
Case Study: Data Subscriptions Using Elastic
Cloud Services

Spiros Koulouzis1 , Thierry Carval2 , Jani Heikkinen3 , Antti Pursula3 ,
and Zhiming Zhao1(B)

1 Multiscale Networked Systems, University of Amsterdam,
1098XH Amsterdam, The Netherlands
{s.koulouzis,z.zhao}@uva.nl

2 Ifremer, Brest, France
thierry.carval@ifremer.fr

3 CSC - IT Center for Science, Espoo, Finland
{jani.heikkinen,antti.pursula}@csc.fi

Abstract. To perform data-centric research in environmental and earth sciences,
researchers need effectively query, select and access data products from different
research infrastructures. When providing observation data continuously, infras-
tructure is expected to create and deliver customised data products, e.g. for spe-
cific geo-regions, time durations or observation parameters, to enhance its ability
to serve the research communities. Such kind of services often have time-critical
requirements; some tasks need to be carried outwithin specific timewindowswhen
the data products are needed for real-time modelling or simulation frameworks.

Keywords: Research infrastructure · Data subscription · Cloud computing

1 Introduction

Many environmental and Earth science Research Infrastructures (RIs) act as data hubs
and publishers of scientific data and serve their user communities via an integrated data
portal [6]. The Euro-Argo RI [8] is a typical example of a long-established, distributed
RI from the marine domain and is the European contribution to the Argo programme.
Argo monitors the world’s oceans measuring temperature, salinity, pressure, etc. via
the deployment of robotic floats to create a roughly even network of data collecting
nodes across the marine surface of the earth. These floats periodically send data back
via satellite to data assembly centres, which provide integrated, cleaned data products
to various regional centres, archives and research teams; all data is then made publicly
available via a common portal within 24 h of acquisition.

Due to the maturity in data acquisition, Euro-Argo seeks improved publishing meth-
ods for accessing existing curated data collections, and thus, prototypes a subscription
service for their data. In contrast, to merely providing collected data freely for down-
load and requiring researchers to monitor the core Argo dataset for updates manually,

© The Author(s) 2020
Z. Zhao and M. Hellström (Eds.): Towards Interoperable Research
Infrastructures for Environmental and Earth Sciences, LNCS 12003, pp. 293–306, 2020.
https://doi.org/10.1007/978-3-030-52829-4_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-52829-4_16&domain=pdf
http://orcid.org/0000-0001-8652-315X
http://orcid.org/0000-0003-2700-4020
http://orcid.org/0000-0003-4385-8288
http://orcid.org/0000-0002-0167-2955
http://orcid.org/0000-0002-6717-9418
https://doi.org/10.1007/978-3-030-52829-4_16

294 S. Koulouzis et al.

researchers are instead allowed to subscribe to specific subsets of Argo data and have
updates pushed to their cloud storage, thus streamlining data delivery and accelerating
data science workflows involving those data.

In this chapter, we will demonstrate how the Dynamic Real-time Infrastructure Plan-
ner developed in the project can be used for optimising virtual infrastructures for the
EuroArgo research infrastructure to realise its data subscription service. The use case is
prototyped based on EGI FedCloud and EUDAT’s B2SAFE. This chapter is an extension
of the work published in [1].

2 Data Subscription in RIs

2.1 A Data Subscription Scenario in EuroArgo

In the Euro-Argo data subscription scenario, investigators subscribe to customised views
(e.g. specific regions, time durations, and observation parameters) on theArgo data using
a data subscription service. Euro-Argo provides the infrastructure services needed for
computing data products to match each subscription and then dispatches those products
to their destinations; the subscription service can then distribute the tailored updates to
investigators’ private storage.

A typical subscription task can be made up of a set of input parameters:

1. An area expressed as a bounding box (geospatial data are widespread in environ-
mental and earth science).

2. A time range (typically investigators want the most recent data, but updates to past
readings due to quality control or restoration of missing data may also be of interest).

3. A list of parameters required in the data products (e.g. temperature or salinity; in
advanced cases, this may be a derivative parameter which must itself be computed
from some base parameters).

4. Optionally, a deadline (deadlines may be expressed in terms of maximum accepted
time for delivery of the data product).

To deliver the data subscription service, a distributed infrastructure is needed for com-
puting data products and delivering subscriptions to users. The subscription scenario is
often time-critical where a number of subscriptions must be fulfilled on a deadline to
receive the data products. Different products may require different degrees of processing
at different times and place differing levels of load on the processing infrastructure.

Such a data subscription scenario serves both end-users and application workflows
forwhich the retrieval of subscribed-to data is a crucial input. Frequently theseworkflows
require specific data to be delivered within a specific time window and often have firm
or soft real-time requirements [9]. The type of real-time requirement is specified by the
end-user or the workflow developer.

As the volume of subscriptions and the customizability of subscriptions increases, so
too does the pressure on the underlying infrastructure providing the data, the bandwidth
for transport and the processing capacity. At the same time, there will be periods of low
activity between rounds of updates. Thus, we need a scalable infrastructure to support
the data subscription processing pipeline so as to not unnecessarily tie up resources while
still permitting acceptable quality of service during peak periods.

Case Study: Data Subscriptions Using Elastic Cloud Services 295

2.2 Generalising the Service to Different RIs

In addition to Euro-Argo, other RIs are now looking into the data subscription scenario
as an approach to better serve their communities. RIs differ in several aspects, such
as in their maturity in various data life cycle phases, in their internal diversity, and in
collaboration between RIs. Projects such as ENVRIplus seek approaches to enable con-
vergence through reference modelling [7, 10], helping the RIs to identify common pro-
cesses and structures and to adopt best practices, and integrate to common infrastructural
environment (eInfra) services.

However, several of the problems encountered in traditional data curation and
publishing still exist and can be summarised as follows:

• accumulating, large, and complex datasets can only be disseminated with extensive
effort

• frequently changing datasets can only be monitored with extensive effort
• unpublished, confidential data can only be disseminated to the designated audience

Moreover, as discussed in Chapter 12, other encountered challenges include lack
of accounting information, lack of data provenance information, and the complexity
involved in using and integrating distributed systems [5]. For example, the latter chal-
lenge emerges when data flows can exist between curation, processing, and publishing
subsystems, each which can be provided by different RIs. As a result, the total number
of data flows can increase to an extent not easily managed by an investigator.

To answer these problems and challenges in general, a data subscription model was
proposed to change the way how subsets of frequently changing data collections are
published/disseminated to designated investigators.

2.3 Data Subscription Model

Data subscriptions are built upon the well-known Publish/Subscribe messaging pattern
providing advantages such as loose coupling of publishers and subscribers in time, space,
and synchronization [3]. The pattern typically consists of three types of entities: publish-
ers, subscribers, and amessage broker or topologies of brokers forming a communication
infrastructure. The broker can implement a messaging matching scheme through which
subscribers receive only a subset of the total publishedmessages. The twomost common
schemes are topic-based and content-based matching. In contrast to the latter, the topic-
based matching let the publisher decide the classes of messages to which subscribers
can register/subscribe to.

In this model, subscribers register to topics, more specifically to globally unique
persistent data identifiers (PID) [see chapter 9]. There are several reasons for this. First,
the data discovery process [see chapter 4] can be independent of creating a subscription.
Second, the subscriber can create a subscription even before there is published events on
the data identifier. Thus, the subscribers are truly uncoupled from the publishers in time.
Third, persistent identifiers are seen as the widely accepted approach to support research
data re-use and sharing, while also enabling provenance tracking, and consequently,
enabling micro-attribution. Fourth, in order to provide a common and robust model, the

296 S. Koulouzis et al.

semantically immutable persistent identifiers provide several valuable characteristics to
build on, such as in direction and option for data granularity levels.

In terms of data life cycle stages, Fig. 1 shows the primary flows between the stages
and a matching process of the data subscription model.

Fig. 1. The data life cycle stages in the Data Subscription Mode.

3 Architectural Design and Prototype

Figure 2 illustrates a functional depiction of the Euro-Argo data subscription scenario.

Fig. 2. The data subscription scenario is one where researchers can subscribe to the specific data
they are interested in (e.g. marine data from floats in the Mediterranean) via a simple community
portal, and have updates pushed to their workspaces.

Case Study: Data Subscriptions Using Elastic Cloud Services 297

3.1 Architecture Design

We applied a prototype of the data subscription service in the scenario depicted in Fig. 3.
Currently, the resources from e-infrastructures such as EUDAT [4] and EGI FedCloud
are used. Figure 3 shows the use-case scenario based on the use of EUDAT and EGI
services. In this case, EUDAT provides services for data subscription, storage, and data
transfer, while EGI FedCloud provides the services for the computing of data products
for each subscription.

Fig. 3. A context diagram showing interactions between components in the Euro-Argo data sub-
scription scenario. The subscription service invokes DRIP to plan, provision and deploy the sub-
scription data processing pipeline. Subscriptions and processing are event-driven, triggered by
updates pushed to the B2SAFE data repository. The deployment is scaled with demand [1].

The data subscription service scenario thus involves the following basic components:

1. A data selection community portal serving as the front-end;
2. The global data assembly centre of Euro-Argo [8], providing the source research

dataset;
3. B2SAFE data repository [2] provided by EUDAT;
4. A deployment of DRIP [1] (deployed within EGI FedCloud);
5. A data filtering application. This is the software that actually takes the input

parameters and composes the requested data product from the raw source research
dataset;

6. EGI FedCloud virtual resources, forming the fundamental infrastructure for data
processing and transportation;

7. EUDAT data subscription service (which maintains and matches the subscriptions
defined via the data selection community portal).

Users interact with the subscription service via a portal, registering to receive updates
for specific areas and time ranges for selected parameters such as temperature, salinity,

298 S. Koulouzis et al.

and oxygen levels and optionally set a deadline for receiving the requested results. The
global data assembly centre (GDAC) of Euro-Argo receives new datasets from regional
centres and pushes them to the EUDAT B2SAFE data service. The subscription service
itself maintains records of subscriptions including references to selected parameters and
associated actions. The subscription service is based on well-defined APIs that allow
connecting it with various community front-ends and infrastructure platforms. The role
of DRIP then is to plan and provision a customised infrastructure dynamically with
demand, and to deploy, scale and control the data filtering application to be hosted on
that infrastructure. EGI FedCloud provides actual cloud resources provisioned by DRIP.

The data filtering application itself is composed of a master node and a set of worker
nodes. The master node uses a monitoring process that tracks specified metrics and
interacts with the DRIP controller, which can scale out workers on demand. The master
is also responsible for partitioning input parameters and distributing them to workers
as individual tasks for parallel execution and for combining individual results into the
desired data product. Partitioning input parameters should provide faster execution due
to increased speed-up. The workers perform the actual query on the dataset based on the
partitioned input parameters provided by the master node.

When new data is available to the GDAC, it pushes them to the B2SAFE service,
triggering a notification to the subscription service, which consequently initiates actions
on the new data. If the application is not deployed to FedCloud already, then DRIP
provisions the necessary VMs and network so that the application may be deployed.
Next, the deployment agent installs all the necessary dependencies along with the data
filtering application including configurations to access on theArgo data. The subscription
service signals to the application master node the availability of the input parameters to
be processed, whereupon it partitions the input tasks into sub-tasks and distributes them
to the workers. If the input parameters include deadlines then the master will prioritise
them accordingly. The monitoring process keeps track of each running task and passes
that information to the DRIP controller. If the programmed threshold is passed, then the
controller will request more resources from the provisioner. Finally, the results of each
task are pushed back to the B2SAFE service triggering a notification to the subscription
service, after which it notifies the user1.

3.2 Infrastructure Customisation and Performance Optimisation

To meet the time-critical constraints of the data subscription service, data products for
all subscriptions should be processed and distributed within a certain time window.
Resources need to be elastic to support all tasks without wasting significant resources
during less active periods. To this end, DRIP provides an auto-scaling option to ensure
on-timedelivery of the requested data, based on the total budget available for conscripting
resources (not that this budget need be monetary; it could also be tied to other metrics
such as energy use). However, simply adding resources is not always enough to provide
the best possible performance for an application—to fully take advantage of the available
resources it is often necessary to change the invocation parameters of an application and
partition them in a manner that will achieve good scalability and efficiency.

1 The use case online demo: https://www.youtube.com/watch?v=PKU_JcmSskw&t=12s.

https://www.youtube.com/watch%3fv%3dPKU_JcmSskw%26t%3d12s

Case Study: Data Subscriptions Using Elastic Cloud Services 299

Twobasic optimisation strategies have been investigated for partitioning and schedul-
ing subscription tasks in order to minimise resource usage while meeting all necessary
deadlines.

Input Partitioning. We investigated two types of input partitioning: linear and loga-
rithmic. With linear partitioning, we simply divide the input range into equal parts for
parallel processing. With logarithmic partitioning, we split the range into larger sections
at the beginning of the range (accounting for the sparser data recorded early in the Euro-
Argo dataset) and smaller sections towards the end (when observations become more
detailed).

Deadline-Aware Auto-Scaling. The user has the option to specify a deadline for obtain-
ing the requested data. To ensure on-time data delivery, the application master calculates
the ‘importance’ of each task based on its deadline and input parameters:

Imp(task) = (|P| · wp
) + (

ttd · wp
) + (tr · wd) + (α · wa) (1)

In Eq. 1, P is the parameter list, ttd is the time-to-deadline, tr is the time range, α is
the area and wp, wd , wt, wα are the respective weights that determine each parameter’s
importance.

Ascertaining the prioritisation of tasks allows for smarter scaling behaviour on the
part of the provisioning system by determining which parameters thresholds should be
placed to trigger scaling. Figure 4 illustrates how the process of the deadline-aware
auto-scheduling proceeds.

Fig. 4. Deadline-aware auto-scheduling flow. As soon as the GDAC pushes out new data, the
process begins. All tasks are sorted according to Eq. 1, then the application monitor constantly
evaluates the next task’s time-to-deadline. If it is greater than the chosen threshold, then the
controller provisions more resources.

300 S. Koulouzis et al.

4 Experimental Results

In this section,we present the results of the experiments described in the previous section.

4.1 Input Partitioning

Before attempting to partition input, parameters and distribute them to worker nodes,
we must first identify which parameter is responsible for the most computing time when
generating the data products. To do this, we generated a set of tasks on a region of
randomly selected raw data requiring computing of all parameters. We performed 550
tasks spanning the Mediterranean Sea while requesting data in a time window from
1999 to 2007 and covering more than 400 possible parameters in the data products. We
executed these tasks on identical VMs and measured their execution time to determine
the correlation between area, time range and the number of parameters with execution
time. Additionally, we investigated the effect of the end date on execution time, e.g.
whether execution time changes when processing three months of data leading up to
1999 rather than leading up to 2007 (indicating a general shift in the typical volume
of data collected at different points in time). We use this correlation analysis to select
a suitable partitioning strategy. For our experiments we used EGI’s FedCloud as our
test-bed; all VMs in these experiments were identical, with two cores and two GBs of
RAM.

We tested the logarithmic partitioning strategy under the assumption that input data
are not always equally distributed, and therefore the load balance on the worker nodes
would not be the same. For both strategies we applied the same task with the following
input parameters:

1. The Mediterranean as the target area.
2. A time range from 01/01/99 to 01/01/07.
3. 412 different additional parameters.

Wemeasured the speed-up and efficiency using 1, 2, 4, and 8 VMswith one worker node
per VM for both strategies. We also looked at speed-up and efficiency as we added more
tasks per worker node. With speed-up, we measured how much faster an application
becomes when adding more VMs compared with using only one VM—the ratio of the
sequential execution time to the parallel execution time (S = Ts/Tp). For efficiency, we
measured the fraction of time in which a node is utilised such that E = S/p.

In Table 1, we provide the correlation coefficients between execution time and each
time coverage, area, number of (other) parameters and the end timestamp (of the cover-
age range). According to these results, the time coverage has a strong positive relation
(0.93) with the execution time followed by end time (0.65). This suggests that the more
dates we request to process, the more time it takes to process the request, while the other
variables do not indicate any particular strong relationship with the execution time.

Figure 5 and Fig. 6 show the speedup and efficiency results. The lines indicated
as ‘log1’ and ‘log4’ indicate speed-up for logarithmic partitioning while assigning 1
and 4 tasks per worker respectively. The lines indicated as ‘lin1’ and ‘lin4’ represent
linear partitioning with the same assignments. These results indicate that the logarithmic
partitioning with 4 tasks per worker performs best (log4), which aligns with Table 1.

Case Study: Data Subscriptions Using Elastic Cloud Services 301

Fig. 5. Speed-up for linear and logarithmic partitioning strategies assigning 1 and 4 tasks per
worker.

Table 1. Correlations with the execution time of various parameterisation options.

Correlations Execution time

Execution time 1.00

Time coverage 0.93

Area 0.03

Num. of parameters 0.02

End timestamp 0.65

Fig. 6. Efficiency for linear and logarithmic partitioning strategies assigning 1 and 4 tasks per
worker.

4.2 Deadline-Aware Auto-Scaling

Using Eq. 1 we ranked 100 tasks each with the same deadline but varying areas and time
ranges. After ranking these tasks, we set the time-to-deadline as ametric for amonitoring

302 S. Koulouzis et al.

process. When the time-to-deadline dropped below a certain threshold, a signal was sent
to the controller to scale up the application. In this particular setup the controller started
a new VM each time it received a signal until a specified VM limit was reached, after
which the controller would start a new worker on each VM in a round-robin fashion. We
examined three different cases:

1. no scaling,
2. scaling with a static threshold, and
3. scaling with a dynamic threshold.

In the case of static scaling, the controller takes no action when the time-to-deadline
drops below the threshold. In the second case, the threshold was set to a static value
(chosen after an empirical study). In the third case, the threshold was initially set to a
specific value, but as soon as the time-to-deadline dropped below the threshold a signal
was sent to the controller to scale the application, and the new threshold value was set
to the current time-to-deadline minus a selected factor. For the third case, we tried to
avoid aggressive scaling in an attempt to provision only as many VMs as necessary so
that we could finish all tasks in time. For this experimental setup we specified a limit
to the number of VMs to eight with two workers per VM, meaning that the maximum
number of workers at any time was 16—this represented the budget limit that might be
imposed by the application developer to prevent ‘run-away’ scheduling of VMs.

Fig. 7. Process 100 tasks with no scaling.

Figure 7, Fig. 8 and Fig. 9 show the results for each of the cases described above. In all
figures the -axis represents the task number, the left-side -axis the time to the deadline
(in seconds) and the right-side -axis the number of nodes used for each execution.
Also, in Fig. 8 and Fig. 9 we show the threshold for triggering the addition of more
resources. In Fig. 7, although the cost of the application is minimal (only one VM) after
approximately 22 tasks are initiated, all deadlines are missed. In Fig. 8, we observe all
tasks are processed within their deadline, but the controller over-provisions VMs for
the task, reaching the specified limit of 16 workers (two workers per VM) very quickly.

Case Study: Data Subscriptions Using Elastic Cloud Services 303

Finally, in Fig. 9, we see that the controller provisions just enough workers to complete
all tasks on time with the exception of the last, which overshoots its deadline by two
seconds (which may or may not be unacceptable given the strictness of the deadline
imposed—in this particular instance, however, we deem it acceptable given the overall
high quality of service provided).

Fig. 8. Process 100 tasks with a static threshold.

Fig. 9. Process 100 tasks with a dynamic threshold.

5 Discussion

The results presented here demonstrate that a linear partitioning strategy can provide
non-linear variations in speed and efficiency. This can be attributed to an unequal load
distribution, where someworkers were assigned far smaller loads than others, despite the
data being split ‘evenly’ across a certain dimension. In the case of the Euro-Argo dataset

304 S. Koulouzis et al.

used for this experiment, this is because more recent data samples contain more data
than older samples (due to improvements in data acquisition over time), which explains
why the logarithmic partitioning performed better. However, the recorded speed-up can
be improved further if the partitioning is calibrated based on the actual end date selected
for a sample. Moreover, a more linear speed-up could be achieved if the partitioning was
performed based on all, rather than just one, input dimensions. This is not a trivial task;
however, as the input domain may be -dimensional and the load may not be linear across
all dimensions, making finding the appropriate hyperplanes to divide the domain into
equal task loads challenging. Besides identifying such appropriate hyperplanes, another
challenge arises: how can we select any kind of input parameter partitioning if we cannot
analyse the input data-set in advance? In our case, we performed a correlation study to
identify the relationship between the input parameter of a problemand the execution time.
However, that correlation study only used a small sample and often analysing the entire
data-set is not practical. To this end, it is worth investigating statistical samplingmethods
that may provide the most representative sample. Such a process may be complemented
by an iterative process where real data coming from monitoring would help evaluate
and improve both the sampling and partitioning. Historical observations on the same or
similar (for a given judgement of ‘similarity’) can also contribute to selecting the best
partitioning strategy.

One area that we have not investigated, but which has an impact on both the perfor-
mance and requirements of the data subscription pipeline is the case where subscribers
subscribe not just to one custom view on a single dataset (albeit a very rich one), but to
a view that combines data from multiple datasets, possibly hosted by multiple RIs.

In this scenario, there will be multiple distinct persistent identifiers for data objects
or collections. The objects and collections are curated by another entity than the sub-
scriber. For example, when the location of the data objects or collections changes, the
subscription remains valid assuming the curator updates the property of the identifier.

Moreover, there will be multiple sources from which to retrieve the data required for
processing, and it will be necessary to consider how to join as well as partition the data
in a way that accounts for factors not in play here; for example, where different datasets
are geographically dispersed and so workers may actually be deployed in different data
centres to ensure performance.

A further consideration emerges from a requirement for immutable semantics of
persistent identifiers. When the investigator finds a data set and metadata describing the
data through the discovery process, interpretation of using the corresponding identifier
in a subscription, and inclusion of an action which perceives the structural semantics of
the data, need to be considered.

6 Conclusion and Future Work

In this paper, we have presented a service prototype to define data subscriptions to
Euro-Argo data, connected to invoking a processing pipeline optimised with Dynamic
Real Time Infrastructure Planner (DRIP) solution. We demonstrated how DRIP could
be used to automatically select and provision infrastructure resources, deploy services,
and optimise the runtime quality for the EUDAT data subscription service based on a
study case involving the Euro-Argo research infrastructure.

Case Study: Data Subscriptions Using Elastic Cloud Services 305

The DRIP microservice suite optimises the runtime quality of service provided by
a data service deployed dynamically on a virtualised e-infrastructure, with a particular
focus on time-critical constraints such as deadlines for delivering data to a distributed
set of targets. We demonstrated how to select an optimal strategy for partitioning the
input tasks into workers using a modicum of expert knowledge concerning the specifics
of an application. The results clearly show the value of integrated systems such as
DRIP for dynamic optimisation of data services in research support environments, and
how with further investigation and development they might be used for a number of
similar applications cases involving distributed services and large, dynamic datasets.
Furthermore, we showed subscription matching in the presence of existing data life
cycle stages through which investigators can free up time and be notified of significant
events in subscribed data.

The demonstrated Data subscription service prototype is part of the EUDAT inno-
vation portfolio. The starting point for developing the subscription service has been
to provide a generic component that can be connected to different community front-
ends, and that can utilise different e-infrastructure platforms for automated processing.
This paper presents the successful Euro-Argo pilot case within ENVRIplus project that
demonstrates the interaction of several service components from several providers: the
Euro-Argo data portal, EUDAT B2SAFE data storage, the EUDAT data subscription
service, the DRIP solution, and EGI FedCloud. The EUDAT Collaborative Data Infras-
tructure has identified the potential in the subscription model and considers it as a
possible new addition to the data management services, depending on the interest of
user communities and availability of development resources.

Regarding the DRIP solution, it is necessary to acknowledge the difficulty still inher-
ent in building generic solutions for fully automated optimisation of infrastructure for
arbitrary data services. Some degree of application-specific customisation is still nec-
essary when applying infrastructure-level optimisation. However, further investigation
and classification of different kinds of data service will assist in identifying the best
mechanisms and heuristics for optimisation.

In this light, an important future work will be deploying DRIP as an optimisation
engine for a broader range of services provided on behalf of environmental RI—by
doing this, we will be able to explore a wider range of usage scenarios and so identify
new optimisation strategies for input partitioning and dynamic provisioning of infras-
tructure. For example, DRIP could consider how resource failures would have an impact
on deadlines and the strategies for swiftly reacting to such events. Moreover, integrat-
ing DRIP with data processing frameworks from specific research domains will also be
important for refining our approach, allowing us to work in complement with established
and new frameworks for scientific data handling. For example, automated data quality
of distributed data streams is an important aspect of many disciplines including envi-
ronmental science. Challenges such as in-time resource scaling and optimal resource
placement will be studied in the context of DRIP. This will add to continuing global
efforts to consolidate research infrastructure and other research support environments.

Acknowledgements. This work was supported by the European Union’s Horizon 2020 research
and innovation programme via the ENVRIplus project under grant agreement No 654182.

306 S. Koulouzis et al.

References

1. Koulouzis, S., et al.: Time-critical data management in clouds: challenges and a dynamic
real-time infrastructure planner (DRIP) solution. Concurr. Comput. Pract. Exp. e5269 (2019).
https://doi.org/10.1002/cpe.5269

2. Cacciari, C., Fares, M., Fiameni, G., Michelini, A., Danecek, P., Wittenburg, P.: Adoption of
the B2SAFE EUDAT replication service by the epos community. In: EGUGeneral Assembly
Conference Abstracts 16 (2014)

3. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The many faces of pub-
lish/subscribe. ACM Comput. Surv. (CSUR) 35(2), 114–131 (2003)

4. Gentzsch, W., Lecarpentier, D., Wittenburg, P.: Big data in science and the EUDAT project.
In: Global Conference (SRII) 2014, pp. 191–194 (2014), http://doi.org/10.1109/SRII.2014.34

5. Ahanach, E. el K., Koulouzis, S., Zhao, Z.: Contextual linking between workflow provenance
and system performance logs. In: 2019 15th International Conference on eScience (eScience),
pp. 634–635. IEEE, San Diego (2019). https://doi.org/10.1109/eScience.2019.00093

6. Hu, Y., et al.: Deadline-aware deployment for time critical applications in clouds. In: Rivera,
F.F., Pena, T.F., Cabaleiro, J.C. (eds.) Euro-Par 2017. LNCS, vol. 10417, pp. 345–357.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64203-1_25

7. Atkinson,M., Hardisty, A., Filgueira, R., Alexandru, C., Vermeulen, A., Jeffery, K., Loubrieu,
T., Candela, L., Magagna, B., Martin, P., et al.: A consistent characterisation of existing and
planned RIs. ENVRIplus deliverable 5.1, submitted on 30 April 2016

8. Wong,A., Keeley, R., Carval, T.: TheArgo datamanagement team (2013)Argo quality control
manual, version 2.8. Argo Data Management (2010)

9. Evans, K., et al.: Dynamically reconfigurable workflows for time-critical applications. In:
Proceedings of the 10thWorkshop onWorkflows in Support of Large-Scale Science -WORKS
2015, pp. 1–10. ACM Press, Austin, Texas (2015). https://doi.org/10.1145/2822332.2822339

10. Zhao, Z., et al.: Reference model guided system design and implementation for interoperable
environmental research infrastructures. In: 2015 IEEE 11th International Conference on e-
Science, pp. 551–556. IEEE, Munich (2015). https://doi.org/10.1109/eScience.2015.41

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in anymedium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

https://doi.org/10.1002/cpe.5269
http://doi.org/10.1109/SRII.2014.34
https://doi.org/10.1109/eScience.2019.00093
https://doi.org/10.1007/978-3-319-64203-1_25
https://doi.org/10.1145/2822332.2822339
https://doi.org/10.1109/eScience.2015.41
http://creativecommons.org/licenses/by/4.0/

	Case Study: Data Subscriptions Using Elastic Cloud Services
	1 Introduction
	2 Data Subscription in RIs
	2.1 A Data Subscription Scenario in EuroArgo
	2.2 Generalising the Service to Different RIs
	2.3 Data Subscription Model

	3 Architectural Design and Prototype
	3.1 Architecture Design
	3.2 Infrastructure Customisation and Performance Optimisation

	4 Experimental Results
	4.1 Input Partitioning
	4.2 Deadline-Aware Auto-Scaling

	5 Discussion
	6 Conclusion and Future Work
	References

