed factor study might further improve the utility of GDVB, but we leave
such a study to future work.

3.1 Potential Factors

Relatively few published papers on DNN verification explicitly discuss the fac-
tors that influence performance, but nearly all of them present metrics on the
verification problems they solved.

Evaluation results for ReLuplex present data on verifier outcome and solve
time for local robustness properties that vary in the input center point and
radius [30]; most subsequent papers report similar property variation. Evaluation
results for RobustVerifier present a study of varying the number of layers in
the DNN and its impact on verifier performance [36]. Evaluation results for
ERAN present performance variations across a range of networks varying in
the number of layers, layer types, and neurons [22,50–52]. Bunel et al. [14] were
the first that we are aware of to explicitly vary factors of DNN verification
problems. They found that the performance varied with input dimension, number
of neurons per layer, and number of layers across a set of 6 different DNN
verifiers. All of the other papers published on DNN verification in recent years
have used verification problems that varied, in an ad-hoc fashion, over a subset
of the above factors.

1 Since unsatisfiability requires the consideration of all possible variable assignments
which generally is more costly than finding a single satisfiable assignment.

104 D. Xu et al.

3.2 Exploratory Factor Study

As in other verification domains, DNN verifier performance is multi-faceted. In
our study, we consider both verification time and accuracy. We say that the
result of a verification problem is accurate if a verifier determines conclusively
that the problem is valid or invalid, result as opposed to unknown2.

We study factors associated with both properties and DNNs. Based on the
literature analysis, we identified 2 factors related to the correctness property:
scale and translation. Scaling a property involves increasing the size of the input

Fig. 1. DNN verifier performance across factors

2 We cross-check accurate results with multiple verifiers.

Systematic Generation of Diverse Benchmarks for DNN Verification 105

domain which will involve more DNN behavior in verification. Translating a
property involves moving it to a different location in the input domain which
will involve different DNN behavior in verification. For robustness properties,
scaling and translation involve changing the radius and center point of the hyper-
cube describing the input space under verification. One might wonder whether
rotation of a property can influence verification performance. For robustness
properties, this seems unlikely given their symmetry, but it could be a factor for
more irregular input regions – we leave this for future work.

Based on the literature analysis, we identified 4 factors related to the DNN:
number of neurons, number of layers, the type of layers, the input dimension.
We conjectured that an additional 3 factors might impact verifier performance:
the type of activation function, the input domain size, and the learned weights.

Our exploratory factor study is opportunistic in that we seek to find a verifi-
cation problem for which manipulation of a selected factor exhibits performance
variation. Towards this end, we conducted a series of trials where we vary a fac-
tor hypothesized to influence verification performance, while holding all other
factors constant and report the results in Fig. 1. We studied variations of net-
works for the MNIST task and considered local robustness properties since these
were well-supported across a range of different verifiers. We used different ver-
ifiers across the study: ReLuplex, Planet, Neurify, BaB, ERAN with the
DeepPoly (DP) and DeepZono (DZ) abstract domains. We now briefly describe
the trials and then summarize the outcome.

Number of Neurons: The architecture of the DNN was fixed, with 4 fully-
connected layers using ReLU activation functions, and the total number of
neurons was varied (16, 64, 256) – they were spread evenly across layers. Each
network is trained 10 times and verified on 100 local robustness properties.
Figure 1(a) plots the number of neurons versus verification time for Planet.
Verification time can increase with the number of neurons.
Number of Layers: We use the same context as for the neuron factor study,
except that we fixed the number of neurons at 256 and vary the number of
layers (1, 2, 4). Figure 1(b) plots the number of layers versus verification time
for Planet. Verification time can increase with the number of layers.
Layer Types: We use a pair of two-layer neural networks, with the same
number of neurons, where one has a fully-connected layer and the other a
convolutional layer. Each network is trained 10 times and verified on 10 local
robustness properties. Figure 1(c) plots layer type versus the number of prop-
erties for which accurate results are produced using ERANDP . Verification
accuracy can vary with layer type.
Activation Function: We use the fully-connected network from the layer
types study, we generated three networks by altering the activation function
to use sigmoid and tanh. The training setup and properties remain the same
as in the previous trial. Figure 1(d) plots the activation function versus the
number of properties for which accurate results are produced using ERANDP .
Verification accuracy can vary with activation function.
Input Dimension: We use 3 architectures that differ only in their input
dimension which is scaled (1

16 , 1
4 , 1) relative on the original problem. The

106 D. Xu et al.

training setup and properties are from the layer type study. Figure 1(e) plots
the input dimension versus the number of properties for which accurate
results are produced using BaB. Verification accuracy can increase with
increasing input dimension.
Input Size: We use 5 architectures that differ only in the range of values
of their inputs which are scaled (14 , 1

2 , 1, 2, 4) based on the original problem.
The training setup and properties are from the layer type study. Figure 1(f)
plots the input size versus the number of properties for which accurate results
are produced using ERANDZ . Verification accuracy can decrease with
increasing input domain size.
Property Scale: We use a single-layer network and reuse the training setup
and properties from the layer type study. We scale the properties (0.01−0.1)
to generate verification problems. Figure 1(g) plots property scaling versus the
verification time using ReLuplex. Verification time can increase with
increasing property scale.
Property Translation: We replicated the property scale study, but held the
scale fixed and translated the center point of the local robustness property
to 10 other locations. Figure 1(h) plots the number of DNNs for each of the
10 translated properties for which accurate results could be produced using
Neurify. Verification accuracy can vary with property translation.
Network Weights: Building of the property studies, we explore the verifica-
tion of 10 scaled property variants across the same network trained 10 times
with different initial weights. Figure 1(i) plots the number of accurate prop-
erties for which the results could be produced using Planet. Verification
accuracy can vary with the learned weights of the network.

Exploraty Study Findings. Varying the factors studied influences the per-
formance of different DNN verifiers differently – in terms of time or accuracy.
For example, we found that: varying input dimension impacts BaB’s accuracy,
but not ReLuplex’s; varying input domain size impacts ERANDZ ’s accuracy,
but not Neurify’s; and varying property scale impacts ReLuplex’s verification
time, but not Neurify’s.

This study provides a starting set of viable factors that can be used to
parameterize the GDVB approach to produce verification problem benchmarks
in which those factors are systematically varied. Futhermore, as we discuss in
Sect. 4, GDVB generative process allows for us to accommodate information
about new factors that might be revealed in future factor studies.

4 The GDVB Approach

The goal of GDVB is to meet requirements R1–R3 by producing a factor diverse
benchmark that (a) reflects aspects of the complexity encoded in a real verifi-
cation problem that acts as a seed for generation 〈ns, φs〉, (b) varies aspects of
the problem that are related to verifier performance, (c) accounts for interac-
tions among those factors, and (d) is comprised only of well-defined verification
problems.

Systematic Generation of Diverse Benchmarks for DNN Verification 107

Rather than synthesize random verification problems, we seed the generation
process in order to generate a benchmark that reflects the complexity of the
seed problem. This permits benchmarks to be generated to reflect the challenges
present in different DNN problem sub-domains.

Factors, like those described in Sect. 3, may interact; changes to one factor
may mask or amplify DNN verifier performance changes arising from another.
Exploring all combinations of factors is expensive, but by using covering arrays
we can systematically explore interactions among factors. Accounting for such
interactions helps to produce a benchmark that is less biased than one that only
covers individual factor variations.

Not all combinations of factors are possible. For example, if one reduces the
number of layers in a network to 0, then it is not possible to preserve the number
of neurons in the original network. Thus, benchmark generation must take into
account constraints among factors to ensure that only well-defined problems are
included in a benchmark.

4.1 Factor Diverse Benchmarks

Consider a set of factors, F , with a set of levels, Lf , for each factor, f ∈ F ; we
refer to Lf as the level set of f . For a verification problem, p, let l(p) be the
set of factor levels corresponding to the problem. A benchmark, B, is a set of
verification problems and we can denote the factor levels for the benchmark as
l(B) = {l(p) | p ∈ B}.

The simplest form of diversity for a benchmark is requiring that all individual
factor levels be present in at least one verification problem, ∀f ∈ F : ∀l ∈ Lf :
∃p ∈ l(B) : l ∈ p. However, this diversity fails to account for interactions among
factors. The simplest form of interaction-sensitive diversity considers pairs of
factors, but as we discuss below our approach generalizes to any arity of factor-
level coverage.

For a pair of factors, f, f ′ ∈ F , the Cartesian product of their level sets
defines the set of all pairwise combinations of their levels. Across all factors the
set of such pairs is pairs(F) = {(l, l′) | f, f ′ ∈ F ∧ f �= f ′ ∧ l ∈ Lf ∧ l′ ∈ Lf ′}. A
pairwise diverse benchmark is one in which

∀(x, y) ∈ pairs(F) : ∃p ∈ l(B) : (x, y) ∈ {(x′, y′) | x′ ∈ p ∧ y′ ∈ p}
Constraints on allowable combinations of factors serve to restrict a bench-

mark. A pairwise exclusion constraint, γ(F) ⊆ pairs(F), requires that

∀(x, y) ∈ γ(F) : ∀p ∈ l(B) : ¬(x ∈ p ∧ y ∈ p)

We write γ when F is understood from the context.
The arity of factor-level coverage and exclusion constraints can vary indepen-

dently. It is common for factor-level coverage to be uniform and to generalize it to
t-way coverage, i.e., to require coverage of the elements of the Cartesian product
of the level sets of t factors. On the other hand, as observed in prior work [15],
constraints generally involve a mix of arity. To denote this generality we define
Γ ⊆ ⋃

i γi where γi defines the set of possible i-way exclusion constraints.

108 D. Xu et al.

Example. Consider the DAVE-2 DNN which accepts 100 by 100 color images
and infers an output indicating the steering angle [12]. DAVE-2 is comprised of
5 convolutional layers with 55296, 17424, 3888, 3136, and 1600 neurons, respec-
tively, followed by 4 fully connected layers with 1164, 100, 50, and 10 neurons,
respectively. All 82668 neurons use ReLU activations. One can define a local
robustness property for DAVE-2 as

φ = ∀x ∈ i ± 0.02 : ‖DAVE-2(x) − DAVE-2(i)‖ ≤ 5

which states that for a given an input image, i, all inputs within a distance of
0.02 will result in an inferred steering angle within 5◦ of the angle for i. These
yield the verification problem 〈DAVE-2, φ〉.

Consider factors for the number of neurons, number of convolutional layers,
and number of fully-connected layers; a tuple (#neuron, #conv,#fc) represents
levels for these factors. For each factor consider two percentage levels: 100% and
50%. A neuron factor level of 50% indicates that a version of DAVE-2 with
41334 neurons is required. In the absence of constraints, an example pairwise
factor diverse benchmark for 〈DAVE-2, φ〉 consists of the following four verifi-
cation problems: (100%, 100%, 100%), (100%, 50%, 50%), (50%, 100%, 50%), and
(50%, 50%, 100%). The property φ is constant across the benchmark.

4.2 From Factor Covering Arrays to Verification Problems

Given a set of factors, F = {f1, f2, . . . , f|F |}, and levels, Lfi , a t-way factor
diverse benchmark of k verification problems is specified by

CMCA(|F |; t, k, (|Lf1 |, |Lf2 |, . . . , |Lf|F | |), Γ)

Each element in this mixed level covering array specifies how to construct a
verification problem in the benchmark from the seed problem.

Levels are operationalized as transformations on verification problems. We
assume a sufficient set of transformations, Δ, such that a verification problem
can be transformed into a form that achieves any level of any factor

∀f ∈ F : ∀lf ∈ Lf : ∃δ ∈ Δ : lf ∈ l(δ(〈ns, φs〉))

The definition of Δ and Li must be coordinated to achieve this property.
A per-factor transformation δ ∈ Δ may impact a single component of a

verification problem, e.g., reducing the number of neurons in a DNN does not
impact the property, or both components, e.g., the input dimension impacts the
DNN and the property by transforming the input data domain. The set of all
transformations Δ defines the set of verification problems that can be produced
by application of a set of per-factor transformations to the seed problem,

Δ(〈ns, φs〉) = {〈n, φ〉 | 〈n, φ〉 = δf1 ◦ δf2 . . . ◦ δf|F |(〈ns, φs〉) ∧ δi ∈ Δ}

Systematic Generation of Diverse Benchmarks for DNN Verification 109

The set of all possible factor level combinations is Πf∈FLf , i.e., the product
of all of the per-factor levels. The set of t-way factor level combinations is

ct = {c|a ∈ Πf∈FLf ∧ c ⊆ a ∧ |c| = t}

allowing for the interpretation of |F |-tuples as sets.

Definition 3. Given a set of factors F , with associated factor levels Lf , a t-
way factor diverse benchmark, B, for a seed problem 〈ns, φs〉 with exclusion
constraints Γ is defined by the following: (1) B ⊆ Δ(〈ns, φs〉); (2) ∀〈n, φ〉 ∈ B :
∀γ ∈ Γ : γ �⊆ l(〈n, φ〉); and (3) ∀c ∈ ct − Γ : ∃〈n, φ〉 ∈ B : c ⊆ l(〈n, φ〉)

4.3 Generating Benchmarks

GDVB is defined in Algorithm 1. We use existing techniques, e.g. Automated
Combinatorial Testing for Software (ACTS) [34], for generating a CMCA for
constraints specified as logical formulae where factors are variables and levels are
values for those variables. A CMCA is a set of k-tuples. Each such tuple defines
the target level for each factor for a problem in the generated benchmark. Those
levels are used to transform the given seed verification problem and the resultant
problem is accumulated in the benchmark.

Algorithm 1: GDVB(〈ns, φs〉, F, Γ, t) Algorithm
Data: a seed problem 〈ns, φs〉, a set of factors F and constraints Γ , a coverage

goal t
Result: A benchmark of DNN verification problems B

1 C ← genCMCA(F, Γ, t)
2 B ← ∅
3 for c ∈ C do
4 B ← B ∪ transform(〈ns, φs〉, c)
5 end

transform uses different approaches to transform the seed DNN and the
property. DNN transformation builds on an approach called R4V that automates
architectural transformations to DNNs by scaling (1) the number of neurons in
a fully connected layer, (2) the number of kernels in a convolutional layer, (3)
the input dimension, or (4) the range of values within an input dimension [47].
The first 3 of these require changes to the structure of the DNN and the last
two require changes to the training data, e.g., reshaping, renormalizing. R4V
ensures that the network is well-defined after transformation. transform maps
factor-levels to per-layer scale parameters for R4V.

R4V permits the training of a network using network distillation which we
find advantageous for GDVB because: it accelerates the training process, and it
drives training to match the accuracy of the problem DNN to that of ns, which

110 D. Xu et al.

reduces variation in accuracy across B. We adapt R4V so that after each training
epoch, the learned DNN weights and the validation accuracy is recorded. When
training finishes, we select the weights associated with the highest validation
accuracy. Training is performed using the training data and hyperparameters
for ns.

Whereas R4V can be used to directly manipulate DNN architecture related
factors, it can only indirectly affect the learned weights. To address this, we
adopt the approach taken throughout the machine learning literature – train a
network on multiple initial seeds and report performance across seeds. Thus, each
DNN in B is trained multiple times, thereby producing a benchmark comprised
of s ∗ |B| verification problems, where is the desired number of seeds.

DNN Transformation Example. Consider this element of the CMCA
described above: 〈(50%, 100%, 50%), φ〉, applied to DAVE-2. transform would
compute that 50% of the fully connected layers should be present in the resultant
DNN and randomly select 2 of the 4 layers to scale by 0. The fully-connected
layers are chosen at random, since the layer count factor does not consider layer
ordering. If we consider the case where the layers with 100 and 50 neurons are
dropped, this will eliminate 150 neurons. The other transformation required is
to reduce the number of neurons by half. To do that all remaining layers will be
scaled by 82668 ∗ 0.5− 150

82688 = 0.498.
Property transformation builds on a domain-specific language (DSL)

Fig. 2. Parametric property φ

for specifying DNN correctness properties
defined by the deep neural network verifi-
cation framework (DNNV) [48]. Specifica-
tions in this Python-based DSL are para-
metric and transform maps factor-levels
to those parameters. For example, Fig. 2
defines the parametric local robustness prop-
erty φ that is centered at the image stored at
“path/to/image”, has radius 0.02, and can be
translated and scaled through parameters t
and s, respectively.

Restricting factors to levels that are sup-
ported by transform and using CMCA
algorithms that meet Definition 2 ensures
that GDVB produces a solution that meets
Definition 3.

4.4 An Instantiation of GDVB

We developed an instance of GDVB3 that supports a set of factors informed by
the results of the study in Sect. 3, percentage-based levels for those factors, and a

3 https://github.com/edwardxu0/GDVB.

https://github.com/edwardxu0/GDVB

Systematic Generation of Diverse Benchmarks for DNN Verification 111

set of constraints that restrict benchmark problems to those that are non-trivial
and that can be efficiently trained.

Our instantiation of GDVB supports the following factors: the total number
of neurons in the DNN (neu), the number of fully-connected layers (fc), the
number of convolutional layers (conv), the dimension of the DNN input (idm),
the size of each DNN input dimension (ids), the scale of the property (scl),
and the translation of the property (trn). We do not support an activation
function factor because only ERAN support non-ReLU activations and, thus,
using them would render other verifiers inapplicable for large portions generated
benchmarks.

We use quintile factor levels, {20%, 40%, 60%, 80%, 100%}, for factors neu,
idm, ids, and scl. To permit the elimination of layer types we extend these levels
with an additional quintile, 0%, for fc and conv. For trn, we select a set of five
translations that shift the property to be centered on a different instance of the
training data; unlike the above levels this level is unordered.

Our instantiation of GDVB exclusion constraints for DAVE-2 are as follows:
(1) fc = 0∧conv = 0, (2) conv = 0∧neu ≥ 20, (3) conv = 0∧ idm ≥ 80, and (4)
conv = 100 ∧ idm = 20. The first of these requires that some layer be present.
The second and third are related to the blowup in the size of fully-connected
layers that results from dropping all convolutional layers which makes training
difficult; limiting the total number of neurons and the reduction input dimension
mitigates this. The fourth constraint ensures that the input dimension reduction
results in a meaningful network; without it the dimensionality reduction achieved
by sequences of convolutional layers yields an invalid network, i.e., the input to
some layer is smaller than the kernel size.

These constraints were developed iteratively based on feedback from the R4V
tool, which reports when transform has specified an invalid DNN, and when
training failed to closely approximate the accuracy of the seed network.

We note that this instance of GDVB is flexible in that it permits the cus-
tomization of levels, as we demonstrate in the next section, to generate a bench-
mark that focuses on variation in a subset of factors. More generally, GDVB can
easily be extended to support additional factors and levels for which an instance
of transform can be defined. We expect that GDVB will evolve in this way
as studies of DNN verifiers are performed.

5 GDVB in Use

In this section we showcase the potential uses of GDVB across a series of arti-
facts and verifiers, while highlighting the challenges it helps to systematically
address.

5.1 Setup

Our evaluation applies GDVB to two seed networks: MNISTConvBig and
DAVE-2. We selected MNISTConvBig because it is one of the largest networks in

112 D. Xu et al.

ERAN’s evaluation [50]; it includes 4 convolutional layers and 3 fully connected
layers with 48,074 neurons and 1,974,762 parameters. We selected DAVE-2 to
illustrate the application of GDVB to a larger network that has been the subject
of other DNN analysis [42]; it has 5 convolutional layers and 5 fully connected
layers with 82,669 neurons and 2,116,983 parameters.

Table 1. Verifiers used in GDVB study
Verifier Algorithm

ReLuplex [30] Search-optimization

Planet [20] Search-optimization

BaB [14] Search-optimization

BaBSB [14] Search-optimization

Neurifya [59] Optimization

ERANDZ [50] Reachability

ERANDP [51] Reachability

ERANRZ [52] Reachability

ERANRP [49] Reachability
aWe use the version of Neurify provided
in DNNV [48], which is modified to be
applicable to a wide range of problems,
whereas the original version was
hard-coded to a particular verification
problem [59].

Table 1 lists the 9 verifiers we
selected for our study. This list
includes the most well-known veri-
fiers and verification algorithms. We
also select variations of some verifica-
tion approaches. We use Branch-and-
Bound (BaB), as well as a variation
of Branch-and-Bound with Smart-
Branching (BaBSB). Additionally,
we evaluate the ERAN verifier with 4
available abstract domains: DeepZono
(ERANDZ), DeepPoly (ERANDP),
RefineZono (ERANRZ), and
RefinePoly (ERANRP).

To evaluate verifier performance,
we use the solution-count ranking
(SCR) [57], which counts the number
of properties that returned accurate verification results. Additionally, we mea-
sured the penalized average runtime (PAR2) [6], which is computed as the sum
of the verification times for sat and unsat results and twice time limit for all
other verification results.

Table 2. Mean & variance of SCR and PAR2 scores across benchmarks. (The darker
and lighter gray boxes indicate the best and second best results.)

MNISTConvBig DAVE-2

Verifier SCR PAR2 SCR PAR2

ERANDZ 11.40± 0.49 18, 126.80± 488.27 7.20± 1.94 24, 496.20± 1, 176.59

ERANDP 21.00± 0.89 9, 206.00± 806.70 18.40± 2.15 17, 443.00± 1, 344.65

ERANRZ 10.20± 0.40 19, 252.60± 343.66 5.80± 2.14 25, 236.60± 1, 253.90

ERANRP 12.60± 1.02 16, 981.40± 930.71 10.20± 1.83 22, 250.60± 1, 186.44

Neurify 22.00± 1.10 8, 636.20± 1, 008.63 19.20± 2.56 17, 247.80± 1, 397.05

Planet 7.00± 0.63 23, 145.60± 468.18 3.40± 1.62 27, 268.60± 775.56

BaB 0.20± 0.40 28, 689.80± 220.40 0.00± 0.00 28, 800.00± 0.00

BaBSB 0.00± 0.00 28, 800.00± 0.00 0.00± 0.00 28, 800.00± 0.00

ReLuplex 3.20± 0.40 25, 757.80± 381.40 4.40± 1.02 26, 023.60± 635.90

All training and verification took place under CentOS Linux 7. R4V trans-
formation and distillation jobs ran on NVIDIA 1080Ti GPUs. Verification jobs

Systematic Generation of Diverse Benchmarks for DNN Verification 113

were limited to 4 h and ran on 2.3 GHz and 2.2 GHz Xeon processors with 64 GB
of memory, for DAVE-2 and MNISTConvBig, respectively.

5.2 Comparing Verifiers Across a Range of Challenges

Consider the use case where a researcher is attempting to compare a new verifier
(e.g., a new algorithm, a revised implementation, an extension to an existing
approach) against existing verifiers. As shown earlier, for such comparison to
be meaningful, many factors must be considered and properly explored. Given
a seed network, a property, a set of factors, and a coverage goal, GDVB can
generate a benchmark that helps to reduce bias in conducting such an evaluation.

For this use case we consider seed networks and local robustness properties
similar to those from the ERANDZ study [50] for the MNISTConvBig verifica-
tion problem and local robustness properties based on those from the Neurify
study [59] for the DAVE-2 verification problem. We run an instance of GDVB
using the factors and levels described in Sect. 4.4, a coverage strength of 2, and
train 5 versions of each network to account for stochastic weight variation. The
total time to generate and train GDVB (MNISTConvBig, . . .) was 24.3 h and
the resulting 30 verification problems took 401.8 h to run across all 9 verifiers.
For GDVB (DAVE-2, . . .) 44 verification problems were generated with train-
ing and verification times of 158.2 h and 772.4 h, respectively. CMCA generation
took less than a minute for both problems. Each problem in the benchmark
must be trained and verified in sequence, but across problems they can be paral-
lelized. We exploited this to reduce the cost of running the benchmarks to 4.9 h
for MNISTConvBig and 7.9 h for DAVE-2. We measured the SCR and PAR2
score for the nine verifiers across the benchmarks.

The results are shown in Table 2. Since the SCR and PAR2 score trends
are the same we depict just SCR in Fig. 3. Boxplots show the SCR scores for
a verifier across all the generated problems; variation in plots arises from the 5
trained versions of the networks for each problem. For each box, the middle line
represent the median, the box-bounds are the first and third quartiles, and the
whiskers represent minimal and maximal values.

The plot for MNISTConvBig on the left of Fig. 3 shows that the GDVB
benchmark with the MNISTConvBig seed is able to identify consider-
able performance variation across verifiers, with ERANDP and Neurify
accurately verifying a median of over 20 properties, the rest of the ERAN-
variants verifying between 10 and 13 properties, and the remaining tools veri-
fying between 0 and 8 properties. The results are consistent when we employ
DAVE-2 as the seed network, with marked differences among groups of
verifiers although the generated problems turned out to be more challenging
across all verifiers. ERANDP and Neurify, the top performers, can verify less
than half of the generated problems. Verifiers like BaB were unable to ver-
ify any problem derived from DAVE-2 because of the complexity of the seed
problem. This point highlights the need for benchmarks to evolve with networks
that incorporate emerging technology, and also GDVB’s ability to automatically
generate a benchmark from different seeds to address that need.

114 D. Xu et al.

Fig. 3. SCR score for nine verifiers on GDVB benchmarks with MNISTConvBig (left)
and DAVE-2 (right) seeds

Now, understanding the overall performance of a family of verifiers is useful
but it is likely just the first step for a researcher to understand under what
conditions a verifier excels or struggles. When such conditions correspond to
the factors manipulated by GDVB, then they are readily available for further
analysis. One analysis may consist of simply plotting the data across its multiple
dimensions. We do so in the form of radar-charts for DAVE-2 in Fig. 4 and
for MNISTConvBig in Fig. 54. Since the observations we can gather from both
networks are similar, we just discuss DAVE-2 in detail. Each chart includes
six axes representing a factor scaled between 0 and 1. The solid lines link the
maximum values across factors that were accurately verified while the dotted
lines link the median values across factors.

The shape of the lines in the radar plots clearly show that the verification
problems generated by GDVB reveal unique patterns across the ver-
ifiers. For example, the ReLuplex plot indicates that it can do well verifying
networks with multiple fully connected (fc) layers but is challenged by larger
networks (neu) and those with convolutional layers (conv). Comparing multiple
charts also reveals some interesting trade-offs. For example, for smaller networks
with just fully connected layers, the medians seem to indicate that ReLuplex is
better than Planet. However, when a network incorporates convolutional layers
or a larger number of neurons, Planet appears to outperform ReLuplex.

Looking across charts can also pinpoint specific improvements resulting from
tool extensions or revisions. For example, the median line of ERANRZ indi-
cates that it was not as effective in handling verification problems with a larger
number of layers as its predecessor ERANDZ ; the same trend holds for the pair
ERANRP and ERANDP . We note that a more restrictive benchmark that is
biased towards fewer fully connected layers might not reveal such differences.

4 We do not plot BaBSB as its performance was identical to BaB.

Systematic Generation of Diverse Benchmarks for DNN Verification 115

Fig. 4. DAVE-2: radar plot with maximum (solid) and median (dotted) values

GDVB offers the opportunity to investigate such differences even further by
generating targeted verification problems for a subset of factors hypothesized
to be culprits of those differences. For example, GDVB could generate addi-
tional verification problems with a number of fully connected layers between
60% and 80% of the total, while keeping the other factors constant, to refine the
understanding of the differences between ERANRZ and ERANDZ .

This study illustrates how GDVB benchmarks support the exploration of
verifier performance, lowering the burden on researchers to manually prepare
tens to hundreds of verification problems, and reducing the opportunities for
bias.

Fig. 5. MNISTConvBig: radar plot with maximum (solid) and median (dotted) values

116 D. Xu et al.

5.3 GDVB and Benchmark Requirements R1–R3

As explained in Sect. 1, benchmarking in verification seeks to develop bench-
marks that are: diverse; representative of real use cases; and reactive to new
technologies. The previous sections have provided evidence of how, through its
generative nature, GDVB is reactive to new advances in technology included in
the seed network. We have also seen the high degree of parameterization GDVB
offers including for setting a seed network from which realistic attributes are
inherited in the generated verification problems. In this section we want to illus-
trate how GDVB addresses the diversity requirement.

To depict diversity we use the parallel coordinate graph in Fig. 6. Each verti-
cal line corresponds to a factor, and the markers in each vertical line corresponds
to an explored level. Each verification problem is a polyline that connects the
factors’ levels explored by it. The two sets of lines correspond to the verification
problems included in the DAVE-2 benchmark published with Neurify [59],
which is a downsized version of the full DAVE-2 DNN, and the benchmark
produced by GDVB (DAVE-2, . . .). Each factor in the plot is normalized by
dividing by the maximum value for the factor.

Figure 6 shows that the Neurify’s DAVE-2 has a large number of neurons,
inputs, and dimensions. Yet, it provides very limited coverage of all the factor
levels that may affect verification performance. In contrast, GDVB provides a
systematic exploration of the factors levels that can affect verifier performance
making it much less biased – especially to the numbers of layers in the verification
problems, and the combination of those factor levels.

The parallel plot for GDVB benchmark with the MNISTConvBig seed (not
shown for space reasons), depicts a similar trend in terms of systematic explo-
ration of diversity, but since MNISTConvBig is simpler than DAVE-2, the gen-
erated benchmark is correspondingly simpler. This points to the need to identify
representative and challenging seeds when parameterizing GDVB. GDVB is
fully capable of accomodating factor levels that exceed 100% of a seed network,
which is a means of pushing verifiers to the limits of their abilities.

Fig. 6. Diversity explored across factor levels

Systematic Generation of Diverse Benchmarks for DNN Verification 117

We note that excluding factors or levels can yield a systematically generated
benchmark that is unable to characterize differences between verifiers, or worse,
misleads such a characterization by emphasizing certain factors while overlooking
others. For example, not exploring different network sizes or exploring networks
sizes under 1000 neurons will render similar scores across many DNN verifiers
that are differentiated by more comprehensive benchmarks. In applying GDVB,
we suggest selecting as many factors as we know may matter, starting from a
challenging seed problem, and incrementally refining the levels as needed to focus
benchmark results to differentiate verifier performance.

6 Conclusion

The increasing adoption of DNNs has led to a surge in research on DNN veri-
fication techniques. Benchmarks to assess these emerging techniques, however,
are costly to develop, often lack in diversity and do not represent the population
of real evolving DNNs. To address this challenge, we have introduced GDVB,
a framework for systematically generating DNN verification problems seeded in
complex, real-world networks, ensuring that benchmarks are derived from real
problems. GDVB is parameterizable by the factors that may influence verifica-
tion performance and thereby supports scalable benchmarking. A preliminary
study, using 9 DNN verifiers, demonstrates how GDVB can support the assess-
ment of the state-of-the-art.

We plan to conduct broader studies of verifier performance using GDVB,
and we encourate other researchers to use and contribute to it. There are many
directions to explore in identifying new factors that influence performance, e.g.,
the impact of quantization and model compression approaches [26]. Work in
this direction promises to deepen the community’s understanding and lead to
advances in DNN verification.

Acknowledgements. This material is based in part upon work supported by the
National Science Foundation under grant numbers 1901769 and 1900676, by the U.S.
Army Research Office under grant number W911NF-19-1-0054.

References

1. 14th International Satisfiability Modulo Theories Competition. https://smt-comp.
github.io/2019/

2. Competition on Software Verification. https://sv-comp.sosy-lab.org/2019/
3. Hardware Model Checking Competition. http://fmv.jku.at/hwmcc19/index.html
4. The International Satisfiability Competitions. http://www.satcompetition.org/
5. Amendola, G., Ricca, F., Truszczynski, M.: A generator of hard 2QBF formulas

and ASP programs. In: 16th International Conference on Principles of Knowledge
Representation and Reasoning (2018)

6. Balint, A., Belov, A., Järvisalo, M., Sinz, C.: Overview and analysis of the SAT
challenge 2012 solver competition. Artif. Intell. 223, 120–155 (2015)

https://smt-comp.github.io/2019/
https://smt-comp.github.io/2019/
https://sv-comp.sosy-lab.org/2019/
http://fmv.jku.at/hwmcc19/index.html
http://www.satcompetition.org/

118 D. Xu et al.

7. Barrett, C., Deters, M., De Moura, L., Oliveras, A., Stump, A.: 6 years of SMT-
COMP. J. Autom. Reasoning 50(3), 243–277 (2013)

8. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB standard: version 2.0, vol. 13,
p. 14 (2010)

9. Bastani, O., Ioannou, Y., Lampropoulos, L., Vytiniotis, D., Nori, A.V., Criminisi,
A.: Measuring neural net robustness with constraints. In: Proceedings of the 30th
International Conference on Neural Information Processing Systems, pp. 2621–
2629 (2016)

10. Beyer, D., Löwe, S., Wendler, P.: Reliable benchmarking: requirements and solu-
tions. Int. J. Softw. Tools Technol. Transfer 21(1), 1–29 (2019)

11. Blackburn, S.M., et al.: The DaCapo benchmarks: Java benchmarking development
and analysis. In: Proceedings of the 21st Annual ACM SIGPLAN Conference on
Object-Oriented Programming Systems, Languages, and Applications, pp. 169–190
(2006)

12. Bojarski, M., et al.: End to end learning for self-driving cars. CoRR (2016)
13. Boopathy, A., Weng, T.W., Chen, P.Y., Liu, S., Daniel, L.: CNN-Cert: an efficient

framework for certifying robustness of convolutional neural networks. In: Associa-
tion for the Advancement of Artificial Intelligence, January 2019

14. Bunel, R., Turkaslan, I., Torr, P.H., Kohli, P., Kumar, M.P.: A unified view of piece-
wise linear neural network verification. In: Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 4795–4804 (2018)

15. Cohen, M.B., Dwyer, M.B., Shi, J.: Constructing interaction test suites for highly-
configurable systems in the presence of constraints: a greedy approach. IEEE Trans.
Softw. Eng. 34(5), 633–650 (2008)

16. Cohen, M.B., Gibbons, P.B., Mugridge, W.B., Colbourn, C.J.: Constructing test
suites for interaction testing. In: 25th International Conference on Software Engi-
neering, pp. 38–48, May 2003

17. D’silva, V., Kroening, D., Weissenbacher, G.: A survey of automated techniques
for formal software verification. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 27(7), 1165–1178 (2008)

18. Dutta, S., Jha, S., Sankaranarayanan, S., Tiwari, A.: Output range analysis for
deep feedforward neural networks. In: NASA Formal Methods Symposium, pp.
121–138 (2018)

19. Dvijotham, K., Stanforth, R., Gowal, S., Mann, T., Kohli, P.: A dual approach
to scalable verification of deep networks. In: Proceedings of the 34th Conference
Annual Conference on Uncertainty in Artificial Intelligence, pp. 162–171 (2018)

20. Ehlers, R.: Formal verification of piece-wise linear feed-forward neural networks.
In: D’Souza, D., Narayan Kumar, K. (eds.) ATVA 2017. LNCS, vol. 10482, pp.
269–286. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68167-2 19

21. Elffers, J., Giráldez-Cru, J., Gocht, S., Nordström, J., Simon, L.: Seeking practical
CDCL insights from theoretical SAT benchmarks. In: International Joint Confer-
ences on Artificial Intelligence, pp. 1300–1308 (2018)

22. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev,
M.: AI2: safety and robustness certification of neural networks with abstract inter-
pretation. In: IEEE Symposium on Security and Privacy, pp. 3–18, May 2018

23. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning, vol. 1. MIT Press, Cam-
bridge (2016)

24. Gopinath, D., Converse, H., Pasareanu, C.S., Taly, A.: Property inference for deep
neural networks. In: 34th IEEE/ACM International Conference on Automated
Software Engineering, pp. 797–809 (2019)

https://doi.org/10.1007/978-3-319-68167-2_19

Systematic Generation of Diverse Benchmarks for DNN Verification 119

25. Gupta, A.: Formal hardware verification methods: a survey. In: Kurshan, R. (ed.)
Computer Aided Verification, pp. 5–92. Springer, Boston (1992). https://doi.org/
10.1007/978-1-4615-3556-0 2

26. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural net-
works with pruning, trained quantization and Huffman coding (2015)

27. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recogni-
tion: the shared views of four research groups. IEEE Signal Process. Mag. 29(6),
82–97 (2012)

28. Hinton, G., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network. In:
NIPS Deep Learning and Representation Learning Workshop (2015)

29. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural
networks. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp.
3–29. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9 1

30. Katz, G., Barrett, C., Dill, D.L., Julian, K., Kochenderfer, M.J.: Reluplex: an
efficient SMT solver for verifying deep neural networks. In: Majumdar, R., Kunčak,
V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 97–117. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-63387-9 5

31. Katz, G., et al.: The Marabou framework for verification and analysis of deep
neural networks. In: Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp.
443–452. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25540-4 26

32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Systems
25: Proceedings of the 26th Annual Conference on Neural Information Processing
Systems 2012, pp. 1106–1114 (2012)

33. Kropf, T.: Benchmark-circuits for hardware-verification. In: Kumar, R., Kropf, T.
(eds.) TPCD 1994. LNCS, vol. 901, pp. 1–12. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59047-1 39

34. Kuhn, R., Kacker, R.: Automated Combinatorial Testing for Software. https://
csrc.nist.gov/projects/automated-combinatorial-testing-for-software

35. Lauria, M., Elffers, J., Nordström, J., Vinyals, M.: CNFgen: a generator of crafted
benchmarks. In: Gaspers, S., Walsh, T. (eds.) SAT 2017. LNCS, vol. 10491, pp.
464–473. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66263-3 30

36. Lin, W., et al.: Robustness verification of classification deep neural networks via
linear programming. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 11418–11427 (2019)

37. Liu, C., Arnon, T., Lazarus, C., Barrett, C., Kochenderfer, M.J.: Algorithms for
verifying deep neural networks. CoRR (2019)

38. Lomuscio, A., Maganti, L.: An approach to reachability analysis for feed-forward
ReLU neural networks. CoRR (2017)

39. Loquercio, A., Maqueda, A.I., Blanco, C.R.D., Scaramuzza, D.: DroNet: learning
to fly by driving. IEEE Robot. Autom. Lett. 3, 1088–1095 (2018)

40. Meadows, C.A., Meadows, C.A.: Formal verification of cryptographic protocols: a
survey. In: Pieprzyk, J., Safavi-Naini, R. (eds.) ASIACRYPT 1994. LNCS, vol. 917,
pp. 133–150. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0000430

41. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

42. Pei, K., Cao, Y., Yang, J., Jana, S.: DeepXplore: automated whitebox testing
of deep learning systems. In: Proceedings of the 26th Symposium on Operating
Systems Principles, pp. 1–18 (2017)

https://doi.org/10.1007/978-1-4615-3556-0_2
https://doi.org/10.1007/978-1-4615-3556-0_2
https://doi.org/10.1007/978-3-319-63387-9_1
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-319-63387-9_5
https://doi.org/10.1007/978-3-030-25540-4_26
https://doi.org/10.1007/3-540-59047-1_39
https://doi.org/10.1007/3-540-59047-1_39
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software
https://doi.org/10.1007/978-3-319-66263-3_30
https://doi.org/10.1007/BFb0000430

120 D. Xu et al.

43. Pelánek, R.: BEEM: benchmarks for explicit model checkers. In: Bošnački, D.,
Edelkamp, S. (eds.) SPIN 2007. LNCS, vol. 4595, pp. 263–267. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73370-6 17

44. Pulina, L., Tacchella, A.: An abstraction-refinement approach to verification of
artificial neural networks. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010.
LNCS, vol. 6174, pp. 243–257. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14295-6 24

45. Raghunathan, A., Steinhardt, J., Liang, P.: Certified defenses against adversarial
examples. In: The International Conference on Learning Representations (2018)

46. Ruan, W., Huang, X., Kwiatkowska, M.: Reachability analysis of deep neural net-
works with provable guarantees. In: International Joint Conferences on Artificial
Intelligence, pp. 2651–2659 (2018)

47. Shriver, D., Xu, D., Elbaum, S.G., Dwyer, M.B.: Refactoring neural networks for
verification. CoRR (2019)

48. Shriver, D.L.: Deep Neural Network Verification Toolbox. https://github.com/
dlshriver/DNNV

49. Singh, G., Ganvir, R., Püschel, M., Vechev, M.: Beyond the single neuron convex
barrier for neural network certification. In: Wallach, H., Larochelle, H., Beygelz-
imer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Infor-
mation Processing Systems 32, pp. 15072–15083 (2019)

50. Singh, G., Gehr, T., Mirman, M., Püschel, M., Vechev, M.: Fast and effective
robustness certification. In: Bengio, S., Wallach, H., Larochelle, H., Grauman, K.,
Cesa-Bianchi, N., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 31, pp. 10802–10813 (2018)

51. Singh, G., Gehr, T., Püschel, M., Vechev, M.: An abstract domain for certifying
neural networks. Proc. ACM Program. Lang. 3, article no. 41 (2019)

52. Singh, G., Gehr, T., Püschel, M., Vechev, M.: Boosting robustness certification
of neural networks. In: Proceedings of the International Conference on Learning
Representations (2019)

53. Smolyanskiy, N., Kamenev, A., Smith, J., Birchfield, S.: Toward low-flying
autonomous MAV trail navigation using deep neural networks for environmen-
tal awareness. In: IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4241–4247, September 2017

54. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

55. Sutcliffe, G., Suttner, C.: The TPTP problem library. J. Autom. Reasoning 21(2),
177–203 (1998)

56. Tjeng, V., Xiao, K.Y., Tedrake, R.: Evaluating robustness of neural networks with
mixed integer programming. In: International Conference on Learning Represen-
tations (2019)

57. Gelder, A.: Careful ranking of multiple solvers with timeouts and ties. In: Sakallah,
K.A., Simon, L. (eds.) SAT 2011. LNCS, vol. 6695, pp. 317–328. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-21581-0 25

58. Wang, F.: Formal verification of timed systems: a survey and perspective. Proc.
IEEE 92(8), 1283–1305 (2004)

59. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Efficient formal safety analysis
of neural networks. In: Advances in Neural Information Processing Systems, pp.
6367–6377 (2018)

60. Wang, S., Pei, K., Whitehouse, J., Yang, J., Jana, S.: Formal security analysis of
neural networks using symbolic intervals. In: USENIX Security Symposium, pp.
1599–1614 (2018)

https://doi.org/10.1007/978-3-540-73370-6_17
https://doi.org/10.1007/978-3-642-14295-6_24
https://doi.org/10.1007/978-3-642-14295-6_24
https://github.com/dlshriver/DNNV
https://github.com/dlshriver/DNNV
https://doi.org/10.1007/978-3-642-21581-0_25

Systematic Generation of Diverse Benchmarks for DNN Verification 121

61. Weng, T., et al.: Towards fast computation of certified robustness for ReLU net-
works. In: International Conference on Machine Learning, Proceedings of Machine
Learning Research, vol. 80, pp. 5273–5282 (2018)

62. Wong, E., Kolter, J.Z.: Provable defenses against adversarial examples via the con-
vex outer adversarial polytope. In: International Conference on Machine Learning,
Proceedings of Machine Learning Research, vol. 80, pp. 5283–5292 (2018)

63. Xiang, W., Tran, H., Johnson, T.T.: Output reachable set estimation and veri-
fication for multilayer neural networks. IEEE Trans. Neural Netw. Learn. Syst.
29(11), 5777–5783 (2018)

64. You, J., Wu, H., Barrett, C., Ramanujan, R., Leskovec, J.: G2SAT: learning to
generate SAT formulas. In: Advances in Neural Information Processing Systems,
pp. 10552–10563 (2019)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Systematic Generation of Diverse Benchmarks for DNN Verification
	1 Motivation
	2 Background and Related Wok
	3 Identifying Factors that Influence Verifier Performance
	3.1 Potential Factors
	3.2 Exploratory Factor Study

	4 The GDVB Approach
	4.1 Factor Diverse Benchmarks
	4.2 From Factor Covering Arrays to Verification Problems
	4.3 Generating Benchmarks
	4.4 An Instantiation of GDVB

	5 GDVB in Use
	5.1 Setup
	5.2 Comparing Verifiers Across a Range of Challenges
	5.3 GDVB and Benchmark Requirements R1–R3

	6 Conclusion
	References

