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Abstract. Prediction of the energy consumption is a key aspect of home energy
management systems, whose aim is to increase the occupant’s comfort while
reducing the energy consumption. This work, employing three years measured
data, uses radial basis function neural networks, designed using a multi-
objective genetic algorithm (MOGA) framework, for the prediction of total
electric power consumption, HVAC demand and other loads demand. The
prediction horizon desired is 12 h, using 15 min step ahead model, in a multi-
step ahead fashion. To reduce the uncertainty, making use of the preferred set
MOGA output, a model ensemble technique is proposed which achieves
excellent forecast results, comparing additionally very favorably with existing
approaches.

Keywords: Home consumption forecasting � HVAC consumption
forecasting � Prediction methods � Neural networks � Multi-objective
optimization � Home energy management systems � Ensemble modelling

1 Introduction

The consumption of energy has increased substantially in the building sector in the past
years, fueled primarily by the growth in population, households and commercial floor
space. For this reason, Home Energy Management Systems (HEMS) are becoming
increasingly important to invert this continuously increasing trend. HEMS offer
advantages to both building occupants and electricity suppliers. For the former, they are
a means to reduce energy consumption in a household, or, perhaps more important to
the occupants, by reducing their electricity bill. For suppliers, making use of smart grid
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technology, HEMS enable the implementation of several Demand Response
(DR) mechanisms [1].

If the HEMS is able to control the operation of devices in a home, it is necessary to
separate the consumption of non-deferrable (or non-schedulable) appliances, from
deferrable (or schedulable) devices. As the efficiency of DR techniques can be
improved making use of forecasts of electricity consumption (and electricity generation
if renewables are employed), then both the consumption of schedulable and non-
schedulable appliances must be predicted [2].

Methodologies based on computation intelligence are the ones that are most used
for short-term load forecasting. However, a certain degree of uncertainty is typically
found in those forecasts [3], which typically can be reduced using ensembles of models
[4].

1.1 Literature Review

Computational intelligence models are developed by measuring the inputs and outputs
of the system and fitting a linear or non-linear mathematical model to approximate the
operation of the building [5]. These models are based on the implementation of a
function deduced only from samples of training data describing the behavior of a
specific system, being this way well suited when physical relations are not known [6,
7]. For buildings, the advantage of computational intelligence models over physical
methods is that the former do not require knowledge of the building geometry and
physical phenomena to deduce an accurate prediction model. However, the lack of
proper data can become an issue for the use of computational learning methods [7],
because the accuracy is strongly depending on the quality and amount of available data.

Reviews of prediction of energy consumption in buildings with computational
intelligence methods can be found, for instance, in [8, 9]. According to the mentioned
works, in which more than 100 cases were analyzed, these techniques are proven to be
very effective. Among these methods, Artificial Neural Networks (ANN) are the pri-
mary models employed to evaluate and predict energy consumption [10–12]. The main
input data used to feed this technique may be segmented in two main categories:
weather-related parameters and building-related parameters. Concerning the weather-
related parameters, atmospheric temperature is the parameter most used as an exoge-
nous variable, but also solar radiation availability and relative humidity are employed.
Considering the building related parameters, the total building energy consumption
data is the most used variable (as endogenous variable), followed by parameters as
occupancy, usage of devices, indoor temperatures and fenestration characteristics.

According to the partition of electricity considered, the prediction of the electric
energy consumption may have different focus. Most studies deal with the whole-
building energy consumption [13–15]; other focus only on heating demand [12, 16],
only on cooling demand [17], on both heating and cooling [18], and also on the
detailed segmentation considering devices and other uses as water heating [19].

The prediction horizon of reviewed studies was segmented in hourly fractions,
hour, day, month and year, with varying prediction time steps (most hourly for one-day
as a prediction horizon, and daily for the one-month horizon).
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The validation methods of the prediction models also varied between the use of
analytical proofs, experimental analysis, model comparison, reference comparison and
simulation comparison, being the first two the most used. Additionally, an extensive
review concerning categorization of forecasting parameters may be found in [20, 21].

1.2 Objectives and Work Organization

This work proposes the use of an ensemble of models to be used for producing
forecasts of home electric consumption data, considering total consumption, of
schedulable equipment, and of non-schedulable devices, to be employed in HMES
schemes. The models employed are Radial Basis Function (RBFs) Neural Networks
models, designed using a Multi-Objective Genetic (MOGA) algorithm.

MOGA has been employed successfully in a variety of applications (please see
[22–26] to name just a few). In all these works, results obtained with MOGA have been
compared with other available methods, relevant to the application at hand. The
objective of this paper is not to compare MOGA with other methods for forecasting
energy, but to verify if MOGA results could be improved with ensemble averaging of
the models in the non-dominated set.

Experimental data obtained from the Honda Smart Home US, located in Davis,
United States, are employed as a case study.

The paper is divided in five sections. Section 1 introduces the scope of the work,
objectives and work organization, and a brief literature review. Section 2 presents the
description of the case study. Section 3 introduces the MOGA methodology, and its
use for ensemble averaging. Section 4 presents and discusses the results. Conclusions
are drawn in Sect. 5.

2 Honda Smart Home US – Case Study Description

This work uses data obtained in the Honda Smart Home (HSM) US [22]. This building
is located on the West Village campus of the University of California, Davis. The
building is a classified as a Net Zero Energy Building, used sustainable construction
materials, has a radiant floor and night ventilation. Electric appliances and lighting have
high efficiency, and the HVAC system employs a ground-source heat pump. The
household has a complex home energy management system to control the electric
systems. Details about the construction, electric appliances and data acquisition system
details can be found in its website [22].

The group responsible for the HSM makes available experimental data every six
months. Based on the public available data, some studies were developed, focused
mainly on the integration between electric vehicles and the smart home, and the home
management systems of the HVAC solutions, as well as construction practices. The
present work uses the HSM data to design the prediction models and test their accu-
racies (Fig. 2).

To develop the present study, four variables are used from the HSM data set. They
are the total average electric power demand, the HVAC power demand, all the “other”
electric loads except the HVAC (equipment, lighting, energy management system
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equipment, and other miscellaneous loads), as well as the outdoor temperature. Fig-
ure 2 presents the data from sensors, with a 15-min average of 1-min sampled data,
from January 1st 2016 to December 31st 2018. During the considered three-year period,
the power hits a maximum of 8,57 kW, a minimum of 0 kW and a mean value of
0,99 kW. During the same period, the outside temperature has a maximum of 42,82 °
C, a minimum of −2,00 °C and an average temperature value of 17 °C.

3 Methodology of Predictive Model Design

The data set is composed by 15 min averages of power consumption of the HSM (total,
HVAC, and others) and outdoor temperature, during the three years (2016, 2017 and
2018). Additionally, a codification of each day, within a week, considering holidays
and their position within the week [28], was employed to associate the patterns of
consumption to the calendar days. The model intends to predict the power consumption
for a prediction horizon of 12 h, using steps of 15 min, in a multi-step fashion.

RBF models are employed, in a Nonlinear AutoRegressive with eXogenous inputs
(NARX) configuration. Two exogenous variables (v2 – outdoor temperature, v3 – day
code) and their delays are used as inputs, together with delays of the modelled variable
(v1 - electric power).

Three problems are considered, aiming to model the total demand (P1), HVAC
demand (P2) and “other” demand (P3). As it will be explained later, two different
models will be designed for each problem. As those models will be subsequently used

Fig. 1. Architecture of the Honda Smart Home US. Source: [27]

Fig. 2. HSM average data of power and temperature.
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in a predictive control scheme, the main goal of the models is to obtain a small Root
Mean Square Error (RMSE) over the chosen prediction horizon. Notice that a 15 min
time-step is employed to meet the technical requirements for interchanging energy
information between prosumer and the energy suppliers [29] in the Portuguese market.

3.1 Construction of Data Sets

This work uses the ApproxHull algorithm, proposed in [30], to select data for training,
testing and validation sets used in model design. ApproxHull is an incremental ran-
domized approximate convex hull (CH) algorithm, applicable to high dimension data,
that treats memory and computation time efficiently The convex hull vertices obtained
are compulsory introduced in the training set, so that the model can be designed with
data covering the whole operational range.

Very briefly ApproxHull starts with an initial convex hull and subsequently the
current convex hull grows by adding the new vertices into it. A pre-processing phase is
performed on the original data set before applying the convex hull, scaling all data in
the range of [−1,1]. The maximum and minimum of each dimension form the initial
convex hull vertices. Then, it generates a population of k facets based on the current
convex hull, selects the furthest points in the current facets population as new vertices
of the convex hull, and integrates them in the current convex hull. A detailed expla-
nation of ApproxHull may be found in [30].

The data set for the P1 problem is composed of three full years of data, from
January 2016 to December 2018, while the data sets for P2 and P3 start in April 2016
due to the lack of HVAC data in the first three months of 2016. To each variable [v1,
v2, v3], the admissible lags are associated to three periods: period 1 (lags immediately
before the current sample), period 2 (lags around one day before), and period 3 (a week
before). The admissible lags employed are: P1 - [1, 20], P2 - [4, 4, 0], P3 - [4, 0, 0].

A training set (Str) and a testing set (Ste) are used in MOGA execution (please see
the next Section). When MOGA stops its execution, the non-dominated or preferable
(if restrictions are employed) set of models is evaluated on a third data set, the vali-
dation data set (Sva). The size of Str is 60% of the whole set, and Ste and Sva have a size
of 20% each. All convex hull points are incorporated in the training set. These sets are
supplied to MOGA.

3.2 Multi-objective Genetic Algorithm Design

The model design is considered as a multi-objective optimization problem, with pos-
sible restrictions and priorities associated to the objectives. Genetic algorithms can
evolve trained model structures that meet pre-specified design criteria in acceptable
computing time. Globally, the ANN structure optimization problem can be viewed as
sequence of actions undertaken by the model designer, which should be repeated until
pre-specified design goals are achieved. These actions can be grouped into three major
categories: problem definition, solutions generation and analysis of results (for a
detailed explanation of the design framework used, MOGA, please consult [6]).

In this problem, for the former category, the objectives to minimize are the RMSEs
of the training set, of the testing set, the model complexity (O(l)) and the forecasting
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error (ep). This last criterion is obtained as described in Eq. 1, where D is an additional
simulation set, with p data points, and E is an error matrix (Eq. 2):

ep D;PHð Þ ¼
XPH

i¼1

RMSE E D;PHð Þ; ið Þ ð1Þ

E D;PHð Þ ¼
e 1; 1½ � e 1; 2½ � � � � e 1;PH½ �
e 2; 1½ � e 2; 2½ � � � � e 2;PH½ �

..

. ..
. . .

. ..
.

e p� PH; 1½ � e p� PH; 2½ � � � � e p� PH;PH½ �

2
6664

3
7775 ð2Þ

MOGA is executed with 100 generations, population size of 100, proportion of
random emigrants of 0.10 and crossover rate of 0.70. The admissible range of neurons
vary from 2 to 10, while the possible inputs vary from 2 to 20, out of the possible 68.
As MOGA employs a multi-objective formulation, its results are a set of non-
dominated models or preferable models, if restrictions are employed. From this set, the
final selection of one model is then performed based on the objective values obtained,
eva and ep.

Taking into consideration the unconstrained results, a second design is performed,
with constraints on some of the objectives. These are called Problems b, in contrast
with the unconstrained ones, denoted as a. The restrictions considered for P1b, P2b and
P3b were, respectively: RMSE(etr). = [0,13; 0,25; 0,12]; RMSE(ete) = [0,13; 0,25;
0,12] and O(l) = [200; 110; 120].

3.3 Ensemble Averaging

The output of MOGA is not a single solution, but a set of non-dominated models (or
preferable models, if restrictions are used). This last set of models can be employed for
ensemble averaging. As the forecasting criterion (1) is not used as a MOGA objective,
in a few situations, models within the set can deliver a bad prediction performance.
This can be solved if the median of the results obtained in the dominant (or the
preferable) set, and not their mean value, is used as output of the ensemble.

4 Results and Discussion

4.1 ApproxHull

The results obtained by the ApproxHull algorithm, are presented in Table 1. As pre-
viously explained, the number of samples correspond to the available data for each
problem description. The number of features is equal for the three problems, and the
ratio used for sets distribution is constant as well.
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4.2 Non-dominated Sets

Considering scaled data within the range [−1,1], the minimum results of etr, ete and eva,
for the non-dominated models (P*-a), or preferable sets (P*-b) are presented in Table 2.
There, the mean value is used for O(l). It is possible to conclude that larger RMSE
errors are obtained for the P2 problem, reflecting the modelling difficulty of the HVAC
operation. The smallest values are obtained for P3; however, it should also be noted
that the values of P1 are only slightly higher than the P3.

4.3 Selected Models

Equation (3) to (8) present the selected models for P1-a, P1-b, P2-a, P2-b, P3-a and P3-b,
respectively. Further details and performance values obtained with the selected models
are presented in Table 3. In this table wk k2 denotes the 2-norm of the linear parameters,
which is related with the model condition.

Table 1. ApproxHull results.

Problem Samples Features CH Vertices Str Ste Sva
P1 104519 69 1711 62711 20903 20905
P2 95780 69 10288 57468 19156 19156
P3 95780 69 3145 57468 19156 19156

Table 2. Non-dominated/preferable sets statistics

Problem etr ete eva O lð Þ
P1-a 0,1218 0,1147 0,1149 70,8
P1-b 0,1284 0,1147 0,1148 28,0
P2-a 0,1974 0,1770 0,1770 57,0
P2-b 0,1979 0,1774 0,1771 33,0
P3-a 0,1134 0,1120 0,1139 68,6
P3-b 0,1140 0,1123 0,1137 50,2

Table 3. Selected models results.

Problem Features Neurons O lð Þ wk k2 ete etr eva ep
P1-a 18 8 152 56,89 0,1246 0,1170 0,1174 9,46
P1-b 19 9 180 29,53 0,1604 0,1524 0,1545 9,34
P2-a 3 2 8 4,61 0,2296 0,2044 0,2071 19,29
P2-b 5 2 12 5,17 0,2289 0,2038 0,2066 18,74
P3-a 18 9 171 21,82 0,1149 0,1131 0,1153 2,02
P3-b 6 5 35 2,33 0,1652 0,1629 0,1673 1,39
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v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 2Þ; v1ðk � 3Þ; v1ðk � 4Þ; v1ðk � 18Þ; v1ðk � 96Þ;
v1ðk � 669Þ; v2ðk � 3Þ; v2ðk � 6Þ; v2ðk � 10ÞÞ ð3Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 12Þ; v1ðk � 13Þ; v1ðk � 17Þ; v1ðk � 18Þ;
v1ðk � 92Þ; v1ðk � 96Þ; v1ðk � 97Þ; v1ðk � 672Þ; v1ðk � 673Þ;
v1ðk � 675Þ; v2ðk � 2Þ; v2ðk � 5Þ; v1ðk � 11Þ; v2ðk � 12Þ; v2ðk � 16Þ;
v2ðk � 20Þ; v2ðk � 99ÞÞ

ð4Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 14Þ; v3ðk � 1ÞÞ ð5Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 2Þ; v1ðk � 97Þ; v1ðk � 676Þ; v2ðk � 5Þ;
v2ðk � 6Þ; v2ðk � 11Þ; v2ðk � 13Þ; v2ðk � 14ÞÞ ð6Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 3Þ; v1ðk � 4Þ; v1ðk � 5Þ; v1ðk � 95Þ;
v1ðk � 100Þ; v1ðk � 671Þ; v2ðk � 11Þ; v2ðk � 15Þ; v2ðk � 20Þ; v2ðk � 94ÞÞ ð7Þ

v1ðkÞ ¼ f ðv1ðk � 1Þ; v1ðk � 5Þ; v1ðk � 92Þ; v1ðk � 94Þ;
v1ðk � 95Þ; v1ðk � 98Þ; v1ðk � 668Þ; v1ðk � 676Þ; v2ðk � 3Þ;
v2ðk � 11Þ; v2ðk � 20Þ; v2ðk � 93ÞÞ

ð8Þ

It should be noted that, apart from model (5), all models use samples of the
modelled variable around 1 day and 1 week before. Most models use the outside
temperature, but only model (5) uses the day code.

4.4 Accuracy of Prediction

To analyze the prediction results a one-month period, the month of October 2017, was
employed. A prediction horizon of 12 h was considered, which means that 48 steps-
ahead forecasts were employed. Figure 3 present the plots of real measured data (de-
noted as Target), and one-step ahead predictions for P3-b (best model selected con-
sidering the prediction error), considering just one week of the prediction period.

Fig. 3. Target and predicted values result of the best model of P3-b.
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In order to better graphically represent the comparison between target values and
prediction values for all the problems, the 1-step prediction errors for all problems, for
that particular week, are shown in Figs. 4, 5 and 6.

The scaled prediction RMSE evolutions along the prediction horizon are presented
in Fig. 5, for the 6 problems. With the exception of P2, the models obtained with a
constrained formulation present smaller RMSE values.
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Fig. 4. 1-step prediction power errors for the best model of each Problem
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4.5 Model Ensemble

The results presented before are obtained for the single model that has been selected for
each of the six different cases. As explained in Sect. 4.3, the ensemble results are
obtained by taking the median of the results obtained with each model in the preferable
set. They are presented in Figs. 6, 7 and 8, for problems P1 to P3. If these figures are
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Fig. 5. RMSE evolution along the prediction horizon of the best model of each Problem.

Fig. 6. RMSE median evolution along the prediction horizon for P1
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compared with Figs. 3, 4 and 5, it is clear that better forecasting performance is
obtained with the model ensemble.

Table 4 presents the ensemble RMSEs (P-ensemble) for the training, testing and
validation sets, as well as the respective differences (D(P)) with the results obtained
with the selected models, shown in Table 3. The last column shows additionally the
prediction error obtained for the whole month of October 2017. It can be seen that for
the RMSEs, the majority of the ensemble performs better than the selected models. In
terms of the RMSE evolution over PH, which is the most important goal, all ensemble
values are significantly better that the selected models.

Besides the analysis made in this work, it is important to compare the obtained
results with the results of related studies for the prediction of energy demand in
buildings. It is however quite tricky to perform a quantitative assessment of the pro-
posed techniques, since their performances will depend on the training data used as
input [7]. Additionally, it is not so common to find results of forecasting load demand
within a prediction horizon, and this is much more difficult for individual households.
If we narrow this analysis to the forecasting of different load classes (total, schedulable
and non-schedulable), to the best of our knowledge, there are no available results.

Fig. 7. RMSE median evolution along the prediction horizon for P2

Fig. 8. RMSE median evolution along the prediction horizon for P3
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In [21], different prediction models (ANN-NAR, Hidden Markov Models, Support
Vector Machines (SVM), MultiLayer Perceptrons and Deep Belief Networks) were
designed for one-step daily and weekly forecasts. 8 weeks of 1-hour data were
extracted from Pecan Street database, in 4 different scenarios. For daily forecasts, the
RMSEs varied between 4.02 (ANN-NAR) to 1.48 (DBN) kW. Much better results
were obtained in the present work, using three years of data, although a forecast ceiling
of a half day is considered.

The authors of [31] compared the forecasting performance of ANNs, SVMs and
Least-Squares SVMs, with different data resolutions and forecasting horizons, with
several models, each applied to a different load profile, obtained by clustering the load
profiles. In the same way as in the previous work, these are one-step-ahead forecasts,
although with different forecasting horizons. The best results obtained for a house with
similar load profile, RMSEs within the range of 0.8 to 1.6 kW are obtained for a time
resolution of 30 min and a 12-hours forecast. Again, the results presented in this paper
compare very favorably with these values.

5 Conclusions

This work focused on improving the accuracy of predictive models for the energy
demand in buildings, using ensembles of RBF models designed with a MOGA
framework. Real data, obtained from the Honda Smart Home US for three years, were
used in this work. Three problems were analyzed, each one in two design versions
(unconstrained and constrained).

For a common prediction horizon of 12 h, it was shown that the best results were
for the problem in which the predicted variable is the power consumption of “other”
loads (not considering the HVAC), followed by the Problem where the total demand is
the predicted variable. The Problem where HVAC demand is the modelled variable
obtains the lowest accuracy, due to the higher volatility of the time series.

Comparing MOGA designs, the best forecasting results were obtained with a
constrained formulation, expect for the HVAC modelling. The model ensemble
approach obtained, for all cases considered, the best prediction results. This scheme is

Table 4. etr, ete eva and ep – Ensemble (P-ensemble) and best models.

Problem etr ete eva ep
P1-ensemble 0,1244 0,1163 0,1164 8,6203
D(P1-a) −0,0002 −0,0007 −0,0010 −0,9524
D(P1-b) −0,0360 −0,0361 −0,0381 −0,1473
P2-ensemble 0,2124 0,1890 0,1891 15,429
D(P2−a) −0.0172 −0,0154 −0,0180 −0,7391
D(P2-b) −0,0165 −0,0148 −0,0175 −7,3581
P3-ensemble 0,1143 0,1123 0,1148 6,8507
D(P3-a) 0,0011 −0,0001 −0,0003 −1,4184
D(P3-b) 0,0003 0 0.011 −0,3669
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obviously applicable to all classification, prediction and forecasting problems. For the
case at hand, although a quantitative comparation is impossible, the prediction accuracy
obtained in this work compares favorably with other existing approaches.

Future work will employ these forecasting models for model predictive scheduling
of a real household in the South of Portugal, with PV energy production and electricity
storage.
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