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1 Introduction

In this short study, we retrieve and discuss an analytical solution for the electric field
response generated by a nonconducting ellipsoid (prolate spheroid) in a homoge-
neous conducting fluid subject to an external primary electric field. We assume that
the primary field can have any angle of incidence with respect to the longer axis of
the ellipsoid. We assume that the ellipsoid has a zero (a nonconducting cell mem-
brane) conductivity.

In the main text, we will utilize the well-known analogy between the electrostatics
of dielectrics and DC conduction [1-3]. This analogy means that the basic equations
and the corresponding solutions become identical when the ratio(s) of dielectric
constants will coincide with the ratio(s) of conductivities. Since the solution of the
present problem for dielectric materials does exist [1], its conversion to the
conducting case is rather straightforward, but it requires extra steps for computing
the induced charge density at the interface.

Here we also note that such an analogy is not the only one: one might consider a
relevant fluid dynamics analogy as well. For example, the solution for a potential
flow of an ideal incompressible fluid around a sphere with radius R [4] yields the
expression for the hydrodynamic potential in the following form (the flow direction
is along the x-axis):
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@, = —Vorcosf + Bc}gs@ (1)

An unknown coefficient B is found from the condition% = 0, which allows us to
write the following expression for the potential:

3
@, = —Voxrcos 6 — vaRz%sQ (2)

Simultaneously, the tangential velocity at the sphere surface is given by
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This solution is equivalent to the steady electric current solution for a
nonconducting sphere in a conducting fluid. In particular, the electric field inside
the sphere is given by (cf. [3]):

E =>E, 4)

where Eo is the primary electric field. On the other hand, for a dielectric sphere with
permittivity € in a dielectric medium with permittivity &, the corresponding solution
for the field inside has the following form [1-3]:

— 38(8) —

Ei = 26'(6) + E(i) EO (5)

Two solutions (4) and (5) indeed coincide when

e/ =0 (6)

2 Materials and Methods

In Ref. [1], the problem is solved for the electric field of an ellipsoid with half axes
a, b, ¢, with permittivity £? in a dielectric medium with permittivity > when a
primary or external field EO is applied. This solution will be repeated here; the final
result implies that the permittivities should be replaced by conductivities.
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We consider an ellipsoid in the form of a prolate spheroid (a > b = ¢). The
coordinate system (see Fig. 1) is chosen as follows: the z-axis is directed along a so

that the angle between the z-axis and the vector Ej is less than 90 degrees. The x-axis
is located in a plane defined by the z-axis and vector Ey. The y-axis is then chosen to
construct the right-handed Cartesian system.

In this coordinate system, the depolarization tensor [1] becomes diagonal with the
following components:

" :@/oc ds
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abc i ds
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For the prolate spheroid, simplifications are made in the following form [1]:

2
Ny = 1 e3e (Arthe — ¢),
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Nyy =Nyx = ) (1 - nzz)

wheree = \/1 — ¥’/ is the ellipsoid eccentricity.

Fig. 1 Ellipsoid along with
the coordinate system used
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3 Results for the Potential and the Electric Field

Accordingly, the electric potential everywhere in space and the electric field inside
the ellipsoid have the following form [1] (the ratio of dielectric permittivities in the
equations given below must be set to zero to obtain the result for the nonconducting
ellipsoid in the conducting fluid):
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Here, & is the ellipsoidal coordinate that is a constant for all ellipsoids being
confocal with the given one. For the prolate spheroid, one has & = a/, /2.
Now, we express the electric field in the following form (3 is the elevation angle):
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Ey, =Eycosd,
EOX :EO sin 19, (10)
Ey, =0

After substitution of Eq. (10) into Eq. (9) and using Eq. (6), we obtain
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It follows from Egs. (8) and (11) that the electric field within the ellipsoid is not
parallel to the external primary electric field.

4 Results for the Surface Charge Density

For the prolate spheroid, the ellipsoidal coordinates are reduced to the prolate
spheroidal coordinates &, 1, and . They are converted to Cartesian coordinates
using the following expressions [5]:
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where d is the spacing between two focal points of the ellipsoid, which is equal
to 2Va? — b*.

In order to find the surface charge distribution, one needs to find the normal
derivative of the electric potential at the surface. Since the outer normal derivative of
the potential is equal to zero, only the inner derivative is needed.
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It is convenient to compute the inner derivative using coordinates &, 1, and .
Then,

do 1 Ol
dl’l surf - H§ ag

(13)

where H; is the corresponding Lamé coefficient. We find this coefficient in the
following form:
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Here, & is the value of £ on the ellipsoid surface. Following the definition of the
prolate spheroid, one obtains & = 4/, /2,2 andy = z/,. Then,
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It follows from here that the surface charge density as a function of z and 9 (the
elevation angle) is obtained in the following form:

(15)

+
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which completes the solution. This is the surface charge density residing on the
surface of the nonconducting ellipsoid in the conducting fluid.

Consider the primary external field that has only one component parallel to the
z-axis, and consider b that tends to zero in Eq. (16). Then, the surface charge density
is only different from zero at the tips of the ellipsoid, that is, at z — a or z — — a.
This is a physically meaningful result, which is observed for a thin cylinder in a

o (Eo sin & ava® — 72 Epcosd bzVa? — b* ) (16)
=&
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coaxial external field. Here, the opposite charges are concentrated close to the
cylinder tips only.
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