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Abstract. Network embedding is a method to learn low-dimensional
representations of nodes in networks, which aims to capture and pre-
serve network structure. Most of the existing methods learn network
embedding based on distributional similarity hypothesis while ignoring
adjacency similarity property, which may cause distance bias problem
in the network embedding space. To solve this problem, this paper pro-
poses a unified framework to encode distributional similarity and mea-
sure adjacency similarity simultaneously, named DDNE. The proposed
DDNE trains a siamese neural network which learns a set of non-linear
transforms to project the node pairs into the same low-dimensional space
based on their first-order proximity. Meanwhile, a distance constraint is
used to make the distance between a pair of adjacent nodes smaller than
a threshold and that of each non-adjacent nodes larger than the same
threshold, which highlight the adjacency similarity. We conduct extensive
experiments on four real-world datasets in three social network analysis
tasks, including network reconstruction, attribute prediction and recom-
mendation. The experimental results demonstrate the competitive and
superior performance of our approach in generating effective network
embedding vectors over baselines.

Keywords: Network embedding · Social network · Metric learning

1 Introduction

Network embedding, as one of network representation learning methods, has
been successfully applied in a wide variety of network-based analysis tasks, such
as link prediction, network reconstruction, node classification, etc. Different from
traditional adjacency matrix representation, which suffers from high dimension-
ality and data sparsity, network embedding aims to represent each node in a
given network as a vector in a low-dimensional latent space.
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Fig. 1. Global adjacency similarity and distance bias: Figure 1(a) and Fig. 1(b) are the
small part of the given network. Figure 1(c) to Fig. 1(f) are the embedding visualization
of Figure 1(a) and Fig. 1(b). Each point indicates one neighbor of ego-node (triangle).

In order to well preserve the structure of a given network, existing researches
encode local proximity, and inherent properties to learn network embedding
[1,6,8]. Typically, Node2vec, DeepWalk and Line [2,7,9] approximate nodes’
local proximity, including the first- and second-order proximity, via random
walks or neural network models with specific objective functions. The essence
is to learn the vector representation of a node by predicting its neighborhood,
which is inspired by the word embedding principle. Based on this principle, the
vector representation satisfies the distributional similarity property of network,
i.e. nodes with similar neighborhoods are closer in the network embedding space.

In practical applications, there is another fundamental property of network
besides distributional similarity, called adjacency similarity. adjacency similarity
means that a pair of nodes are similar in some aspects. For example, in the
link prediction task, node pairs with higher similarity are more likely to be
considered as adjacent nodes. In the label propagation task, the adjacent nodes
are considered sharing the common labels. So, adjacent nodes should be closer
than non-adjacent ones in the network embedding space. However, in most of
previous embedding learning methods, this adjacency similarity is ignored, which
may generate distance bias in the network embedding space [4].

Figure 1 shows an example of what is the distance bias. In Fig. 1(a), node
v0 and v1 share the same neighbors, but there is no link between them. In con-
trast, we add a link between node v0 and v1 in Fig. 1(b). As a result of previous
method (taking DeepWalk as an example), the distance between v0 and v1 in
Fig. 1(a) is smaller than that in Fig. 1(b) in the network embedding space (shown
in Fig. 1(c)). However, if adjacency similarity is taken into consideration, the dis-
tance between v0 and v1 in Fig. 1(a) would be larger than that in Fig. 1(b) (shown
in Fig. 1(e)). We call this inaccurate estimation of distance between two
nodes as a distance bias problem.
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To address the distance bias problem, we propose a novel node embedding
method to simultaneously preserve the distributional similarity and adjacency
similarity property of the network. This model consists of two modules: the Node
Encoder and the Distance Metric-learner. For a given network, Node-encoder
encodes the first-order proximity of the nodes using a neural network model. In
the input layer, each node is represented as a sequence of its neighbors, and then
it goes through multiple non-linear transformation in hidden layers. Because
different neighbors contribute to similarity measurement differently, we adopt
the attention mechanism to adaptively assign weight to different neighbors. The
output is node embedding representation, and nodes with common neighbors
will gain similar encoding. The Distance Metric-learner measures the distance
of pair-wise node embedding vectors, which aims to assign the adjacent nodes-
pair a smaller distance to highlight the adjacency similarity. For this purpose,
we use a well-designed objective function to pull the node toward its neighbors,
and push non-adjacent nodes further away. Based on this, the structure of the
network would be preserved better in the embedding space.

To verify the effectiveness of our approach, we conduct experiments through
network reconstruction, attribute prediction and recommendation tasks on four
real-world datasets. We take five state-of-the-art embedding algorithms as com-
parative methods. The experimental results show that our approach is able to not
only solve the distance bias problem, but also outperform comparative methods
in all above tasks, especially in network reconstruction.

In summary, the main contributions of this paper are as follows:

– We analyze the distance bias problem in traditional network embedding meth-
ods, which is induced by disregarding the adjacency similarity property.

– We propose a discriminative distance metric learning method to preserve the
adjacency similarity property of networks and improve the effectiveness of
node representations.

– We evaluate our method on three tasks over four datasets and experimental
results show that our approach achieves a significant improvement.

2 Proposed Approach

In this section, we present the details of the proposed network embedding based
on neural network and attention mechanism. Firstly, we briefly introduce the
definition of the problem. Then we discuss the details of the proposed discrimi-
native distance metric learn model DDNE. Finally, we present some discussion
and implementation of our objective function.

2.1 Preliminaries

Notations. Given a network G = (V,E), V = {v1, ..., vV } represents the set of
nodes and E = {eab}n

a,b=1 represents the set of edges. We define the adjacency
matrix of G as X = [Xab], where Xab = 1 if va and vb linked by an edge,
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otherwise, Xab = 0. Accordingly, given a node pair va, vb in the network, Xab is
also the adjacency relation label of this node pair. D is a diagonal matrix, where
Daa represents the degree of va.

Distributional Similarity. In this paper, the distributional similarity describes
the relationship between node and its first-order proximity. For a node vi, N(vi)
denotes a set of nodes directly connected to vi. The distributional similarity of
vi is generated by its neighbors N(vi), which means that nodes with similar
neighborhoods are closer in the network embedding space.

Adjacency Similarity. In the network embedding space, the learned embed-
ding vectors of two nodes are expected closer if they are adjacent. Accordingly,
for each node pair, if Xij = 1, there exists a larger adjacency similarity than
those without adjacency relation.

Network Embedding. Given a network denoted as G = (V,E), network
embedding aims to learn a mapping function f : vi → ui ∈ Rd, where d � |V |.
The objective of our method is to make the distance between adjacent node pair
closer than those node pairs without adjacency relation in the embedding space,
while the distance between node pairs with similar neighbors(distributional sim-
ilarity) is also closer in this space.

2.2 DDNE

Framework. In this paper, we propose a Discriminative Distance metric learn-
ing framework to perform Network Embedding (DDNE), as shown in Fig. 2. In
details, this framework consists of two modules: Node Encoder and Distance
Metric-learner. Node-encoder encodes each node into embedding vector based
on its first-order proximity, while the Distance Metric-learner measure the dis-
tance of pair-wise node embedding vectors with some constraints to eliminate
the distance bias problem.

Node Encoder. Formally, for ego-node vi with T neighbors N(vi), his neigh-
bors can be modelled as a sequence which is the input vector of neural network:

R(vi) = (r1i , ..., rT
i ),

where rt
i denotes network structure information about t−th neighbor, which is

lookup from the adjacency matrix of network X. For a given node vi, the output
of hidden layer ht

i(t = 1, ..., T ) encode the representation of vi’s t-th neighbor.

h
(k)t
i = σ(W (k)rt

i + b(k)), (1)

where k denotes the k-th layer of our neural network, k ∈ (1,K). Then the
first-order proximity of node vi is:

[h(K)1
i , ..., h

(K)T
i ]
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Fig. 2. Framework of the DDNE model.

The embedding vector of node is a sum of its first-order proximity elements,
which makes sure that nodes with common neighbors will gain similar encoding
(local distributional similarity). As different neighbors contribute to similarity
measurement differently, as assumed in Sect. 1, we adopt the attention mecha-
nism to adaptively assign weight to different neighbors.

zt
i = σ(Wph

t
i) (2)

αt
i =

exp(zt
i × Dii

|Dii−Dtt+β| )
∑T

t′=1exp(zt′
i × Dii

|Dii−Dt′t′+β| )
(3)

ui =
T∑

t=1

αm
i · hm

i (4)

where Wp is a trained projection matrix; Dii and Dtt are the degree of node vi

and vt
i , and ui is the embedding vector of node vi

In the attention phase, we calculate the weight αt
i of neighbor vt

i by Eq. (3),
which makes sure that the weight is larger when the degree of vt

i is comparable
with vi. Node embedding vector ui is computed by Equation (4). The advan-
tage of our attention model is that it can dynamically learn the weight of each
neighbor according to its degree with the ego-node (same, large or low).
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Distance Metric-Learner. Embedding vectors generated by distributional
similarity based methods may generate distance bias problem. That is to say,
the distance between non-adjacent nodes is closer than adjacent nodes, which
does not conform with reality. In order to eliminate this problem, we measure
the adjacency similarity using distance metric learning method, which aims to
pull the distance between adjacent nodes-pair closer to highlight the adjacency
similarity. For this purpose, we propose a distance constraint to restrict the dis-
tance margin between node pair with adjacency relation (positive node pair)
and node pair without adjacency relation (negative node pair). Based on this,
the adjacency similarity would be measured and the distance bias problem in
the embedding space would be eliminated, as shown in Figure 3.

Distance Constraint: The distance between positive pair should be smaller
than a pre-specified margin m (m > 0) and the negative pair should be larger
than m. Thus, the constraint between margin m and d(vi, vj) is that:

Dij =

{
d(vi, vj) < m if positive node pair: Xij = 1
d(vi, vj) > m if negative node pair: Xij = 0

(5)

where d(vi, vj) is
d(vi, vj) = ‖ui − uj‖22

m

positive
negative

DeepWalk DDNE

Fig. 3. Distance Constraint: there are two embedding spaces which are generated by
DeepWalk and DDNE respectively. We sample seven nodes in each space, where one of
them is the ego-node (purple triangle) and others are the neighbors (red circle) or non-
adjacent nodes (green rectangle) of the ego-node. In DDNE, a distance constraint is
used to make the distance between a pair of adjacent nodes smaller than a threshold and
that of each non-adjacent nodes larger than the same threshold. Under this constraint,
our method eliminates the bias problem existed in DeepWalk. (Color figure online)

Objective Function. Formally, we transform the above distance constraint
into the following optimization problem:

lij =

{
max(0, d(vi, vj) − m)2 Xij = 1
max(0,m − d(vi, vj))2 Xij = 0

(6)
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where m and d(vi, vj) are represent the distance margin and the distance between
vi and vj , respectively. The loss function of Eq. (5) pulls the nodes toward vi’s
neighbor, and pushes non-adjacent nodes further away.

Accordingly, for all node pairs, the objective function of DDNE is that

L =
1

2N

∑

ij

lij (7)

3 Experiment

In this section, we firstly introduce datasets and baseline methods in this work.
We then evaluate our proposed methods in three network analysis tasks: net-
work reconstruction, attribute prediction and recommendation. Finally, we ana-
lyze the quantitative experimental results and investigate the sensitivity across
parameters.

3.1 Datasets and Baseline Methods

Datasets. We conduct our experiments on four networks, including two social
networks, one citation network and one recommendation network. Table 1 shows
the detailed information about those four networks. The description of those
four networks are shown as following:

– Google+1 is one of social networks. In which, nodes represent users and
each has gender, university title, job title, last-name and workspace as its
attribute.

– Sina2 is the social network. In this network, users have attributes such as
following number, self-introduction, constellation, age and location.

– DBLP3 is a citation network in which nodes refer to papers and edges rep-
resent the citation relationship among papers. Each paper has attributes like
title, authors, publication venue and abstract.

– Movieslens4 is a recommendation network in which nodes refer to users and
movies respectively and edges represent viewing record between users and
movies. Each user has age, gender and occupation as its attribute information.

1 https://snap.stanford.edu/data/index.html.
2 https://www.weibo.com/.
3 https://snap.stanford.edu/data/index.html.
4 https://grouplens.org/datasets/movielens/100k/.

https://snap.stanford.edu/data/index.html
https://www.weibo.com/
https://snap.stanford.edu/data/index.html
https://grouplens.org/datasets/movielens/100k/
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Table 1. The statistic of datasets

Data Nodes Edges Categories

Google+ 3,126 22,829 7

Sina 29,418 800,174 8

DBLP 244,021 4,354,534 9

Movieslens 943 100,000 4

Baseline Methods. We compare DDNE with the following baseline methods:

– SDNE [13] is the best topology-only network embedding method, which
introduces an auto-encoder algorithm to learn the node embedding vector
and considers the first-order and second-order proximities information.

– LINE [9] is a popular topology-only network embedding method, which also
considers the first-order and second-order proximities information.

– DeepWalk [7] is a topology-only network embedding method, which intro-
duces the Skip-gram algorithm to learn the node embedding vector.

– GraphGAN [10] is a topology-only network embedding method, which intro-
duces the GAN network to learn the node embedding vector.

– DDNE is our proposed method using neural network (NN or LSTM) to
model the distributional similarity and distance metric learning to model the
adjacency similarity, which include DDNENN and DDNELSTM.

– Sigmoid: In this method nodes are represented by the local proximity
through neural network (NN or LSTM) and the network structure is pre-
served through the sigmoid loss function, which includes SNN and SLSTM.

Parameter Setup. For all datasets, the dimension of the learned node embed-
ding vector d is set to 128. In SDNE method, parameters are set to the same
as given in the original paper. In DeepWalk method, the parameters are set as
following: window size w = 15, walks per node r = 70 and walk length t = 35.
In LINE, we set negative = 8 and samples = 10 million. And in DDNE method
the parameters are set as margin = 1 and learning rate η = 0.01.

3.2 Distance Bias Analysis

We utilize the embedding space generated by various network embedding meth-
ods to analyze the distance bias problem. Then we sample 100 positive node pairs
in each network dataset and 100 negative node pairs. The average Euclidean dis-
tance is used to evaluate the performance of each embedding methods, as shown
in Fig. 4.

From Fig. 4, we can see some phenomenon:

– Compared with baselines, DDNE can guarantee consistency of the phe-
nomenon that the distance between positive node pairs is closer than the
distance between negative node pairs on different datasets. For example, with
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Fig. 4. Average Euclidean distance on networks.

the sigmoid method, the distance between positive node pairs on Sina dataset
is 2.0 but the distance between negative node pairs is 1.5, this distance bias is
obviously contrary to cognition. Similarly, LINE and SDNE on DBLP, Deep-
Walk on Sina will also result in distance bias.

– In contrast, the distances between positive node pairs with DDNE are smallest
on all datasets, which means that the embedding vectors obtained by DDNE
can better reflect the network structure.

3.3 Network Reconstruction

As the embedding of a network, the learned embedding feature space is expected
to well reconstruct the network. Generally, a good network embedding method
should ensure that the learned node’s embedding vectors can preserve the origi-
nal network structure. That is also the reason why we conduct this experiment.
We use a social network Sina and a paper citation network DBLP as embed-
ding networks. Given a network, we use different network embedding methods to
learn the node embedding vectors in feature space Rd. The network reconstruc-
tion task is reconstructing the network edges based on distances between nodes
in the feature space Rd. We denote the probability of existing edges between vi

and vj is that:

pi,j =
1

1 + ed(ui,uj)
(8)
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Besides, a threshold β is pre-defined and an edge eij will be created if pi,j > β.
As the existing edges in the original network are known and can serve as the
positive label-data, while the equal amount node pairs which do not exist edges
are generated and can serve as the negative label-data. We can evaluate the
reconstruction performance of different embedding methods. The accuracy is
used as the evaluation metrics and the result is presented in Fig. 5.

(a) Sina (b) DBLP

Fig. 5. Precision of network reconstruction on Sina and DBLP.

From Fig. 5, we can see that DDNE achieves the best performance when
β = 0.6, which improves the accuracy by 6% at most comparing to the best
baseline SDNE. In addition, our method is more sensitive to the pre-defined
threshold β, which indicates that DDNE preserves the network structure better
than other methods because there is a clearly distance margin between positive
node pairs and negative node pairs in the embedding space generated by DDNE.

Parameter Sensitive Analysis. DDNE has two major parameters: the dimen-
sion of embedding vector d and the margin m. We only present the result on
Sina and DBLP and omit others due to space limitation. In this experiment,
d varies from 10 to 300 and m varies from 0.1 to 2. Figure 6(a) and 6(b) show
the accuracy resulted by our method with different embedding dimension. When
the embedding dimensions grow, the performance firstly increases significantly,
and then does not change drastically for both DDNENN and DDNELSTM as
the dimension rose to d = 128. Besides, on DBLP, the accuracy even increases
significantly when the embedding dimensions increases. The figure also shows
that DDNENN beat the best performance and is able to obtain a fairly better
accuracy when d = 128.

The margin m also influence the attribute prediction performance, as shown
in Fig. 6(c) and 6(d). The DDNENN is more sensitive to the margin value m.
This is largely due to the fact that in DDNENN , the local proximity is encoded
by the neural network but not the sequence model. The former could encode local
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(a) Embedding Dimension d on Sina (b) Embedding Dimension d on DBLP

(c) Distance Margin m on Sina (d) Distance Margin m on DBLP

Fig. 6. DDNE parameter analysis

proximity better because, for the neighborhood, the sequence characteristics do
not obvious. Thus, the influence of m is manifested in the DDNENN .

3.4 Attribute Prediction

We utilize the vectors generated by various network embedding or social network
embedding methods to preform profile prediction task. User always cancel their
attribute information or no attributes were filled in because personal attributes
often involve users’ privacy issues, which results in a problem that user’s essential
information can not be obtained directly. Thus, attribute prediction task can
solve this problem and we treat this task as a classification problem. In our
experiment, the embedding vector of each node (user) is treated as its feature
vector, and then we use a linear support vector machine model to return the
most likely category(value) of the missing attribute. For each dataset, we predict
occupation. The training dataset consists of α- portion nodes which are randomly
picked from the network, and the rest of users are the test data.

Occupation Prediction. We make the experiment about occupation predic-
tion. The result of this experiment is shown in Table 2.
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Table 2. Precision of occupation prediction (%)

Methods α SDNE DeepWalk LINE GraphGAN DDNEN DDNEL SN SL

Google+ 30% 52.3 46.8 40.9 52.2 54.6 54.3 51.4 51.3

40% 51.9 46.2 50.1 55.4 56.3 55.9 53.1 53.2

Sina 30% 62.9 61.9 64.8 65.4 65.4 63.9 61.8 61.5

40% 65.3 63.1 66.2 67.1 68.3 67.5 65.2 66.0

Movieslens 30% 56.4 53.9 55.6 57.3 59.2 58.7 56.1 56.2

40% 58.5 55.2 57.8 59.9 61.3 60.5 58.2 58.9

One can see that DDNE also outperforms other embedding methods. Com-
paring to the best baseline GraphGAN, our method improve the accuracy by
2.4% at most. Besides, DDNE performs better than Sigmoid which demon-
strates that the effective of our distance metric leaning objective function can
help preserve the network structure better.

3.5 Recommendation

In this section, we concentrate on the recommendation task and conduct the
experiment on Movieslens and DBLP datasets. Given a snapshot of the cur-
rent network, recommendation tasks refers to recommend new item (movies or
papers) that will be picked by users or added in the future time. In order to
process this recommendation task, we remove a portion of existing links from
the input network. Based on the residual network, nodes embedding vectors are
learned by different embedding methods respectively. Node pairs in the remove
edges are considered as the positive samples. We also randomly sample the same
number of the node pairs which are not connected as the negative samples. Pos-
itive and negative samples form the balanced data set. Given a node pair in
the sample dataset, we compute the cosine similarity as the score function. The
higher node pair score, the greater the possibility of being recommended. Area
Under Cur (AUC) is used to evaluate the consistency between the labels and
the similarity scores of the samples.

Table 3. AUC of recommendation

Methods SDNE DeepWalk LINE GraphGAN DDNEN DDNEL SN SL

Movieslens 65.9 62.3 63.6 64.8 79.8 78.9 71.2 71.9

DBLP 78.7 75.2 76.1 76.8 88.9 88.2 81.0 80.6

From Table 3, we can see that DDNE performs best in both movies and papers
recommendation. Compared to the SDNE, DDNE improves the AUC score by
13.9% in Movieslens and 10.2% in DBLP, which demonstrates the effectiveness of
DDNE in learning good node embedding vectors for the task of recommendation.
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4 Related Work

Network embedding aims to learn a distributed representation vector for each
node in a network. Most of existing works can be categorized into three cat-
egories: matrix factorization based, random walking based and deep learning
based methods. Matrix factorization based methods first express the input net-
work with a affinity matrix into a low-dimensional space using matrix factor-
ization techniques, including singular value decomposition which seeks a low-
dimensional projection of the input matrix, and spectral decomposition (eigen-
decomposition) [3] which uses a spectral decomposition of the graph Laplacian
to compute the low-dimensional representation of input data. However, matrix
factorization based methods rely on the decomposition of the affinity matrix,
which is time-consuming when the data is large real-world networks.

Random Walk is an optimization algorithm in Graph, which can compute
the globally optimal solution. As the first attempt, DeepWalk [7] introduces the
word2vec algorithms(skip-gram) into learn the embedding of nodes in graph.
Another famous work is Node2vec [2], which is a variant of Deepwalk. The most
difference between those two is that node2vec changes random walk into biased
random walk, and then it can select the next node in an heterogeneous way.

The last category is Deep learning based methods. Tang et al. propose
LINE [9], which optimizes a carefully designed objective function through maxi-
mizing edge reconstruction probability. SDNE [13] is a deep network embedding
method based on auto-encoder, which captures the highly non-linear network
structure and exploits the first-order and second-order proximities to preserve
the network structure. GraphGAN [10] is a framework that unifies generative
and discriminative thinking for network embedding. DKN [12] learns knowledge
graph embedding by TransX. The author used a CNN framework for combin-
ing word embedding and entity embedding and present an attention-based CTR
prediction model meanwhile. SHINE [11] is a network embedding on signed het-
erogeneous information network, which is also based on auto-encoder.

5 Conclusion

In this paper, we introduce discriminative distance metric learning method to
solve the distance bias problem. To adopt the adjacency similarity property, our
model is able to preserve the network structure more efficiently. Experiments on
three network analysis tasks verified the effectiveness of our approach. In the
future work, we will research more deeply on the node encoder. On one hand,
we will compare with other deep neural network models, such as CNN or deep
RNN. On the other hand, we will try to integrate distributional similarity and
adjacency similarity simultaneously in the node encoding phase.

Acknowledgement. This work was sponsored by the National Key R&D Program
of China (NO. 2018 YFB1004704), the National Natural Science Foundation of China
(U1736106).
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