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Abstract. Brain tumor classification is very important in medical applications
to develop an effective treatment. In this paper, we use brain contrast-enhanced
magnetic resonance images (CE-MRI) benchmark dataset to classify three types of
brain tumor (glioma, meningioma and pituitary). Due to the small number of train-
ing dataset, our classification systems evaluate deep transfer learning for feature
extraction using nine deep pre-trained convolutional Neural Networks (CNNs)
architectures. The objective of this study is to increase the classification accuracy,
speed the training time and avoid the overfitting. In this work, we trained our archi-
tectures involvedminimal pre-processing for three different epoch number in order
to study its impact on classification performance and consuming time. In addi-
tion, the paper benefits acceptable results with small number of epoch in limited
time. Our interpretations confirm that transfer learning provides reliable results
in the case of small dataset. The proposed system outperforms the state-of-the-art
methods and achieve 98.71% classification accuracy.

Keywords: Convolutional Neural Network · Brain tumor · Classification · Deep
learning ·Magnetic resonance images · Transfer learning

1 Introduction

Brain tumor diagnosis is very important in order to develop an effective plan of treatment.
There are more than 120 types of brain and Central Nervous System (CNS) tumors. Neu-
rologists classify manually the brain MR images using the World Health Organization
(WHO) classification [1]. The Automation of the classification procedure, in particular
brainMR images classification help radiologist in their diagnosis and reduce enormously
their interventions.
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Fig. 1. Number of publications per year in
google scholar containing “Convolutional
Neural Network” and “medical imaging”
keywords from 2014 to 2020. (Queried:
February 25th, 2020)
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Fig. 2. Number of publications per year in
google scholar containing “Convolutional
Neural Network” and “brain tumor” keywords
from 2014 to 2020. (Queried: February 25th,
2020)

The first automatic classification methods are the machine learning ones. These
methods take a long time because they need pre-processing and handcrafted features
by experts. The classification accuracy depends on the extracted features which depend
on the expert competences. Despite the limitation of machine learning methods, some
works [2] achieved between 79% and 85% classification accuracy with their proposed
method used tumor extracted features such as shape, rotation invariant texture, intensity
characteristics and MR images for brain tumor classification.

To avoid handcrafted features extraction, deep learning (DL) methods involving
deep neural networks to classify images in self-learning without the need of handcrafted
features extraction are used by Benjio [3] and Litjens et al. [4]. Among several DL
methods, CNNs are one of themost useful that have been used to solve complex problems
in various applications such as detection [5], localization [6], segmentation [7] and
classification [8]. They have also yielded good results in medical image application
[9–11].

The first real-word application of CNNs was realized by Yann LeCun in 1998
to recognize hand written digits [12]. Since 2010, ImageNet launched an important
visual database project called ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [13]. This challenge runs an annual software contest where research teams
evaluate their algorithms on the given dataset and achieved higher accuracy. More-
over, CNNs become more useful when Krizhevsky et al. (2012) proposed their CNN
architecture called AlexNet [14]. The later competition allowed creating and improv-
ing real deep CNNs architectures that have achieved higher accuracy on several visual
recognition tasks.

In recent years, CNNs have achieved good results in medical image applications
due to the growth of available labelled training data, the increase of powerful graphics
processing GPU, the rise of accuracy to solve complicated applications over time and
the appearance of numerous techniques to learn features. According to the statistics that
we made from google scholar, the number of publications using CNNs in the field of
medical image applications in general and brain tumor in particular is increase since
2014. This trend can be observed in Fig. 1. and Fig. 2.
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Today, several public brain MR images datasets for classification are available for
researchers. This help medical scientists to develop more automated classification meth-
ods [15]. However, the CNNs training become more complicated and can lead to over-
fitting because of the samples size of medical datasets. Also, applying deep pre-trained
CNNsbasedon transfer learning inmedical imagingneeds to adjust the hyper-parameters
and learning parameters of the models in order to achieve a good result. Training the net-
works with transfer learning is usually much faster and easier than training the net-
works with randomly initialized weights [16–18]. In [19], authors used a small CNN
architecture and achieved 84.19% classification accuracy. A block-wise fine-tuning has
been proposed, this one, based on transfer learning, reached a classification accuracy of
94.82% [20]. Other approach proposed by [21] used pre-trained GoogleNet and transfer
learning to classify brain MR images and achieved 97.1% of classification accuracy.

In this paper, we present an automatic classification system designed for three types
of brain tumor. We use the brain CE-MRI dataset from figshare [22] which consists of
three kind of brain tumors (glioma, meningioma and pituitary tumor) in order to clas-
sify only abnormal brain MR images. Based on this dataset, we adopted deep transfer
learning for feature extraction from from brain MR images using nine deep CNNs archi-
tectures: AlexNet [14], GoogleNet [23], VGG16 [24], VGG19 [24], Residual Networks
(ResNet18, ResNet50, ResNet101) [25], Residual Networks and Inception-v2 (ResNet-
Inception-v2) [26], Squeeze and Excitation Network (SENet) [27]. This system makes
easier the interventions of radiologist, helps them to solve brain tumor classification
problem and develop an effective treatment.

We report the overall classification accuracy of the nine pre-trained architectures
based on training time and epoch number. We explore the impact of epochs number
to minimize the consuming time. We classify the extracted features for three different
epochs. We achieve good results compared to related works. Also, with smaller number
of epochs, we achieve acceptable results in short time.

The paper is structured as follows. The proposed method and different pre-trained
CNNs architectures are given in Sect. 2. The experimental setting, the networks prepara-
tion and dataset are shown in Sect. 3. The experimental results with a brief discussion are
provided in Sect. 3, the conclusion and an outlook for future work are given in Sect. 4.

2 Method

In this work, we applied nine pre-trained deep networks including AlexNet, GoogleNet,
VGG16, VGG19, ResNet18, ResNet50, ResNet101, ResNet-Inception-v2 and SENet
for brain tumor classification problem using transfer learning.

2.1 Pre-trained CNNs Architectures for Image Classification

CNNsarchitectures havebeendesigned to learn spatial hierarchies of features bybuilding
multiple blocks: convolution layers with a set of filters, pooling layers, and fully con-
nected layers (FCLs). The real deep architectures created until 2012 through ILSVRC
challenge. The classification error of ILSVRC challenge winners is decreased from
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15.3% in AlexNet (2012) [14] to 2.251% in SENet (2017) [27]. Also, the number of lay-
ers is increased from 8 layers to 152 layers. Table 1 summarizes the differences between
those architectures regarding the classification error, the number of layers, the tasks, the
execution environment and the training datasets.

ALexNet.AlexNet [14] architecture is deeper andmuch greater than LeNet architecture
[28]. It consists of eight layers, five convolutional layers most of them are followed by
max pooling and three fully connected layers. The output is the 1000-way softmax
that represents the classes. It is trained on two parallel GTX 580 GPU 3 GB which
communicate only in certain layers. This scheme reduces the top-5 error rates. AlexNet
is improved with ZFNet architecture [29] which visualizes the AlexNet activities within
the layers to debug problems and obtain better results. It allows observing the evolution

Table 1. Comparison between different CNNs architectures for image analysis.

ILSVRC architectures Number
of
layers

Top 5
error
rate

Tasks Training
dataset

Execution
environment

AlexNet (2012)
Ranked 1

8 15.3% Classification ImageNet Two GTX
580 GPUs
3Gg
(parallel)

ZFNet (2013)
Ranked 1

8 14.8% Classification ImageNet
Caltech-101
Caltech-256

Single GTX
580 GPU

GoogleNet (2014)
Ranked 1

22 6.67% Classification
Detection

ImageNet CPU

VGGNet (2014)
Ranked 2

16–19 6.8% Classification
Localization

ImageNet Four
NVIDIA
Titan Black
GPU

ResNet (2015)
Ranked 1

18–34–
50–101
152

3.57% Classification
Detection
Segmentation
Localization

ImageNet
COCO

Two GPUs

Inception-v4/ResNet-inception
(2016) Ranked 1

50–101
152

3.08% Classification ImageNet Twenty
replicas
with
NVIDIA
Kepler GPU

SENet (2017)
Ranked 1

18–34–
50–101
152

2.251% Classification
Detection

ImageNet
–COCO
CIFAR-10-
CIFAR-100

Eight GPU
NVIDIA
Titan
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of features during training and maps the activities back to the pixel space in intermediate
layers.

GoogleNet. GoogleNet architecture codenamed Inception-v1 is the improved utiliza-
tion of computing resources inside the network [23]. The network with the inception
architecture is faster than the network with non-inception architecture. The GoogleNet
architecture including the inception module uses rectified linear activation function,
average pooling layer and not fully connected layer and dropout after removing fully
connected layer.

Inception-v1 is improved to Inception–v2 by Ioffe and Szegedy [30] who tried to
solve the internal covariate shift. They achieved a top-5 error rate of 4.82%. This result
is outperformed to 3.5% by Szegedy et al. [31] with their new inception architecture
called Inception-v3. Table 2 shows a comparison between the three inceptions.

Table 2. Difference between the three inceptions.

Inception-v1 Inception-v2 Inception-v3

Increase the number of units
at each stage and shielding the
large number of input filters of
the last stage to the next layers

Increase the learning rate,
remove dropout and local
response normalization,
shuffle training examples
more thoroughly, reduce the
L2 weight regularization and
the photometric distortions

Trained much faster compared
to the other inception and
method

Error rate = 6.67% Error rate = 4.82% Error rate = 3.5%

VGGNet. Karen Simonyan and Andrew Zisserman [24] investigated the effect of the
neural convolutional network depth on its accuracy in image recognition. They pushing
depth to 11–19 weight layers of the developed VGGNet using very small (3 × 3) con-
volution filters. The configurations that use 16 and 19 weight layers, called VGG16 and
VGG19 perform the best. The classification error decreases with the increased depth and
saturated when the depth reached 19 layers. Authors confirm the importance of depth in
visual representations.

ResNet/ Inception-v4. ResNet [25] used residual learning to ease the training of the
deeper networks and reduce the errors from increasing depth. This architecture pro-
posed many structures including: 18-layers, 34-layers, 50-layers, 101-layers and 152-
layers structure, where the 152-layers structure is better than the other ones. It is less
complex and deeper than VGG, and has similar performances to the Inception-v3 net-
work, this is why Szegedy et al. [26] combined the inception architecture with residual
connections. They evaluated the three ResNet-Inception and the Inception-v4 archi-
tectures: The Inception-ResNet-v1 has similar performances to Inception-v3 while the
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ResNet-Inception-v2 performsmore thanResNet-Inception-v1. The Inception-v4 is sim-
pler and has more inception modules than Inception-v3 but has similar performances to
ResNet-Inception-v2.

SENet. SENet [27] used Squeeze and Excitation (SE) block which improved the rep-
resentational power of a network by enabling it to perform dynamic channel-wise fea-
ture recalibration. It was applied directly in the Residual Network architecture such as
SE- Inception-ResNet-v2, SE-ResNet-101, SE-ResNet-50, SE-ResNet-152 and can be
applied to the other existing architectures. It has been performed on ImageNet, COCO,
CIFAR-10 and CIFAR-100 datasets across multiple tasks.

2.2 Transfer Learning Setting

Transfer learning use the gained knowledge that solve one problem and applied them to
solve different related problems by using trained model to learn different set of data. The
setting for transfer learning used in this work is explained in the following statements.
The pre-trained CNNs architectures: AlexNet, GoogleNet, VGG16, VGG19, ResNet-
18, ResNet-50, ResNet-101, ResNet-Inception-v2 and SENet consist of 1000 classes,
1.28 million training images, tested on 100 k test images and evaluated on 50 k vali-
dation images. They are challenging the accuracy of human with the best given results.
The networks take an image as an input and produce the object label in the image as
an output as well as the probabilities of the object categories. In this research, we focus
on slice by slice classification of brain tumor using CE-MRI dataset into three types
of tumors. First, we modified the last three layers of pre-trained networks in order to
adapt them to our classification task. Next, we replaced the fully connected layer in the
original pre-trained networks by another fully connected layers, in which the output size
represents the three kind of tumor. The transfer learning setting and modification are
shown in Fig. 3. Finally, we used transfer learned and fine-tuned deep pre-trained CNNs
for experiments using MRI data.

Fig. 3. Transfer learning setting and modification

3 Experiments and Results

The proposed classification model is implemented in MATLAB 2019b on a computer
with the specifications of 16 GB RAM and Intel I9 4.50 GHz CPU.
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3.1 Experiments

In this section, we describe the dataset used in the experiments, the training parameters
and classification accuracy prediction. Figure 4 represents the pre-processing of training
dataset and the use of transfer learning networks for brain tumor classification.

Fig. 4. Preparation and use the transfer learning network for brain tumor classification

Dataset and Pre-processing. The public database used to train and test the networks
is available in [22]. It has already used in previous works like in [32, 33]. The dataset
is collected from Nanfang Hospital, Guangzhou and General Hospital, Tianjin Medical
University, in China during 2005–2010. It contains 3064 abnormal brain CE-MRI from
233 patients with three kinds of brain tumor: meningioma (708 slices), glioma (1426
slices), and pituitary tumor (930 slices). It is based on two dimensional gray images (2D
slices). Those data are organized inMATLAB data format (. mat file). The size of images
is 512 × 512 pixels and the pixel size is 49 mm x 49 mm. In our work, we normalize
the gray MRI images in the dataset in intensity values and we convert them into RGB
images by corresponding color map to RGB format using Matlab function. We specify
the slices as an array of data type where the value 1 corresponds to the first color in the
color map. RGB images are returned as an m × n × 3 numeric array with values in the
range of [0, 1]. The value 3 corresponds to red, green and blue colors. Then, we resize
them according to the used network: (227 × 227) in AlexNet and SENet, (224 × 224)
in GoogleNet, VGGNet and ResNet, (299× 299) in ResNet-Inception-v2 RGB images.
The dataset pre-processing is shown on Fig. 4. We divide the data into training and test
datasets, where 60% (1836 slices) of the images are used for training and 40% (1228
slices) used for test. The splitting of data into train and test set is performed on a slice
basis.

TrainingParameters.For transfer learning,we train the networks by stochastic gradient
descent (SGD)with 0.9momentum.Weuse aminibatch size of 128 images and a learning
rate of 10−4. To speed up the learning in the new layers, we rise the weight learn rate
factor and the bias learn rate factor to 10. Even though, the transferred layers are still
slower than the new layers. In order to perform the transfer learning, we train for 25, 50
and 90 epochs where an epoch is a full pass during the dataset training. The networks
are validated every 50 iterations during training.

Classification Accuracy Prediction. In this part we use the trained networks to clas-
sify the test images and calculate the overall classification accuracy. The classification
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accuracy is the ability to predict correctly and guess the value of predicted attribute for
new data. It is defined as the ratio of sum of true positives (TP) and true negatives (TN)
to the total number of trials:

Accuracy = T P + T N

T P + FP + FN + T N
× 100 (1)

WhereTP andTNare outcomes producedwhen themodel correctly classifies the positive
class and the negative class, respectively.While FP and FN are outcomes produced when
the model incorrectly classifies the positive class and the negative class, respectively.

3.2 Results

We evaluate the classification performance using the nine pre-trained architectures and
summarize our results in the form of tables.

In fact, the purpose of this study is to increase the classification accuracy, speed the
training time and avoid the overfitting. This can be assessed through the classification
accuracy and the training time of our pre-trained networks. The classification accuracy
and the training time using different transfer learning architectures trained for different
epochs are respectively shown in Table 3 and Table 4. All our pre-trained networks
excepting SENet are reached up to 90%classification accuracy for three different epochs.
Despite the use of transfer learning, SENet has an overfitting with epoch equal to 25 and
50, but achieves an acceptable result with epoch equal to 90.

Table 3. Classification accuracy using different transfer learning architectures for different
epochs.

Architectures Epoch = 25 Epoch = 50 Epoch = 90

AlexNet 98.14 98.55 98.22

GoogleNet 95.69 97.16 97.24

VGG-16 98.06 98.14 98.71

VGG-19 97.97 98.55 98.47

ResNet-18 96.01 97.86 97.81

ResNet-50 96.67 97.65 96.16

ResNet-101 96.67 96.83 95.99

ResNet-inception-v2 93.67 95.03 95.50

SENet 56.66 56.66 95.18

Another characteristic observed during experiments is the impact of epoch number
on the classification accuracy. This effect can be seen in Table 3 and Table 4. The training
time is increasing gradually with incremental epochs number, which means that we can
consume less time using less epoch. However, the classification accuracy is neither
influenced by the epochs number, nor the deep architectures. As shown in Table 3 the
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Table 4. Training time in minutes using different transfer learning architectures for different
epochs.

Architectures Epoch = 25 Epoch = 50 Epoch = 90

AlexNet 24 48 91

GoogleNet 79 158 281

VGG-16 495 907 1953

VGG-19 532 1174 1979

ResNet-18 71 148 245

ResNet-50 190 374 678

ResNet-101 409 777 1339

ResNet-inception-v2 766 1481 2643

SENet 42 85 160

majority of the pre-trained networks record well with epoch equal to 50 and achieve
acceptable results with epoch equal to 25. Even though, the fewer layers of AlexNet,
VGG16 andVGG19performmore than deeper architectures such asResNet andResNet-
Inception-v2 for the three chosen epochs. They achieved respectively 98.55%, 98.71%
and 98.55% classification accuracy. Also, we observed that with an epoch of 50 AlexNet
and VGG16 achieved the same accuracy 98.55% however VGG16 consume a long
training time compared to AlexNet.

Table 5. Samples images classification prediction using different architectures.

Sample Images

Glioma Meningioma Pituitary 

AlexNet Glioma 100% Meningioma 99.9% Pituitary 100%
GoogleNet Glioma 100% Meningioma 97% Pituitary 99.8% 
VGG-16 Glioma 100% Meningioma 100% Pituitary 100%
VGG-19 Glioma 100% Meningioma 99.9% Pituitary 100%
ResNet-18 Glioma 100% Meningioma 99.9% Pituitary 98.3%
ResNet-50 Glioma 100% Meningioma 98.3% Pituitary 98.9%
ResNet-101 Glioma 100% Meningioma 99.2% Pituitary 99.8%
ResNet-Inception-v2 Glioma 96.9% Meningioma 93.5% Meningioma 73.1% 
SENet Glioma 100% Meningioma 96.1% Pituitary 91.6%
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Table 5 shows a classification of three sample instances. We find that all of the pre-
rained architectures pertain to the class glioma and meningioma. All of them, except-
ing ResNet-Inception-v2 pertain to the class pituitary. This confirms that the deeper
architectures do not result good with small datasets.

Table 6 provides a broad comparison based on classification accuracy with the exist-
ingmethods on the sameCE-MRI dataset. Abiwinanda et al. [19] achieved 84.19% accu-
racywith their proposed CNN. Swati et al. [20] propose a block-wise fine-tuningmethod
based on transfer learning and achieved 94.82% accuracy. Deepak and Ameer [21] used
a pre-trained GoogleNet to extract features from brain MRI images and achieved 97.1%
classification accuracy. Our proposed method using the pre-trained VGG16 achieved
98.71% classification accuracy.

Table 6. Related works & classification accuracy comparison using the CE-MRI training dataset.

Methods Abiwinanda et al.
(2019) [19]

Swati et al. (2019)
[20]

Deepak and Ameer
(2019) [21]

Proposed

Training Data – 25–50–75% 56% 60%

Classification
accuracy (%)

84.19 94.82 97.1 98.71

4 Conclusion

This paper presents a fully automatic system for three kind of brain tumor classification
using CE-MRI dataset from figshare. The proposed system applied the concept of deep
transfer learning using nine pre-trained architectures for brainMRI images classification
trained for three epochs. Our system outperforms the classification accuracy compared
to related works. It shows a good performance with a small number of training samples
and small epochs number, which allows to reduce consuming time. The architectures
which have fewer layers perform more than the deeper architectures. In the future work,
we will apply our system to classify medical images from different modalities such
as X-rays, Positron Emission Tomography (PET) and Computed Tomography (CT) for
other body organ. Also, we will address the effect of epochs number to the classification
performances.
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