
Safe Decomposition of Startup Requirements:
Verification and Synthesis

Alessandro Cimatti1 , Luca Geatti1,2 , Alberto Griggio1 , Greg Kimberly3,
and Stefano Tonetta1

1 Fondazione Bruno Kessler, Trento, Italy
cimatti@fbk.eu, lgeatti@fbk.eu, griggio@fbk.eu, tonettas@fbk.eu

2 University of Udine, Udine, Italy
luca.geatti@uniud.it

3 The Boeing Company, Seattle, USA
greg.kimberly@boeing.com

Abstract. The initialization of complex cyber-physical systems often
requires the interaction of various components that must start up with
strict timing requirements on the provision of signals (power, refriger-
ation, light, etc.). In order to safely allow an independent development
of components, it is necessary to ensure a safe decomposition, i.e. the
specification of local timing requirements that prevent later integration
errors due to the dependencies.

We propose a high-level formalism to model local timing requirements
and dependencies. We consider the problem of checking the consistency
(existence of an execution satisfying the requirements) and compatibil-
ity (absence of an execution that reaches an integration error) of the
local requirements, and the problem of synthesizing a region of timing
constraints that represents all possible correct refinements of the origi-
nal specification. We show how the problems can be naturally translated
into a model checking and synthesis problem for timed automata with
shared variables. Exploiting the linear structure of the requirements, we
propose an encoding of the problem into SMT. We evaluate the SMT-
based approach using MathSAT and show how it scales better than the
automata-based approach using Uppaal and nuXmv.

1 Introduction

Complex industrial cyber-physical systems often have an initialization procedure
that requires to reach a startup mode within a specified design target time in-
terval. In order for the system as a whole to complete the startup within the
required interval, each subcomponent of the system may have to go through a
number of intermediate phases, within their own target intervals, each of which
may itself be dependent upon other subcomponents reaching startup or interme-
diate phases. E.g. for a power generation system to startup at full power, it may
need to transition first through a low power output phase and a number of sub-
sidiary systems (perhaps cooling or fuel supply) may first have to undergo their

c© The Author(s) 2020
A. Biere and D. Parker (Eds.): TACAS 2020, LNCS 12078, pp. 155–172, 2020.
https://doi.org/10.1007/978-3-030-45190-5 9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-45190-5_9&domain=pdf
http://orcid.org/0000-0002-1315-6990
http://orcid.org/0000-0002-7125-787X
http://orcid.org/0000-0002-3311-0893
http://orcid.org/0000-0001-9091-7899
https://doi.org/10.1007/978-3-030-45190-5_9

156 A. Cimatti et al.

own phase transitions. In turn, these subsidiary systems may require transitions
to occur in systems subsidiary to them and so on.

Traditionally, the integration of these distributed transition targets are vali-
dated via simulation and testing, which while sufficient to reach a desired design
performance are labor and time intensive. Having a more efficient process for
arriving at and validating a set of design targets that satisfy the overall sys-
tem requirements is clearly beneficial in these contexts. Firstly, we would like
to verify that these requirements prevent failed transitions in which the time
performance of the subsidiary systems lead to outcomes where our main sys-
tem (e.g., the power generation system) cannot perform a transition within its
time window. For example, suppose the power system has a time window within
which it must transition from low-power mode to high-power mode; in order for
it to achieve this transition, however, it requires that two subsidiary systems,
a cooling system and a fuel supply system, must themselves transition from a
low-output mode to a high-output mode, each within their own target transition
time windows. If these time windows are not compatible, the power generator
may fail to provide the high power in time. Secondly, if our starting set of re-
quirements is inadequate to provide this guarantee, we would like to be able to
synthesize a set of requirements that is adequate to this task.

In this paper, we formalize the problem starting from a simple industrially
relevant setting, where the components have a linear sequence of phases, must
progress to the next phase within a certain interval of time, and must respect
some dependencies upon the phases of other components. Dependencies are ex-
pressed as Boolean combinations of variables representing the component phases
and are divided into two types: (i) signal dependencies, where the entering of a
component into a phase is conditioned by the presence of other components in
some specific phases; (ii) state dependencies, where a component can stay in a
phase only if, during all its stay, other components are in some specific phases.
We are interested in the following problems: 1) checking if the requirements are
compatible, i.e., if all reachable states can be extended with an execution satis-
fying the requirements; thus, if the components satisfy the local requirements,
they cannot lead the system to an illegal state (where a component does not
receive the input in time); 2) checking if the requirements are consistent, i.e.,
there exists an execution of the components satisfying all requirements (incon-
sistency is actually a pathological case of incompatibility); 3) synthesizing the
set of refinements (same requirements with stricter intervals) that are consis-
tent and compatible. We show how the first two verification problems can be
naturally translated into a model checking problem for timed automata with
shared variables. Exploiting the linear structure of the requirements, we propose
an encoding of the problem into SMT. If all intervals are bounded, the encoding
is quantifier-free. Finally, both approaches have been extended to solve also the
synthesis problem, using synthesis for parametrized model checking of TAs and
quantifier elimination in SMT, respectively.

We implemented the SMT-based approach in a tool called TRICker and car-
ried out experimental evaluation, comparing it with other tools for the verifica-

Safe Decomposition of Startup Requirements 157

tion of timed automata. We used Uppaal [6] and nuXmv [7] to model check TAs
and MathSAT [12] to solve the SMT problems. We performed an experimental
evaluation based on a test-set of randomly generated local requirements. When
comparing the SMT-based approach with the automata-based one, the results
highlight a better performance of the former technique on all three problems.

Related Work The problem of the integration and compatibility of input/output
timed automata has been extensively studied in the literature. Typically, works
in the literature focus on deadlock checking (see, e.g., [4,5]). The work of [2] also
addresses the parameter synthesis to avoid deadlocks in timed automata. In order
to check for livelocks, liveness properties can be addressed with approaches pro-
posed in [10,7]. A general definition of illegal states for timed interface automata
is given in [13]. As shown in the extended version of the paper the compatibil-
ity problem addressed in this paper can be seen as a subcase of the homonym
problem for input/output timed interface automata. As we are considering a
closed system, the problem reduces to the existence of a deadlock or livelock in
a phase of some component (depending if the related time interval is bounded
or not). Moreover, compared to the above model checking approaches we are
considering a specific fragment of timed automata with a linear structure that
can be exploited for specialized solutions.

Related problems have been addressed in the context of task scheduling. In
the formalism introduced in [16,17], called DRT (short for digraph real-time task
model), in which tasks and deadlines are expressed as directed graphs, the prob-
lem of determining whether a schedule exists (feasibility problem) bears some
similarities with the consistency checking problem we study here. The DRT
model allows the use of very general graph topologies, with multiple outgoing
branches and loop-backs, but it does not consider dependencies across different
tasks. The main difference with our work is that the problem is addressed from
a global point of view (i.e., the existence of a global scheduler that can coor-
dinate the execution of the tasks), whereas we are interested in local solutions,
in which each requirement can be considered in isolation. Another difference is
the approach used to tackle the problem: while in [16] dynamic programming is
used to deal with the possible explosion of the search space, we use SMT [14] as
the main framework for all the three above-mentioned problems.

Outline. In Sec. 2, we introduce a suitable formalism to model local require-
ments and we formalize the three problems. In Sec. 3, we propose the reductions
of compatibility checking and consistency checking into TAs and SMT. The cor-
responding solutions for the synthesis problem are then described in Sec. 4. The
experimental results are described in Sec. 5. In Sec. 6, we draw some conclusions
and highlight possible future directions of this work.

2 Problem Statement

Domain formalization We propose a high level formalism to model the local
requirements.

158 A. Cimatti et al.

A

Off

On

[3, 6]

B

Off

On

[2, 4]

(a) Example of system with two local re-
quirements and one state dependency.

E

Off

Normal

[1, 2]

C

Off

Normal

High

[2, 3]

[2, 3]

D

Off

Normal

[4, 6]

(b) Example of system with two local re-
quirements and two signal dependencies.

Definition 1 (Local Requirements) A specification S is given by a set of
local (or component) requirements, where each local requirement C ∈ S is given
by an (ordered) sequence 〈PC1 , . . . , PCn 〉 of phases. In turn, each phase Pi of C
is associated when i > 1 with a closed real interval βPi with non-negative lower
limit lPi and (finite or infinite) upper limit uPi , with a formula φPi (called signal
dependency) and, when i > 0 with a formula ψPi (called state dependency). Both
φPi and ψPi are Boolean formulae over the atoms in {〈D,Q〉}D∈S\{C},Q∈D (i.e.,
the phases of other components).

If a dependency ψP is just a conjunction of atoms, then we say that ψP is
convex. With the notation |C|, we will refer to the number of phases of C.

Figs. 1a and 1b show two examples of sets of local requirements. In Fig. 1a,
we have two local requirements A and B (i.e., S = {A,B}); each local re-
quirement has two phases Off and On (i.e., PA1 = Off and PA2 = On and sim-
ilarly for B); the bounds are depicted in square brackets (thus, for example
βAOn = [3, 6]); all dependencies are trivially true apart from the state depen-
dency ψBOn = 〈A,On〉 of the local requirement B, which is plotted as an arrow
from the phase On of B to phase On of A. In Fig. 1b, we have another example
with three components and some signal dependencies; for example, signal de-
pendency φCNormal = 〈E,Normal〉 is plotted as an arrow from the transition to
phase Normal of C to phase Normal of E.

Definition 2 (Stronger local requirements) We say that a local requirement
C ′ = 〈PC′1 , . . . , PC

′

n 〉 is stronger than C = 〈PC1 , . . . , PCn 〉 (written C ′ � C), iff
phase PC

′

i is identical to PCi except that lPCi ≤ lPC′i
and uPC′i

≤ uPCi , for all

1 ≤ i ≤ n. Given two specifications S = {C1, . . . , Cn} and S′ = {C ′1, . . . , C ′n},
we say that S′ is stronger than S (written S′ � S) iff for all i, 1 ≤ i ≤ n,
|Ci| = |C ′i| and C ′i � Ci.

In defining the semantics of a composition of local requirements C1 . . . Cn,
every local requirement Ci is associated with a local clock, which is reset each
time it enters a new phase. Given a local requirements specification {C1, . . . , Cn},

Safe Decomposition of Startup Requirements 159

we define its semantics formally by defining the predicate Reach((C1, j1, t1), . . . ,
(Cn, jn, tn)), which is true iff the phases PC1

j1
. . . PCnjn are reachable at local times

t1 . . . tn.

Definition 3 (Reachability for local requirements) Given the specification
{C1 . . . Cn} and the time points t1 ∈ R . . . tn ∈ R, we inductively define the pred-
icate Reach((C1, j1, t1), . . . , (Cn, jn, tn)) as follows:

– (base case) Reach((C1, 1, 0), . . . , (Cn, 1, 0)) holds and for all i ∈ {1 . . . n} it
holds that (state dependencies): ((C1, 1), . . . , (Cn, 1)) |= ψCi1

– (timed transition) if Reach((C1, j1, t1), . . . , (Cn, jn, tn)) and there exists a
δ ∈ R such that ti + δ ≤ uCiji+1 for all i ∈ {1 . . . n}, then
Reach((C1, j1, t1 + δ), . . . , (Cn, jn, tn + δ)).

– (discrete transition) if Reach((C1, j1, t1), . . . , (Cn, jn, tn)) and there exists a
δ ∈ R and a M ⊆ {1, . . . , n} such that:
1. for all i ∈ {1 . . . n} such that ji < |Ci|, ti + δ ∈ [lCiji+1, u

Ci
ji+1] if i ∈ M ,

and ti + δ ≤ uCiji+1 otherwise;
2. for all i ∈M , it holds that (signal dependencies):

((C1, j1), . . . , (Cn, jn)) |= φCiji+1
3. for all i ∈M , it holds that (state dependencies - entry):

((C1, j1), . . . , (Cn, jn)) |= ψCiji+1
4. for all i ∈ {1 . . . n}, it holds that (state dependencies - invariant):

((C1, j
′
1), . . . , (Cn, j

′
n)) |= ψCij′i

then it holds that Reach((C1, j
′
1, t
′
1), . . . , (Cn, j

′
n, t
′
n)), where j′i = ji + 1 and

t′i = 0 if i ∈M and ji < |Ci|, and j′i = ji and t′i = ti + δ otherwise.

We define the predicate CompS to be true iff there are no reachable states
in S such that no component can proceed to its next phase.

Definition 4 (Compatibility for local requirements) Given the set of lo-
cal requirements S = {C1 . . . Cn}, the predicate CompS is true iff:

∀j1 ∈ {1 . . . |C1| − 1} . . . ∀jn ∈ {1 . . . |Cn| − 1} ∀t1 . . . tn ∈ R
(

Reach((C1, j1, t1), . . . , (Cn, jn, tn))⇒

∃M ⊆ {1 . . . n}
(
M 6= ∅ ∧Reach((C1, j

′
1, t
′
1), . . . , (Cn, j

′
n, t
′
n))
))

where j′i = ji + 1 and t′i = 0 for all i ∈ M , or j′i = ji and t′i = ti otherwise.
If CompS holds, we say that C1 . . . Cn are compatible, or equivalently that S is
compatible.

For example, in Fig. 1a, predicate Reach((A, 1, 4), (B, 1, 4)) holds, but pred-
icate Reach((A, 1, 4), (B, 2, 0)) does not, because for all δ ∈ R and for all S ⊆
{1 . . . n}, predicate Reach((A, 1, 4), (B, 2, 0)) is false.

Strict Semantics The above definition adopts a weakly-monotonic model of time,
where discrete transitions are instantaneous and, therefore, the system may be
in two different states at the same instant. The definition and the reductions to
model checking and SMT can be easily adapted to have a strict semantics.

160 A. Cimatti et al.

Verification and Synthesis Problems The core problem we address is to check if
a given specification S = {C1, . . . , Cn} is compatible, i.e., if CompS holds. The
consistency checking problem amounts to checking if there exists a time point in
which the final phase of all the local requirements is reached, that is it amounts
to checking if the following formula holds:

∃t1 . . . ∃tn Reach((C1, |C1|, t1), . . . , (Cn, |Cn|, tn))

If this is the case, then we say that S is consistent. Finally, we can formalize the
synthesis problem as the problem of computing (a symbolic representation of)
the set: {S′ | CompS′ ∧ S′ � S}

2.1 NP-hardness

In this section, we show that the simplest of the problems defined above is
already NP-hard. In fact, we show a reduction from SAT to the consistency
checking problem.

Let ϕ(x̄) be a Boolean formula over the variables x̄ = 〈x1 . . . xn〉; with-
out loss of generality, we assume ϕ(x̄) to be in negated normal form, i.e., with
all the negations only in front of literals. For all 1 ≤ i ≤ n, we define the
local requirement corresponding to variable xi as Ci = 〈P i1, P i2〉, such that
BP i2 = [0,+∞) and φP i1 = ψP i1 = φP i2 = ψP i2 = >; the idea is to encode

the values ⊥ and > of each xi with the two phases P i1 and P i2, respectively.
Moreover, we define the local requirement G, which will be useful as a gadget
for the reduction, as follows: G = 〈PG1 , PG2 〉, where PG2 = 〈[0,+∞), ϕ[xi 7→
〈Ci, P i2〉,¬xi 7→ 〈Ci, P i1〉],>〉. The specification Sϕ corresponding to the Boolean
formula ϕ(x̄) is defined as Sϕ = {G,C1, . . . , Cn}. It holds that ϕ(x̄) is satis-
fiable if and only if Sϕ is consistent. In fact, if Sϕ is consistent, then there
exists a time point in which the signal dependency of the second phase of G
has been satisfied, and thus ϕ(x̄) is satisfiable. Viceversa, let’s suppose that
ϕ(x̄) is satisfiable and let M be an arbitrary model of it, expressed as the
set of true atoms, in which we also substitute every xi in it with the pair
〈Ci, P i2〉. Since the local requirements C1 . . . Cn have no dependencies and, to-
gether with G, have only infinite bounds, there exists a time t such that predicate
Reach((G,PG1 , t), (C1, P

G
b1
, t1), . . . , (Cn, P

n
bn
, tn)) is true, where for all 1 ≤ i ≤ n,

bi = 2 and ti = 0 iff xi ∈M and ti = t otherwise. By definition of Reach (see Def-
inition 3), this implies that Reach((G,PG2 , t), (C1, P

1
2 , t), . . . , (Cn, P

n
2 , t)) holds,

i.e., S is consistent.

In Sec. 3.2, we will give an encoding of the consistency checking problem
based on SMT(DL) (i.e., Satisfiability Modulo Theory of Difference Logic). In
particular, we will show that the problem can be reduced to the satisfiability
of a formula in SMT(DL). Since the latter belongs to NP [15], the consistency
checking problem belongs to NP as well, having that consistency checking is
NP-complete.

Safe Decomposition of Startup Requirements 161

3 Verification

3.1 Reduction to Model Checking

In order to formalize the two verification problems into ones of model checking
networks of timed automata, we use timed automata with shared variables. To
this end, besides the clock constraints Ξ(C), we define L = {lA, lB, . . . } as a
set of location variables (one for each automaton A in the network), and Θ(L)
as the set of all Boolean combinations of atoms of type lA = vA, where A is a
timed automata, lA ∈ L and vA is a state of A.

Definition 5 (Timed Automata with Shared Variables) A timed automa-
ton with shared variables (TASV, for short) A = 〈VA, v0

A, lA, CA, inv
cl
A, inv

loc
A , TA〉

consists of:

– a finite set of locations VA;
– an initial location v0

A ∈ VA;
– a location variable lA with range VA;
– a finite set of clocks CA, where a clock is a real-valued variable;
– a clock invariant invclA : VA → Ξ(CA) for each location;
– a location invariant invlocA : VA → Θ(CA) for each location;
– a transition relation TA ⊆ VA × 2CA × Ξ(CA)×Θ(L)× VA.

Given a set of clocks C, we denote with ν : C → R a clock valuation, that is
a function assigning a rational value to each clock; with VC , we denote the set of
all possible clock valuations over C. For t ∈ R, ν+ t is the clock valuation which
maps every clock c ∈ C to the value ν(c) + t. For R ⊆ C, we define ν[R 7→ 0]
to be the valuation that maps x to 0 if x ∈ R, and to ν(x) otherwise. When
defining the product of two TASVs, we will deal with tuples (lA1 , . . . , lAn) of
location variables; in this context, we usually denote with λ any function from
the set of n-tuples of location variables to the set VA1

× · · · × VAn . Moreover,
we write that λ |= Φ (where Φ ∈ Θ(L)) iff Φ[lAi 7→ vAi , for all 1 ≤ i ≤ n] is
true and λ((. . . , lAi , . . .)) = (. . . , vAi , . . .). We give the semantics of a TASV in
terms of traces and we define their product as described below.

Definition 6 (Trace of a TASV) A trace τ of a TASV A = 〈VA, v0
A, lA, CA,

invclA, inv
loc
A , TA〉 is a (either finite or infinite) sequence of states of the form:

〈v0, ν0, λ0〉
α1−→ 〈v1, ν1, λ1〉

α2−→ 〈v2, ν2, λ2〉
α3−→ . . .

such that vi ∈ VA, αi ∈ R ∪ {τ}, νi ∈ VCA and λi ∈ VL for all i ≥ 0, and:

– (initiation) v0 = v0
A, ν0(x) = 0 for all x ∈ CA, ν0 |= invclA(v0

A), λ0(lA) = v0

and λ0 |= invlocA (v0
A);

– (consecution): for all i ≥ 0
• (timed transition) if α ∈ R, then vi+1 = vi and νi+1 = νi + α, νi + δ |=
invclA(vi), for all 0 ≤ δ ≤ α, and λi+1(lA) = vi;

162 A. Cimatti et al.

• (discrete transition) if α = τ then there is a tuple (vi, Ri, Ξi, Φi, vi+1) ∈
TA such that: νi |= invclA(vi) ∧ Ξi; λi |= Φi; νi+1 = νi[Ri 7→ 0]; νi+1 |=
invclA(vi+1); λi+1(lA) = vi+1, and λi+1 |= invlocA (vi+1).

Definition 7 (Product of TASVs) Given two TASVs A and B, their product
is the TASV A⊗ B defined as follows:

– VA⊗B = VA × VB and v0
A⊗B = (v0

A, v
0
B);

– lA⊗B = (lA, lB);
– CA⊗B = CA ∪ CB;
– invclA⊗B(v, u) = invclA(v) ∧ invclB (u), for all (v, u) ∈ VA⊗B;

– invlocA⊗B(v, u) = invlocA (v) ∧ invlocB (u), for all (v, u) ∈ VA⊗B;
– the transition relation is defined as follows:

TA⊗B ={((v, u), R,Ξ, Φ, (v′, u)) | (v,R,Ξ, Φ, v′) ∈ TA} ∪
{((v, u), R,Ξ, Φ, (v, u′)) | (u,R,Ξ, Φ, u′) ∈ TB}

It is worth noting that each TASV corresponds to a timed automaton defined
in the standard way [1], and viceversa. We define now the TASV corresponding
to a local requirement.

Definition 8 (TASV for a Local Requirement) Let C = 〈PC1 , . . . , PCn 〉 be
a local requirement. We define the corresponding TASV A = {VA, v0

A, lA, CA,
invclA, inv

loc
A , TA} as follows:

– for each phase PCi of local requirement C, viA is the corresponding location
in VA; PC0 corresponds to v0

A and CA = {cA};
– for each phase PCi (but the last) of C, invclA(viA) := cA ≤ uPCi+1

;

– (discrete transition) for each phase PCi (but the last) of C, it holds that
(viA, {cA}, ΞCi , ΦPCi+1

∧ ΨPCi+1
, vi+1
A) ∈ TA, where ΞCi := lPCi+1

≤ cA ≤ uPCi+1
.

– (state deps) for each phase PCi of C, it holds that invlocA (viA) := ΨPCi ;

where ΦP := φP [(d, j) 7→ (ld = vj)], for each phase P (the same holds for Ψ);

A

off inv:
cA ≤ 6

on

3 ≤ cA ≤ 6
cA := 0

B

inv:
cB ≤ 4

inv:
ψon

2 ≤ cB ≤ 4
cB := 0
ψon

Fig. 2: Example of TASV corresponding
to a local requirement.

Example. Consider Fig. 1a: the corre-
sponding TASV is depicted in Fig. 2.
Each phase of each local requirement
corresponds to a location of the cor-
responding TASV; in the example,
phase off is mapped into location off.
The first locations of automata A and
B have attached the invariants cA ≤ 6
and cB ≤ 4, respectively. Automa-
ton A proceeds to location on (cor-
responding to phase A.on) by a tran-

sition labelled with clock constraint 3 ≤ cA ≤ 6 and clock reset cA := 0. Since
the second phase of local requirement A has no dependencies, the transition to

Safe Decomposition of Startup Requirements 163

on has no constraints on the location variables. The situation is different for
automaton B, for which the transition to on is labelled with 2 ≤ cB ≤ 4 and
cB := 0, and also with ψon := (lA = on), that is the state dependency of phase
B.on; moreover, ψon is also an invariant for the second location of automaton
B, since it is a state dependency.

Given a network S := A1 × · · · × An of TASVs, the problem of consistency
checking can be expressed as the reachability of location (A1.last, . . . ,An.last) ∈
VS . A deadlock of a TASV A is defined as a state (v, t) ∈ VA × R such that A
can take neither a timed nor a discrete transition from (v, t). We call livelock
a state (v, t) such that A can take only timed transitions. The compatibility
checking problem can be expressed as the problem of checking if there exists a
trace of S such that (i) either the trace is finite and its final state is a deadlock
of S; we can check this property by adding a sink location to the TASV S to
which all locations can transition to and by checking the reachability of it; (ii) or
the trace is infinite and there exists a location v ∈ VS and a point k ≥ 0 such
that lS = v 6= (A1.last, . . . ,An.last), for all the states after k in the trace,
where the ith component of v together with the time of the current state is a
livelock for automata Ai, for some 1 ≤ i ≤ n. The second point is fundamental
for local requirements featuring infinite bounds : in these automata, it is not
sufficient to check for deadlocks, since a timed transition could be always enabled;
instead, an illegal state can be described by a trace of the system that reaches a
livelock whose location has no invariants attached and then stays constantly in
this location. Having reached a livelock, the automaton can proceed only with
timed moves: in particular, it can’t proceed to the next location because its
dependencies are violated. We can check the second point in this way: we first
add a sink location sinkAiv for each location v ∈ Ai (and of course a transition
from the latter to the former), for each 1 ≤ i ≤ n, and we attach to it the
invariant ¬invlocAi (v). Now, in the product S of these modified automata, we look
for a trace such that, from a certain time point onwards, it stays constantly in
a location (l1, . . . , ln) such that at least one li is a sink state. This property can
be formalized in Linear Temporal Logic as FG(

∨
1≤i≤n,v∈Ai sink

Ai
v).

3.2 Encoding into SMT(DL)

We describe the encoding into SMT(DL) (Satisfiability Modulo Theory of Dif-
ference Logic) for the problems of consistency checking and compatibility check-
ing. For all 1 ≤ c ≤ n and 1 ≤ i ≤ |c|, we introduce the following variables:
(i) rci ∈ B represents the fact that phase i of local requirement c is reachable;
(ii) sci = (tci , p

c
i) represents the superdense time instant in which local require-

ment c enters phase i, where tci ∈ R and pci ∈ N. We can compare two superdense-
valued variables (t, p) and (t′, p′) with the lexicographical order, which we define
as follows: (t, p) � (t′, p′) iff t ≤ t′ ∧ (t = t′ → p ≤ p′). We now give the set of
(conjunctively related) constraints which form our SMT(DL) encoding.

Initialization. Each local requirement starts in its first phase at the same time,
i.e., the real time point 0. Hence, for all 1 ≤ c ≤ n, we add the constraint tc0 = 0.

164 A. Cimatti et al.

Reachability. For all local requirements c and all phases i, it holds that if i− 1
is not reachable then so is phase i, i.e., ¬rci−1 → ¬rci . Moreover, we require the
monotonicity over time, i.e., rci → (sci−1 ≺ sci).

Bounds. For all local requirements c and all phases i, c can move to i only if
it respects the bounds [lci , u

c
i] of phase i, namely rci → (lci ≤ tci − tci−1 ≤ uci). If

uci =∞, then we add only the left-most inequality.

Signal and State dependencies. Consider a local requirement c and one of its
phases i. Since we have only a finite number of phases, we can preprocess both
signal and state dependencies to remove from them all negations, as explained
in the extended version of the paper 4; this means that every atom in φci and ψci
occurs positive.

We want c to reach i only if all its signal and state dependencies are satisfied.
For signal dependencies, we require the time point in which c enters i to be
strictly greater5than the time point of the entry of the target phase and smaller
than or equal to the time point of the exit of the target phase.

rci → φci [(d, j) 7→ (rdj ∧ sdj ≺ sci � sdj+1)]

Moreover, we have to guarantee that the state dependencies hold as well. In
particular, if phase i is reachable, then surely the time point in which c enters i
has to be strictly greater than the time point in which the other local requirement
reaches the target phase.

rci → ψci [(d, j) 7→ (rdj ∧ sdj ≺ sci)]

Since state dependencies are invariant properties, i.e., they have to hold for each
time instant a local requirement is in a particular phase, if one state dependency
is violated at some time point of phase i− 1, then phase i is not reachable. The
contrapositive means that if phase i is reachable, then the state dependencies of
phase i− 1 have to be invariant for phase i− 1, namely:

rci → ∀s̃(sci−1 � s̃ � sci → ψci−1[(d, j) 7→ (rdj ∧ sdj ≺ s̃ � sdj+1)]) (1)

Illegal States. If phase i of local requirement c is not reachable, i.e., i is an illegal
state, then there exists a time point scill such that, for all the next (remaining)
time points s̄ between scill and the upperbound of the transition, at least one
dependency is not satisfied.

(rci−1 ∧ ¬rci)→ ∃scill∀s̄(scill � s̄ � sci−1 + uci−1 → VIOLATION(s̄)) (2)

4 http://users.dimi.uniud.it/∼luca.geatti/tricker.html
5 This allows us to model the observability of the events: c first observes d entering

its phase j and then moves.

http://users.dimi.uniud.it/~luca.geatti/tricker.html

Safe Decomposition of Startup Requirements 165

where

VIOLATION(s̄) := ¬φci [(d, j) 7→ (rdj ∧ sdj ≺ s̄ � sdj+1)] ∨ (3)

¬ψci [(d, j) 7→ (rdj ∧ sdj ≺ s̄)] ∨ (4)

∃s̃(sci−1 � s̃ � s̄ ∧ ¬ψci−1[(d, j) 7→ (rdj ∧ sdj ≺ s̃ � sdj+1)]) (5)

We interpret s̄ � sci−1 + uci as ∀p̄(s̄ � sci−1 + (uci , p̄)) and the + symbol as the
pairwise sum. In the case the upperbound of the transition is infinite, we simply
do not add the s̄ � sci−1 + uci inequality. We refer to the conjunction of all these
constraints as W.

For consistency checking, we define END :=
∧

1≤c≤n
r|c| and we call Wcons the

conjunction of W with END. We check consistency by checking the satisfiability
of Wcons.

For compatibility checking, we define ILL :=
∨

1≤c≤n
1≤i≤|c|

¬rci and we call Will the

conjunction of W with ILL. We check the existence of an illegal state in the
system by checking the satisfiability of Will, i.e., Will is satisfiable iff the local
requirements are not compatible.

Strict Semantics In the strict semantics setting, we forbid two events to occur at
the same real-time point. For strict semantics, the encoding is equal to W except
that we interpret ≺ and � as < and ≤, respectively, and all the sci variables as
single real-valued variables tci ∈ R. We call S this encoding and we define Scons

and Sill as above.

Finite bounds and convex dependencies. Despite being very close to the prob-
lem formalization, the W encoding features a high number of quantifications,
also in alternation; therefore, in the general case, it is very burdensome for an
SMT solver to first perform quantifier elimination on W and then to solve the
resulting formula. Nevertheless, if we make some restrictions on the type of local
requirements we consider, we are able to remove upfront all the quantifiers from
W, without the need to use quantifier elimination techniques. In fact, suppose
we consider only local requirements with finite bounds and convex state depen-

dencies (see Sec. 2). We call Ŵill
fin the encoding equal to W except that Eq. (1)

is replaced by:

rci → ψci−1[(d, j) 7→ (rdj ∧ sci � sdj+1)] (6)

and we add the following constraint:

(rci−1 ∧ ¬rci)→ (tci = tci−1 + uci−1) (7)

and we replace Eq. (2) with:

(rci−1 ∧ ¬rci)→WEAKVIOL(tci) (8)

166 A. Cimatti et al.

where:

WEAKVIOL(tci) := ¬φci [(d, j) 7→ (rdj ∧ tdj ≤ tci < tdj+1)] ∨
¬ψci [(d, j) 7→ (rdj ∧ tdj ≤ tci)] ∨
¬ψci−1[(d, j) 7→ (rdj ∧ tci ≤ tdj+1)])

(9)

We can prove that Will and Ŵill
fin are equisatisfiable for every set of local re-

quirements with only finite bounds and convex dependencies. Notably, there are
no quantifiers in Will

fin: as said before, this makes the encoding dramatically more
efficient with respect to W: in Sec. 5, we will consider only local requirements of
this type. The details of the proofs are reported in the extended version of the
paper in which, given that the proofs are a bit involved, we proceed incremen-
tally, showing first how we can remove upfront the quantifiers in case of finite
bounds with strict semantics, then in the case with weak semantics and finally
in case of convex dependencies.

4 Synthesis

In this section, we tackle the synthesis problem, i.e., computing the set of all
stronger local requirements (as defined in Def. 2) of the initial local requirements
such that their composition is compatible. We solve this problem by reducing it
to a parameter synthesis problem (see [9] for a more detailed description); given
a local requirement C, its corresponding parametric local requirement 〈C, π〉 is
defined as C (see Sec. 2), except that the bounds lP and uP of each phase P are
now the parameters l̄P and ūP , respectively, and π := {l̄P | P is a phase of C}∪
{ūP | P is a phase of C}. Given a set of local requirements S = {C1, . . . , Cn},
we write 〈S,Π〉 for its parametric version {〈C1, π1〉, . . . , 〈Cn, πn〉}, where the set
of parameters is defined as Π :=

⋃n
i=1 πi. A parameter valuation γ : Π → Q

assigns a rational value to each parameter; moreover, for each 1 ≤ i ≤ n, it
also induces a (concrete) local requirement 〈Ci, γ(πi)〉, obtained from 〈Ci, πi〉
by replacing every parameter p ∈ πi with the concrete value γ(p). In the same
way, we can define the concrete version 〈S, γ(π)〉 of 〈S, π〉. γ is said to be feasible
for S if 〈Ci, γ(πi)〉 is a stronger local requirement of Ci, for all 1 ≤ i ≤ n, and
〈S, γ(π)〉 is compatible. A feasible region is a set R := {γ | γ is feasible for S}.
Also in this case, we can either use parameter synthesis algorithms over timed
automata [3] or reduce the problem to SMT(LRA); we focus on the latter and in
particular, we will synthesize a symbolic representation of the region R, namely
an SMT formula ϕR with the following property: γ |= ϕR iff γ ∈ R, for each
valuation γ.

Let Will be the encoding equal to Will except that each number lci (resp. uci)
is replaced with the variable l̄ci (resp. ūci) and each phase is required to have
finite bounds. We define the sets of variables R := {rci | c ∈ S, i is a phase of c}
and S := {sci | c ∈ S, i is a phase of c}: these are the variables we are going to
remove by means of quantifier elimination. Finally, we define:

Safe Decomposition of Startup Requirements 167

DOMAIN :=
∧

1≤c≤n
1≤i≤|c|

(l̄ci ≥ 0 ∧ l̄ci ≤ ūci)

REFINE :=
∧

1≤c≤n
1≤i≤|c|
uci 6=∞

(aci ≤ l̄ci ∧ ūci ≤ bci)

The symbolic representation of the feasible region R is given by:

SYNTH := DOMAIN ∧ REFINE ∧ ¬∃S,R
(

Will
)

(10)

By removing the existential quantification on S and R (this can be done by means
of quantifier elimination techniques), we obtain a quantifier-free formula over the
variables in Π. By construction, we have that each model γ of SYNTH is a fea-
sible valuation, and viceversa. Therefore SYNTH is the symbolic representation
of the feasible region R.

5 Experimental Evaluation

We implemented the encoding described in Sec. 3.2 in a tool called TRICker
(Timing Requirements Integration Checker) 6, which uses MathSAT [12] as the
backend SMT engine. We compared TRICker with Uppaal [6] and Timed-nuXmv
[8], both using the automata-based encoding described in Sec. 3.1.

The test set is partitioned into three categories: (i) bounded convex contains
only systems with finite bounds and convex state dependencies; (ii) bounded

contains systems with only finite bounds, but with arbitrary dependencies (not
necessarily convex); (iii) general contains systems with infinite bounds and
arbitrary dependencies (this is the most general fragment). Each category in turn
consists of ca. 500 randomly-generated systems, divided in 10 sub-categories,
namely 2c3p, 2c15p, 5c3p, 5c20p, 10c4p, 10c30p, 50c5p, 50c30p, 100c3p
and 100c10p, where NcMp is the category containing only systems with N
components and (approximately) M phases for each component. Inside each
sub-category, each benchmark is randomly generated, meaning that the exact
number of phases for each component and the density of its signal and state
dependencies was chosen uniformly at random. For each benchmark, we compare
the time spent by the three tools on the consistency checking and compatibility
checking problems. We ran the experiments on a cluster of Linux machines with
a 2.27GHz Xeon CPU, with a timeout of 360 seconds for each instance.

We consider first the bounded convex category. Fig. 3 shows the comparison
of TRICker with Timed-nuXmv and Uppaal on the two verification problems. In
both cases, Timed-nuXmv runs the infinite-state variant of IC3 described in [11]
after discretizing the timed automata. As for Uppaal, we verify a property in
the form EFϕ, where ϕ is a Boolean formula. For both problems, the SMT-
based approach implemented in TRICker outperforms the model checkers. While
there are a number of instances for which the model checkers perform better

6 http://users.dimi.uniud.it/∼luca.geatti/tricker.html

http://users.dimi.uniud.it/~luca.geatti/tricker.html

168 A. Cimatti et al.

Fig. 3: Comparison on the bounded convex category (consistency checking on
the first row and compatibility checking on the second).

than TRICker (especially for Uppaal), the latter overall solves a significantly
larger amount of problems within the timeout, showing a clear improvement in
scalability. This can be seen also in the survival plots comparing the three tools
with the Virtual Best Solver (vbs for short). We can make similar considerations
for the bounded and general categories, shown respectively in Fig. 4 and Fig. 5.
(Note that for the general case, we could not evaluate Uppaal as it does not
support the verification of fairness properties.) We remark that we did not note
any kind of correlation between the number of signal or state dependencies in
the benchmarks and the time spent by the solver. Finally, Fig. 6 shows the
correlation between the memory (measured in MB) and the time (in seconds)
spent by TRICker on consistency and compatibility checking, respectively.

We also evaluated the parameter synthesis algorithm described in Sec. 4.
Since Uppaal currently does not support parameter synthesis for timed automata,
we could not include it in the comparison. We therefore compared TRICker with
Timed-nuXmv, for which we used the ParamIC3 parameter synthesis algorithm
described in [9]. The algorithm is based on the inverse method, i.e., it finds a
bad configuration for the parameters and it tries to generalize it, maximizing the
set of bad parameters removed from the current approximation of the region.
We took all the consistent benchmarks of the previous test sets, which amounts
to approximately 100 instances (note that for each instance of the class NcMp,
the number of parameters is ≈ 2 · N ·M7). The results of the comparison are
shown in Fig. 7; as in the previous cases, TRICker shows better performance and

7 recall that both the lower and the upper bounds are parameters.

Safe Decomposition of Startup Requirements 169

Fig. 4: Comparison on the bounded category (consistency checking on the first
row and compatibility checking on the second).

scalability than ParamIC3, though there are several instances for which synthesis
via quantifier elimination is still very expensive.

6 Conclusions

In this paper, we defined verification and synthesis problems of industrial rel-
evance focused on the decomposition of startup requirements into local timing
constraints and dependencies on components. Namely, we addressed the problem
of checking if the local requirements are free of integration errors (i.e., consis-
tent and compatible), and the problem of synthesizing the region of refinements
of the original specification that are error free. The problem can be naturally
translated into model checking and synthesis problems for timed automata with
shared variables. Exploiting the structure of the requirements, we provide an
encoding into SMT where consistency and incompatibility correspond to satisfi-
ability queries, while synthesis is resolved by means of quantifier elimination.

In the future, we will consider various directions, such as extending the ap-
plicability of the approach to more general structures with loops, enriching the
synthesis problem with cost functions to repair the specification driven by spe-
cific industrial goals, and considering more complex representations of signals
exchanged between components.

170 A. Cimatti et al.

Fig. 5: Comparison on the general category (consistency checking on the first
row and compatibility checking on the second).

Fig. 6: Comparison between time and memory consuption of TRICker (consis-
tency checking on the left and compatibility checking on the right).

Fig. 7: Comparison on parameter synthesis.

Safe Decomposition of Startup Requirements 171

References

1. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical computer science
126(2), 183–235 (1994)

2. André, É.: Parametric Deadlock-Freeness Checking Timed Automata. In: The-
oretical Aspects of Computing - ICTAC 2016 - 13th International Colloquium,
Taipei, Taiwan, ROC, October 24-31, 2016, Proceedings. pp. 469–478 (2016).
https://doi.org/10.1007/978-3-319-46750-4 27

3. André, É., Chatain, T., Fribourg, L., Encrenaz, E.: An inverse method for para-
metric timed automata. International Journal of Foundations of Computer Science
20(05), 819–836 (2009)

4. Astefanoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Composi-
tional Invariant Generation for Timed Systems. In: Tools and Algorithms for the
Construction and Analysis of Systems - 20th International Conference, TACAS
2014, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings. pp.
263–278 (2014). https://doi.org/10.1007/978-3-642-54862-8 18

5. Astefanoaei, L., Rayana, S.B., Bensalem, S., Bozga, M., Combaz, J.: Compositional
Verification of Parameterised Timed Systems. In: NASA Formal Methods - 7th
International Symposium, NFM 2015, Pasadena, CA, USA, April 27-29, 2015,
Proceedings. pp. 66–81 (2015). https://doi.org/10.1007/978-3-319-17524-9 6

6. Behrmann, G., David, A., Larsen, K.G., H̊akansson, J., Pettersson, P., Yi, W.,
Hendriks, M.: Uppaal 4.0 (2006)

7. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Extending
nuXmv with Timed Transition Systems and Timed Temporal Properties. In:
Computer Aided Verification - 31st International Conference, CAV 2019, New
York City, NY, USA, July 15-18, 2019, Proceedings, Part I. pp. 376–386 (2019).
https://doi.org/10.1007/978-3-030-25540-4 21

8. Cimatti, A., Griggio, A., Magnago, E., Roveri, M., Tonetta, S.: Smt-based satisfi-
ability of first-order ltl with event freezing functions and metric operators (2019)

9. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with ic3. In:
2013 Formal Methods in Computer-Aided Design. pp. 165–168. IEEE (2013)

10. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Verifying LTL Properties of
Hybrid Systems with K-Liveness. In: Computer Aided Verification - 26th Inter-
national Conference, CAV 2014, Held as Part of the Vienna Summer of Logic,
VSL 2014, Vienna, Austria, July 18-22, 2014. Proceedings. pp. 424–440 (2014).
https://doi.org/10.1007/978-3-319-08867-9 28

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods in System Design 49(3), 190–
218 (2016). https://doi.org/10.1007/s10703-016-0257-4

12. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The mathsat5 smt solver.
In: International Conference on Tools and Algorithms for the Construction and
Analysis of Systems. pp. 93–107. Springer (2013)

13. De Alfaro, L., Henzinger, T.A., Stoelinga, M.: Timed interfaces. In: International
Workshop on Embedded Software. pp. 108–122. Springer (2002)

14. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Communications of the ACM 54(9), 69–77 (2011)

15. Niemelä, I.: Stable models and difference logic. Annals of Mathematics and Arti-
ficial Intelligence 53(1-4), 313–329 (2008)

https://doi.org/10.1007/978-3-319-46750-4_27
https://doi.org/10.1007/978-3-642-54862-8_18
https://doi.org/10.1007/978-3-319-17524-9_6
https://doi.org/10.1007/978-3-030-25540-4_21
https://doi.org/10.1007/978-3-319-08867-9_28
https://doi.org/10.1007/s10703-016-0257-4

172 A. Cimatti et al.

16. Stigge, M., Ekberg, P., Guan, N., Yi, W.: The digraph real-time task model. In:
2011 17th IEEE Real-Time and Embedded Technology and Applications Sympo-
sium. pp. 71–80. IEEE (2011)

17. Stigge, M., Yi, W.: Combinatorial abstraction refinement for feasibility
analysis of static priorities. Real-Time Systems 51(6), 639–674 (2015).
https://doi.org/10.1007/s11241-015-9220-5

Open Access This chapter is licensed under the terms of the Creative Commons

Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),

which permits use, sharing, adaptation, distribution and reproduction in any medium

or format, as long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license and indicate if changes were

made.

The images or other third party material in this chapter are included in the chapter’s

Creative Commons license, unless indicated otherwise in a credit line to the material. If

material is not included in the chapter’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted use, you will need

to obtain permission directly from the copyright holder.

https://doi.org/10.1007/s11241-015-9220-5
http://creativecommons.org/licenses/by/4.0/

	Safe Decomposition of Startup Requirements: Verification and Synthesis
	1 Introduction
	2 Problem Statement
	2.1 NP-hardness

	3 Verification
	3.1 Reduction to Model Checking
	3.2 Encoding into SMT(DL)

	4 Synthesis
	5 Experimental Evaluation
	6 Conclusions
	References

