Skip to main content

Stochastic Optimization of Contextual Neural Networks with RMSprop

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12034))

Included in the following conference series:

Abstract

The paper presents modified version of Generalized Error Backpropagation algorithm (GBP) merged with RMSprop optimizer. This solution is compared with analogous method based on Stochastic Gradient Descent. Both algorithms are used to train MLP and CxNN neural networks solving selected benchmark and real–life classification problems. Results indicate that usage of GBP-RMSprop can be beneficial in terms of increasing classification accuracy as well as decreasing activity of neurons’ connections and length of training. This suggests that RMSprop can effectively solve optimization problems of variable dimensionality. In the effect, merging GBP with RMSprop as well as with other optimizers such as Adam and AdaGrad can lead to construction of better algorithms for training of contextual neural networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Suleymanova, I., et al.: A deep convolutional neural network approach for astrocyte detection. Sci. Rep. 8(12878), 1–7 (2018)

    Google Scholar 

  2. Chen, S., Zhang, S., Shang, J., Chen, B., Zheng, N.: Brain-inspired cognitive model with attention for self-driving cars. IEEE Trans. Cogn. Dev. Syst. 11(1), 13–25 (2019)

    Article  Google Scholar 

  3. Zhang, S., Zheng, W.X.: Recursive adaptive sparse exponential functional link neural network for nonlinear AEC in impulsive noise environment. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4314–4323 (2018)

    Article  MathSciNet  Google Scholar 

  4. Guest, D., Cranmer, K., Whiteson, D.: Deep learning and its application to LHC physics. Annu. Rev. Nucl. Part. Sci. 68, 1–22 (2018)

    Article  Google Scholar 

  5. Bao, W.N., Yue, J.H., Rao, Y.: A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS ONE 12(7), 1–24 (2017)

    Article  Google Scholar 

  6. Tsai, Y.-C., et al.: FineNet: a joint convolutional and recurrent neural network model to forecast and recommend anomalous financial items. In: Proceedings of the 13th ACM Conference on Recommender Systems RecSys 2019, pp. 536–537. ACM, New York (2019)

    Google Scholar 

  7. Gao, D., Li, X., Dong, Y., Peers, P., Xu, K., Tong, X.: Deep inverse rendering for high-resolution SVBRDF estimation from an arbitrary number of images. ACM Trans. Graphics (SIGGRAPH) 38(4), 1–15 (2019). Article no. 134

    Article  Google Scholar 

  8. Liu, L., et al.: Automatic skin binding for production characters with deep graph networks. ACM Trans. Graphics (SIGGRAPH) 38(4), 1–12 (2019). Article no. 114

    Google Scholar 

  9. Gong, K., et al.: Iterative PET image reconstruction using convolutional neural network representation. IEEE Trans. Med. Imaging 38(3), 675–685 (2019)

    Article  Google Scholar 

  10. Athiwaratkun, B., Stokes, J.W.: Malware classification with LSTM and GRU language models and a character-level CNN. In: Proceedings of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), USA, pp. 2482–2486. IEEE (2017)

    Google Scholar 

  11. Huang, X., Tan, H., Lin, G., Tian, Y.: A LSTM-based bidirectional translation model for optimizing rare words and terminologies. In: 2018 IEEE International Conference on Artificial Intelligence and Big Data (ICAIBD), China, pp. 5077–5086. IEEE (2018)

    Google Scholar 

  12. Dozono, H., Niina, G., Araki, S.: Convolutional self organizing map. In: 2016 IEEE International Conference on Computational Science and Computational Intelligence (CSCI), pp. 767–771. IEEE (2016)

    Google Scholar 

  13. Higgins, I., et al.: beta-VAE: learning basic visual concepts with a constrained variational framework. In: International Conference on Learning Represent, ICLR 2017, vol 2, no. 5, pp. 1–22 (2017)

    Google Scholar 

  14. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations, ICLR 2018, pp. 1–26 (2018)

    Google Scholar 

  15. Alcin, M., Koyuncu, I., Tuna, M., Varan, M., Pehlivan, I.: A novel high speed artificial neural network–based chaotic true random number generator on field programmable gate array. Int. J. Circuit Theory Appl. 47(3), 365–378 (2019)

    Article  Google Scholar 

  16. Huk, M.: Backpropagation generalized delta rule for the selective attention Sigma-if artificial neural network. Int. J. Appl. Math. Comput. Sci. 22, 449–459 (2012)

    Article  MathSciNet  Google Scholar 

  17. Huk, M.: Notes on the generalized backpropagation algorithm for contextual neural networks with conditional aggregation functions. J. Intell. Fuzzy Syst. 32, 1365–1376 (2017)

    Article  Google Scholar 

  18. Huk, M.: Training contextual neural networks with rectifier activation functions: role and adoption of sorting methods. J. Intell. Fuzzy Syst. 38, 1–10 (2019)

    Google Scholar 

  19. Huk, M.: Learning distributed selective attention strategies with the Sigma-if neural network. In: Akbar, M., Hussain, D. (eds.) Advances in Computer Science and IT, pp. 209–232. InTech, Vukovar (2009)

    Google Scholar 

  20. Szczepanik, M., Jóźwiak, I.: Data management for fingerprint recognition algorithm based on characteristic points’ groups. In: Pechenizkiy, M., Wojciechowski, M. (eds.) New Trends in Databases and Information Systems. Advances in Intelligent Systems and Computing, vol. 185, pp. 425–432. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-32518-2_40

    Chapter  Google Scholar 

  21. Janusz, B.J., Wołk, K.: Implementing contextual neural networks in distributed machine learning framework. In: Nguyen, N.T., Hoang, D.H., Hong, T.-P., Pham, H., Trawiński, B. (eds.) ACIIDS 2018. LNCS (LNAI), vol. 10752, pp. 212–223. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75420-8_20

    Chapter  Google Scholar 

  22. Wołk, K., Burnell, E.: Implementation and analysis of contextual neural networks in H2O framework. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 429–440. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_37

    Chapter  Google Scholar 

  23. Ruder, S.: An overview of gradient descent optimization algorithms, pp. 1–14. eprint arXiv:1609.04747v2 (2017)

  24. Armstrong, S.A.: MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet. 30, 41–47 (2002)

    Article  Google Scholar 

  25. Golub, T.R., et al.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999)

    Article  Google Scholar 

  26. Khan, J., et al.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)

    Article  Google Scholar 

  27. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml

  28. Huk, M.: Non-uniform initialization of inputs groupings in contextual neural networks. In: Nguyen, N.T., Gaol, F.L., Hong, T.-P., Trawiński, B. (eds.) ACIIDS 2019. LNCS (LNAI), vol. 11432, pp. 420–428. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14802-7_36

    Chapter  Google Scholar 

  29. Dauphin Y., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., Bengio, Y.: Identifying and attacking the saddle point problem in high dimensional non-convex optimization, pp. 1–14. eprint arXiv:1406.2572 (2014)

  30. Darken, C., Chang, J., Moody, J.: Learning rate schedules for faster stochastic gradient search. In: Proceedings of the 1992 IEEE Workshop on Neural Networks for Signal Processing II, September, pp. 1–11 (1992)

    Google Scholar 

  31. Bouckaert, R.R., Frank, E.: Evaluating the replicability of significance tests for comparing learning algorithms. In: Dai, H., Srikant, R., Zhang, C. (eds.) PAKDD 2004. LNCS (LNAI), vol. 3056, pp. 3–12. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24775-3_3

    Chapter  Google Scholar 

  32. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudorandom number generator. ACM Trans. Model. Comput. Simul. 8(3), 3–30 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maciej Huk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huk, M. (2020). Stochastic Optimization of Contextual Neural Networks with RMSprop. In: Nguyen, N., Jearanaitanakij, K., Selamat, A., Trawiński, B., Chittayasothorn, S. (eds) Intelligent Information and Database Systems. ACIIDS 2020. Lecture Notes in Computer Science(), vol 12034. Springer, Cham. https://doi.org/10.1007/978-3-030-42058-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-42058-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-42057-4

  • Online ISBN: 978-3-030-42058-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics