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Abstract. While graphs capture pairwise relations between entities,
hypergraphs dealPrasanna with higher-order ones, thereby ensuring loss-
lessness. However, in hyperlink (i.e., higher-order link) prediction, where
hyperlinks and non-hyperlinks are treated as “positive” and “negative”
classes respectively, hypergraphs suffer from the problem of extreme class
imbalance. Given this context, “negative sampling”—under-sampling the
negative class of non-hyperlinks—becomes mandatory for performing
hyperlink prediction. No prior work on hyperlink prediction deals with
this problem. In this work, which is the first of its kind, we deal with
this problem in the context of hyperlink prediction. More specifically,
we leverage graph sampling techniques for sampling non-hyperlinks in
hyperlink prediction. Our analysis clearly establishes the effect of random
sampling, which is the norm in both link- as well as hyperlink-prediction.
Further, we formalize the notion of “hardness” of non-hyperlinks via a
measure of density, and analyze its distribution over various negative
sampling techniques. We experiment with some real-world hypergraph
datasets and provide both qualitative and quantitative results on the
effects of negative sampling. We also establish its importance in evalu-
ating hyperlink prediction algorithms.

Keywords: Negative sampling · Hyperlink prediction · Hypergraphs ·
Class imbalance · Hypergraph sampling

1 Introduction

Although the problem of hyperlink prediction (HLP) has not been explored
much, we have enough literature on the topic [3,19,21,22] (and much more
on its graph-variant, viz., link prediction (LP) [11,14,15,18]) to vouch for its
importance. When posed as a supervised learning problem, where “presence
of hyperedge” and “absence of hyperedge” are the positive and negative classes
respectively, HLP suffers from extreme class imbalance (ECI), with positive class
being the minority one. ECI haunts LP too, and has been thoroughly discussed
in the literature as well [7,12,13,20], but with HLP, the situation is much worse
owing to the arbitrariness in the number of nodes allowed in a hyperedge. Hence,
the solutions provided to combat ECI in usual networks (graphs) for LP could
not be directly extended to HLP, at least not without a careful analysis thereof.
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Fig. 1. The Southern Women Club (SWC) events hypergraph [6]. For practical reasons,
we have excluded one 11-sized hyperedge from the original hypergraph. (Color figure
online)

We consider the Southern women club (SWC) social hypergraph from Davis
et al. [6] illustrated in Fig. 1a that connects eighteen women through twelve
hyperlinks, each corresponding to an event they had attended together. All non-
hyperlinks from the hypergraph have been plotted in Fig. 1b, with the color shade
in each vertical bar denoting edge-density (ref. Definition 1) distribution for a
given hyperedge size. Although this being a dense hypergraph is atypical of real-
world hypergraphs, we could notice the existence of zero-density non-hyperlinks
in the left bottom corner of the plot. However, even for such small a hypergraph,
one could compare the positive class size (denoted by red asterisks) w.r.t. that
of the negative class (the entire histogram), only to reinforce the existence of
ECI in a HLP problem.

Of all the solutions available in the literature to treat ECI, majority-class
sub-sampling (here, negative sampling (NS)) is the one that has been prescribed
strongly. Other methods (e.g., minority-class over-sampling [5]) further increase
the burden on HLP by necessitating computation of prediction scores for each
point in the over-sampled positive class as well as those in the negative class
(which is already huge in number). Where on one hand, NS makes the HLP
problem computationally tractable, on the other, it poses the danger of misin-
terpretability of results (comparing two HLP algorithms, for instance) due to
test set undersampling. The threat has been thoroughly argued about by Licht-
enwalter et al. [12,13] and Yang et al. [20] for LP.

In the present work, we provide an extensive analysis of NS for HLP, but
since a hypergraph has enormous number of negative patterns, our analysis is
limited to a handful of NS algorithms. We propose four different approaches for
NS: Uniform Negative Sampling (UNS), Sized Negative Sampling (SNS), Motif
Negative Sampling (MNS), and Clique Negative Sampling (CNS), with the last
three of them focused on the regions bounded by blue, pink and green boundaries
in Fig. 1b. Of the four, UNS and SNS are both motivated by random NS in LP [2],
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and have already been used in the literature to predict new recipes [21] and
new email interactions [19]. We derive MNS from a motif-based representative
subgraph sampling [4,9] and CNS is our attempt towards developing a 1-hop
based equivalent of NS [13] to HLP.

2 Background and Notation

A temporal hypergraph is defined as H = (V, F, T ), where V is the set of vertices,
F ⊆ ℘(V )1 is the set of hyperedges/hyperlinks over them, and T : F → R is a
timestamp specifier function that maps each hyperlink f ∈ F to a timestamp
T (f) ∈ R corresponding to its first occurrence. We define its clique expanded
graph [1] as GH := η(H) := (V,EF , T ), where EF := η(F ) :=

⋃
f∈F Ef , where,

for f ∈ F , Ef := η(f) := ℘2(f) denotes the set of f ’s induced edges.
In this work, we consider the “temporal” HLP problem, wherein we take a

“past” snapshot of H (or observed hypergraph), and predict “future” (unob-
served) hyperlinks. We first define an HLP triplet as (Hobs, Funobs, F̂sam), con-
taining observed hypergraph Hobs, unobserved hyperlinks Funobs, and sampled
non-hyperlinks F̂sam ⊆ F̂all := ℘(V ) \ F . The HLP problem could be defined
as learning/formulating a predictor P : Funobs � F̂sam → R mapping potential
hyperlinks f ∈ Funobs � F̂sam to prediction scores P(f) proportional to their
probabilities of being hyperlinks.

3 State-of-the-Art

A rigorous study of HLP began with the near-seminal works [1,23] on hypergraph
Laplacian and spectral clustering methods. Xu et al. [19] explore the latent
representation of hyperlinks obtained via those of nodes and a novel entropy-
based approach to combine them. More recently, Zhang et al. [21,22] proposed
CMM, which is the current state-of-the-art for HLP. Benson et al. [3] study the
evolution of hyperlinks of size 3 and 4 in a hypergraph.

As mentioned before, HLP in hypergraphs is analogous to LP in graphs.
Though sampling non-links are necessary when LP is posed as a classification
problem, it has received little attention in the literature [2,11,13]. Most works
randomly sample non-links, which is still justified since the space of possible
non-links is polynomial in |V |. However for hypergraphs, where the space of all
possible non-hyperlinks is exponential in |V |, carefully devised non-hyperlink
sampling approaches are mandatory.

Sampling non-hyperlinks is akin to subgraph sampling, which is commonly
performed to sample frequent patterns from graphs. More recently, there has
been enough attention on mining frequent patterns called motifs in a graph to
understand the evolution of edges therein. A motif of size k is a k-connected
component of the graph. There exists randomized methods such as Mfinder [9]
and GUISE [4] to mine these frequent motifs. One of our NS methods (MNS)
has been inspired from such motif sampling techniques.
1 For a set S, let ℘(S) := {X | X ⊆ S} and ℘

k(S) := {X ∈ ℘(S) : |X| = k}.
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4 Methodology

4.1 Characterizing Hardness of Prediction

Yang et al. [20] suggest avoiding sampling the test data as much as possible, so
that LP could be evaluated fairly. But under unavoidable circumstances, test
set has to be sampled, although we propose doing so not without acknowledging
some notion of “hardness” in predicting hyperlinks.

Benson et al. [3] point out several properties of a hyperlink f = {v1, · · · , vs}
that play a key role in its evolution in a hypergraph over time: (i) the connectiv-
ity among its incident nodes v1, · · · , vs in the projected graph GH := η(H) right
before f was formed, and (ii) the strength of these connections. These observa-
tions can be generalized to arbitrary-sized hyperlinks through the notion of a
hyperlink’s edge-density (ED) defined as follows.

Since ED plays an important role for hyperlink evolution, it could be used
to characterize the “hardness” of HLP. In layman terms, hardness in predicting
the true class of a test non-hyperlink f ∈ F̂all denotes how hard it is to predict
f as a pattern from the negative class. Let us formally define it as follows:

Definition 1 (Hardness of a non-hyperlink). Given a HLP triplet (Hobs,
Funobs, F̂all), the hardness h : F̂all → [0, 1] of predicting the true class of a
non-hyperlink f̂ ∈ F̂all is defined as one being proportional to its edge-density
d(f̂ ;Hobs) defined as:

h(f̂) ∝ d(f̂ ;Hobs) :=
2 ·

∣
∣
∣η(f̂) ∩ η (Fobs)

∣
∣
∣

|f̂ | ·
(
|f̂ | − 1

) , (1)

4.2 Uniform Negative Sampling (UNS)

This is the easiest of the four NS algorithms we describe in this section. For a
hypergraph H = (V, F ), the UNS algorithm picks a sample of k non-hyperlinks
F̂sam uniformly at random from the set of all non-hyperlinks F̂all. The non-
hyperlink sizes of F̂sam are expected to be binomially distributed, which could
be validated by Fig. 2b, which shows the size-distribution (SD) of non-hyperlinks
in F̂sam for one dataset. Figures 2a and 2b show SD of the positive and negative
classes respectively.

As is clear from Fig. 2b, UNS substantially blows-up the non-hyperlink sizes,
where median would be around |V |/2, which for a 1000-node network amounts
to 500-node non-hyperlinks, which is impractical for almost all applications.
Moreover, in the context of HLP, since the positive class (of hyperlinks) has an
excessively left-skewed distribution, we could end-up solving HLP using a single
trivial feature, viz., “hyperlink size”! Hence, we limit our discussion on UNS
merely to theory, and recommend it never to be used in practice. Neither
do we conduct any HLP experiments for UNS in this paper. If it were for UNS,
it would sample non-hyperlinks from the entire set shown in Fig. 1b uniformly
at random.
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(a) SD of hyperlinks
and non-hyperlinks
sampled via SNS, MNS,
and CNS.

(b) SD of non-
hyperlinks sampled via
UNS

(c) EDD of hyperlinks

Fig. 2. (a, b) Size distribution (SD) of hyperlinks and non-hyperlinks sampled via
UNS, SNS, MNS, and CNS in email-Enron; and (b) edge density distribution (EDD)
of hyperlinks.

4.3 Sized Negative Sampling (SNS)

SNS overcomes the shortcomings of UNS by sampling non-hyperlinks such that
their SD matches that of hyperlinks. SNS is a slight variant of UNS in that
the target SD (i.e., that of the sampled negative class) Pr−(S = s) is fixed
to that of the positive class (Pr+(S = s)), and not a binomial as per Fig. 2b.
Once a size s has been sampled according to Pr+(S = s), a non-hyperlink is
sampled randomly. The SD of non-hyperlinks sampled with SNS exactly follows
the positive class SD (see Fig. 2a).

Since SNS fixes the “size-blow-up” issue in sampled non-hyperlinks, it should
be the one-stop solution to negative sampling. But there is yet another prob-
lem with SNS—a subtler one at it: since real-world hypergraphs are heavily
sparse (much sparser than graphs), sampling non-hyperlinks via SNS biases the
binary classification problem w.r.t. the challenge in predicting the true class of
a test non-hyperlink. As we have already characterized the hardness of predict-
ing the true class of a non-hyperlink in Definition 1 via ED, we could monitor
the edge-density distribution (EDD) of non-hyperlinks sampled via SNS against
hyperlinks.

Figure 3a shows the edge density distribution (EDD) of non-hyperlinks sam-
pled via SNS. It can be seen that most of these non-hyperlinks (negative pat-
terns) have low ED, which makes it “easy” for a HLP algorithm to reject them as
positive patterns, whose EDD has been plotted in Fig. 2c. Since most hyperlinks
have a high ED, it could be assumed that ED among an arbitrary set of nodes has
a positive correlation with their probability of forming hyperlinks in the future.
The positive class EDD (Fig. 2c) shows that in most cases, incident nodes of a
test hyperlink are well-connected with each other—a pattern not observed for
non-hyperlinks sampled via SNS (Fig. 3a). Hence, an SNS based positive-
negative split not only poses little challenge to a predictor trained on
such a dataset, but also misleads HLP evaluation. An SNS algorithm
would sample non-hyperlinks from within the “blue” enclosure depicted in the
bottom left corner of Fig. 1b. This paves way for yet another NS algorithm: MNS.
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Algorithm 1: The MNS algorithm
Input: A hypergraph H = (V, F ) and size s of the non-hyperlink to be sampled
Output: Sampled non-hyperlink f̂

1 E = η(F ) // Edges of induced graph GH = η(H)
2 e0 = RandomChoice(E) // sample initial edge uniformly at random

3 f̂ = {u | u ∈ e0} // set f̂ to nodes of initial edge e0

4 while |f̂ | < s do

5 S = {e ∈ E : |e ∩ f̂ | = 1}
6 if S = ∅ then
7 go to 2

8 e = RandomChoice(S)

9 f̂ = f̂ ∪ {u | u ∈ e}
10 return f̂

4.4 Motif Negative Sampling (MNS)

The hardness of predicting a non-hyperlink f̂ ∈ F̂all to be of the negative class
(i.e., True Negative Rate) depends upon the intra-connectivity structure of f̂ .
We have seen that SNS trivializes the HLP problem by sampling low-density non-
hyperlinks thereby skewing the EDD for negative class towards the left (Fig. 3a).
This makes it easy for an HLP algorithm to discriminate it with the positive
class (for which the EDD is skewed towards the right (Fig. 2c)). To address this
issue, we propose an approach that samples connected subgraph components
(CCs) from the clique-expanded graph GHobs

:= η(Hobs) of Hobs. The nodes of
these CCs then form the sampled non-hyperedge.

We propose Motif Negative Sampling (MNS) that uses Mfinder [9], which is
a stochastic algorithm used to estimate the concentration of a particular motif
in a graph without exhaustive enumeration. Our aim here is to sample non-
hyperlinks that are harder to reject by an HLP algorithm, as compared to those
sampled by SNS.

Algorithm 1 samples a non-hyperlink of size s by sampling a s-connected
component from the underlying graph GH = η(H) of a hypergraph H. Note that
there could be more links between a sampled set of nodes than those chosen by
the MNS algorithm, and all of them ultimately form the non-hyperlink.

Figure 3b shows the distribution of ED of non-hyperlinks sampled via MNS.
It is clear that the number of non-hyperlinks having high ED are quite high as
compared to that using SNS (Fig. 3a). Moreover, it is clear to see that ED of any

non-hyperlink f̂ sampled using MNS (Algorithm 1) satisfies the following:
2

|f̂ | ≤
d(f̂ ;H) ≤ 1. This is due to the fact that MNS gives connected subgraphs, and
hence, the ED of small-sized non-hyperlinks is likely to be high. Non-hyperlinks
sampled via MNS would occupy the “pink” region indicated in Fig. 1b.
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Algorithm 2: The CNS algorithm
Input: A hypergraph H = (V, F ), s = size of non-hyperlink to be sampled
Output: Sampled non-hyperlink f̂

1 f0 = RandomChoice(F ) // Randomly sample a hyperlink

2 Vf = {u | u ∈ f0} // Nodes of f0
3 v0 = RandomChoice(Vf ) // Randomly sample a node for removal

/* Randomly select a node from the neighborhood of f0 \ {v0} */

4 Vn = {u ∈ V | ∃f ∈ F s.t. {u, v} ⊆ f, ∀v ∈ f0 \ {v0}}
5 if Vn = ∅ then
6 go to 1

7 v1 = RandomChoice(Vn)

8 f̂ = (f0 \ {v0}) ∪ {v1}
9 return f̂

4.5 Clique Negative Sampling (CNS)

Where one extreme NS technique that makes prediction easy for an HLP algo-
rithm is UNS, another extreme is to make it tough, by sampling cliques from the
clique-expanded graph GH of a hypergraph H. This ensures the edge density of
sampled hyperedges to always be 1, which, according to our measure of hardness
(Definition 1), returns the hardest-to-classify set of non-hyperlinks. However,
since clique-finding in a graph is an NP-complete problem, we do not compute
them directly. Instead, motivated by the geodesic-distance based NS technique
by Lichtenwalter et al. [13], we develop a hypergraph equivalent of their “1-hop”
sampling approach via a simple heuristic to efficiently sample non-hyperlinks as
per Algorithm 2. Since a hyperlink f (positive pattern) forms a clique in the
induced graph GH of H, this very information could be exploited to sample a
non-hyperlink f̂ such that f̂ too follows f . The exact procedure for CNS has
been described in Algorithm 2.

Note that although this heuristic does not guarantee the existence of such
common neighbor nodes v1, we, however, empirically observe that such nodes
do exist. Extensions to CNS (e.g., to add/remove multiple nodes at once, etc.)
could also be implemented. Moreover, by no means does Algorithm 2 sample all
possible cliques; it only gives a sample which we use for HLP. CNS ensures all
sampled non-hyperlinks to have a unit ED (ref. Fig. 3c), which is much different
from SNS (ref. Fig. 3a), where most of them have extremely low ED (if not
zero). Hence, CNS provides the hardest of non-hyperlinks whereas the
hardness of those sampled from MNS lies in the moderate range (ref. Fig. 3b).
Non-hyperlinks sampled by CNS gives patterns from the “green” region marked
at the top in Fig. 1b.

In summary, there is a whole spectrum of NS algorithms that could sample
non-hyperlinks, and we have explored four of them, viz., UNS, SNS, MNS, and
CNS.
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5 Experiments

We take seven different datasets—email-Enron (eE), contact-high-school
(chs), contact-primary-school (cps), tags-math-sx (tms), MAG-Geo (MG),
coauth-DBLP (cD), NDC-substances (Ns)—from Benson et al. [3] and perform
various HLP experiments on them. Also, we use the same k-core based sampling
technique as used by Liben-Nowell et al. [11] to reduce the size of MAG-Geo and
coauth-DBLP datasets since they are huge hypergraphs. More specifically, we
retain only those nodes which have hyperdegree (number of incident hyperedges)
greater than a threshold k = 16.

We use five different HLP algorithms: Bayesian Sets (BS) [8], Factoriza-
tion Machines (FM) [17], Hyper Katz (Katz) [10], Hyper Common Neighbors
(CN) [16,21], and Coordinated Matrix Minimization (CMM) [21]. To evaluate
an HLP algorithm, we use the area under ROC curve (AUC) metric. In addi-
tion, we also report certain statistics on multiple NS techniques, which ultimately
gives insights into which technique works best.

All of the datasets used are temporal in nature. We perform a temporal
split of 80 : 20 where hyperedges are sorted according to their timestamp2 and
first 80% of hyperedges are used for training and feature extraction, whereas
the remaining 20% are used for testing. The NS ratio (i.e., ratio of negative
samples (non-hyperlinks) to positives (hyperlinks)) is fixed to 10 : 1, except for
NDC-substances where it is 5 : 1 (since, on an average, the data has bigger
hyperedges). We use the AUC score for the evaluation and comparison of HLP
algorithms, since it is a standard metric that has been widely used in the LP
literature. We experiment with multiple NS ratios to analyse its impact on the
evaluation metric.

6 Results and Discussion

6.1 Hyperlink Prediction Performance

The AUC scores obtained by applying each of the five HLP algorithms on the
seven datasets have been populated in Table 1, which has been divided into three
parts corresponding to negative sampling techniques SNS, MNS, and CNS. In
each row, AUC score for the best performing algorithm has been underlined.
But since our main aim is not to compare between HLP algorithms, scores for
NS algorithms that give the best performance for a given HLP algorithm has
been bold-faced. The first observation we make is that except for CMM [21], all
other HLP algorithms perform their best when compared against a SNS-sampled
negative class. CMM, which is supposed to be the current state-of-the-
art in HLP, performs its best when evaluated against either MNS or
CNS based negative sampling. Another striking point that Table 1 reveals
is that no dataset has a unanimous best performing HLP algorithm,
and instead varies with the NS algorithm. For example, according to SNS,

2 Multiple timestamps are resolved by using the earliest one.
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Table 1. AUC scores (%) for HLP using BS, FM, Katz, CN, and CMM on seven
datasets, where NS is performed via SNS, MNS, and CNS. Avg. reduction: SNS → MNS:
BS = 21%, FM = 12%, Katz = 36%, CN = 43%, CMM = −28% SNS → CNS: BS =
35%, FM = 36%, Katz = 44%, CN = 44%, CMM = −33%.

Sized NS (SNS) Motif NS (MNS) Clique NS (CNS)

BS FM Katz CN CMM BS FM Katz CN CMM BS FM Katz CN CMM

eE 72.7 81.8 70.1 66.0 55.2 69.3 77.3 29.0 24.3 39.9 37.9 44.8 35.5 27.8 59.7

chs 64.6 69.9 99.4 99.2 57.8 49.9 63.9 77.0 77.4 64.8 47.5 65.8 62.2 66.4 65.9

cps 71.1 60.2 93.9 93.4 49.2 54.1 54.4 67.5 73.1 54.2 49.8 59.6 57.2 62.4 61.8

cD 63.9 69.9 71.2 74.9 38.8 38.3 46.8 16.8 21.9 61.9 37.6 38.4 22.1 29.9 54.7

Ns 95.9 80.0 85.0 94.5 60.6 89.9 75.7 81.2 23.1 74.2 73.8 60.4 79.0 58.1 65.7

tms 95.8 75.2 99.2 98.9 22.8 75.5 64.9 75.7 78.5 53.5 63.9 62.4 51.9 57.3 59.0

MG 78.4 53.9 98.1 97.5 26.7 49.4 50.5 46.5 54.3 50.2 41.6 45.7 40.1 51.2 47.1

(a) SNS-sampled non-
hyperlinks

(b) MNS-sampled non-
hyperlinks

(c) CNS-sampled non-
hyperlinks

Fig. 3. Edge density distribution (EDD) plots for email-Enron.

MNS, and CNS, the best algorithm for the tags-math-sx (tms) dataset turns
out to be Katz, CN, and BS respectively. One final point we want to make w.r.t.
this table is the general trend of reduction in AUC scores as we move from the
leftmost block (SNS) to the rightmost one (CNS). The average reduction has
been indicated in the table caption, according to which, simple extensions
of link prediction such as CN and Katz have the maximum average
reduction (of ∼ 44%), and the CMM algorithm, which actually “learns” to
pick hyperlinks out of a bag of hyperlinks and non-hyperlinks sees an increment
of 33% as we go from SNS to CNS sampling.

6.2 Edge Density Distribution

We plot the edge-density distributions (EDD) for the email-Enron dataset in
Fig. 3, wherein EDD for hyperlinks as well as for non-hyperlinks sampled via
SNS, MNS, and CNS have been included. For a discussion, see Sect. 4.



616 P. Patil et al.

6.3 Common Neighbor vs. Edge Density

Figure 4 shows the scatter plot of common-neighbor (CN) scores and edge-
densities (ED) for each test pattern in the contact-high-school dataset, where
the blue crosses and pink discs represent non-hyperlinks and hyperlinks respec-
tively. It is clear from these plots that while SNS sampled non-hyperlinks have
lower ED values and lower CN scores as well, the MNS algorithm samples non-
hyperlinks in a way that CN is not able to distinguish between the two classes.

(a) SNS-sampled patterns (b) MNS-sampled pat-
terns

(c) CN score distribution

Fig. 4. (a, b) Common Neighbor (CN) scores vs. Edge Density (ED) for hyper-
links (pink discs) and non-hyperlinks (blue crosses); marker size proportional to
frequency. (c) CN score distribution of cross-validated test datasets. (All plots for
contact-high-school.) (Color figure online)

(a) Classifier trained via
SNS

(b) Classifier trained via
MNS

(c) Classifier trained via
CNS

Fig. 5. True Negative Rate (TNR) for CN-based Logistic Regression HLP classifiers
trained for one NS algorithm and tested on all. (All plots for contact-high-school.)
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6.4 True Negative Rates for Different Sampling Methods

To better explain the impact of NS algorithms on HLP, we perform HLP via
supervised learning, i.e., by using CN scores as a single feature to learn a Logis-
tic Regression classifier (LRC). We perform a cross validation by first preparing
three different validation sets, each formed by sampling the negative class by
a different NS algorithm. We then train one LRC per NS algorithm (with NS
performed via the respective algorithm to generate training data) which is sub-
sequently tested on all three cross validation sets. The performance of LRCs
in terms of true negative rates is shown in Fig. 5. An LRC trained using MNS
(Fig. 5b) or CNS (Fig. 5c) can easily predict negatives from SNS truly. However,
the same is not true for an LRC trained on SNS samples as shown in Fig. 5a. A
typical CN score distribution for three different validation sets defined above and
positive hyperlinks is shown in Fig. 4c. Cross validation results of LRC models
are evident from this distribution as most of the SNS sampled hyperlinks have
a low CN score whereas MNS and CNS sampled hyperlinks have CN scores that
are comparable with the CN scores positive hyperlinks. Hence, a model trained
on MNS or CNS would be able to generalize better than that trained
on SNS.

7 Conclusions

Under-sampling the majority class in class-imbalanced scenarios is a common
practice. But hyperlink prediction (HLP) is atypical, in that there exists extreme
class imbalance, with the set of non-hyperlinks being the majority class. We set
out to analyze four negative sampling (NS) techniques for HLP, viz., Uniform
(UNS), Sized (SNS), Motif (MNS), and Clique (CNS) based NS. We analyzed
size, edge-density, and a usual predictor score (CN) distribution for candidate
hyperlinks extracted via all NS techniques and found that while UNS is com-
pletely useless for HLP, SNS makes the negative class follow the same
size distribution as the positive class. But MNS and CNS go one step
further and focus on matching their edge-density distributions as well,
making the HLP problem challenging in nature. While the evaluation of
an HLP algorithm on test sets sampled via SNS, MNS, and CNS is found to
vary drastically, a specialized cross-validation of HLP via the supervised learn-
ing paradigm further shows that only MNS and CNS generalize well for
HLP. In essence, we prescribe using either MNS or CNS for sampling
non-hyperlinks for HLP, since they learn fair and generalized HLP predictors
that would perform as expected in practical scenarios.
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