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Abstract. Timed Automata are a well-known formalism for specifying
timed behaviours. In this paper we are concerned with Timed Automata
for the specification of timed behaviour of Continuous Time Markov
Chains (CTMC), as used in the stochastic temporal logic CSLTA. A timed
path formula of CSLTA is specified by a Deterministic Timed Automaton
(DTA) that features two kinds of transitions: synchronizing transitions
(triggered by CTMC transitions) and autonomous transitions (triggered
when a clock reaches a given threshold). Other definitions of CSLTA are
based on DTAs that do not include autonomous transitions. This raises
the natural question: do autonomous transitions enhance expressiveness
and/or conciseness of DTAs? We prove that this is the case and we pro-
vide a syntactical characterization of DTAs for which autonomous tran-
sitions do not add expressive power, but allow one to define exponentially
more concise DTAs.

1 Introduction

Stochastic logics like CSL [5] allow one to express assertions about the prob-
ability of timed executions of Continuous Time Markov Chains (CTMC). In
CSL, model executions (typically called “paths”) are specified by two operators:
timed neXt and timed Until. CSL has been extended in several ways to include
action names (name of the events in the paths) and path properties specified
using regular expressions leading to asCSL [6], or rewards, leading to CSRL
[7]. Note that asCSL can specify rather complex path behaviour, expressed by
regular expressions, but the timing requirements cannot be mixed within these
expressions. GCSRL [14] is an extension of CSRL for model checking of CTMC
generated by Generalized Stochastic Petri nets (GSPN) [1] taking into account
both stochastic and immediate events.

Automata with time constraints have been used to specify path-based perfor-
mance indices [16] for Stochastic Activity Networks [15], while hybrid automata
have been used to define rather complex forms of passage of time [2] for GSPN,
as well as generic performance properties [9] that are estimated using simu-
lation. The use of a Deterministic Timed Automaton (DTA) in the stochastic
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logic CSLTA [12] allows to specify paths in terms of state propositions and action
names associated to CTMC states and transitions (respectively) and in terms of
the timed behaviour of portions of the paths. The CTMC actions are the input
symbols for the DTA, and two types of transitions are distinguished: synchro-
nizing transitions that read the input symbols of the CTMC, and autonomous
transitions, that are taken by the DTA when the clock reaches some threshold,
with priority over synchronizing ones. The determinism requirement ensures that
the synchronized product of the DTA and the CTMC is still a stochastic process
as all sources of non-determinism are eliminated. CSLTA strictly includes [12]
CSL and asCSL. Various extensions of CSLTA have been presented in the lit-
erature. DTA with multiple clocks have been used for defining an extension of
CSLTA [10,13] but autonomous transitions are not allowed. In this paper we con-
centrate on single-clock CSLTA with autonomous transitions, as in the original
definition of CSLTA. Indeed the single-clock limitation is a necessary requirement
to reduce the CSLTA model-checking problem to the (steady-state) solution of a
Markov Regenerative Process, which is the largest class of stochastic processes
for which we can compute an exact numerical solution, supported by efficient
solution tools [3,4]. The single-clock setting allows also to investigate whether
the definition of CSLTA in [10,13], once limited to a single clock, is equivalent
to the original definition of CSLTA (introduced in [12]).

Paper Contributions. This paper addresses two research questions. The first
one (Sect. 3) is whether the presence of autonomous transitions enhances the
expressiveness of DTAs both in terms of timed languages (qualitative compar-
ison) and in terms of probability of accepting the random path of a CTMC
(quantitative comparison). We establish that autonomous transitions do enhance
expressiveness. Given that eliminating autonomous transitions from a DTA is not
always feasible, the second question (Sect. 4) is which are the uses of autonomous
transitions that can be emulated by DTA w/o autonomous transitions. We have
identified a hierarchy of subclasses of DTA in which the presence of autonomous
transitions does not extend expressiveness (and autonomous transitions can
therefore be eliminated), but that exponentially improves the DTA size. Only
the most interesting proofs and properties have been included in this paper.
Missing proofs and the full set of properties can be found in [11].

2 Context and Definitions

Although our motivations rely on the acceptance of paths of CTMCs featuring
atomic propositions that label states and actions that label transitions, we set
our work in the general context of acceptance of timed paths, where the i ` 1-th
state of a timed path is identified by vi (we count indices from 0), the boolean
evaluation of the atomic propositions in that state. δi indicates a delay, or a
sojourn time in state i, and τi indicates the time elapsed until exiting state i. A
timed path leaves state vi with action ai after a sojourn time in the state equal
to δi. The elapsed time can be computed as: τi “ δi ` τi−1, with τ−1 “ 0.
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Definition 1 (Timed Path). Given a set AP of atomic propositions and a
set Act of actions, a timed (infinite) path is a sequence (v0, δ0)

a0−→ (v1, δ1)
a1−→

· · · (vi, δi)
ai−→ · · · such that for all i P N : vi P {J, K}AP , ai P Act , δi P R�0.

Example 1 (Timed Path). In writing timed paths we indicate functions vi as
the set of elements in AP that evaluate to J. Given AP “ {p, q} and Act “
{a, b, c}, a timed path ({p, q}, 0.5) a−→ ({q}, 1.3) b−→ · · · , is interpreted as the
system staying in a state that satisfies p ^ q in the time interval [0, 0.5[, at time
0.5 action a takes place and the system moves to a state that satisfies ¬p ^ q,
stays there for 1.3 time units and then action b takes place (at the global time
τ “ 1.8).

DTA definition includes a clock x and two types of constraints: boundary ones,
BoundC = {x “ α, α P N} and inner ones, InC = {α �� x ��′ β}, with
��, ��′P {ă,�, }, α P N, and β P N Y {8}. In the sequel, C is the largest time
constant occurring in a DTA. Before formally defining the syntax and semantic
of a DTA (Definitions 2, 3 and 4), let us introduce its main ingredients. During
the execution of a stochastic discrete event system (e.g. a Markov chain) that
can be represented by a timed path, one manages (1) an index i of the timed
path (2) a location, say �, is matched with the current state of the path indexed
by i, and (3) a delay δ � δi until the next state change from i to i ` 1. The
function Λ mapping the set of locations to the set of boolean expressions over
atomic propositions, BAP , restricts the possible matchings since the valuation vi

must satisfy the formula Λ(�). This matching evolves in three ways depending
on the delay δ, elapsed until the next transition (vi, δi)

ai−→ (vi`1, δi`1) of the
path.

– Either after some delay δ′ � δ, there is an outgoing autonomous transition
from � whose boundary condition (say x “ α) is satisfied and such that
vi fulfills Λ(�′) where �′ is the target location of the transition. Then �′ is
matched with i, delay δ becomes δ− δ′, the clock x is increased by δ′ and the
index i is unchanged.

– Else if there is a synchronizing transition outgoing from � such that (1) after
time δ has elapsed its inner condition (say α �� x ��′ β) is satisfied, (2) the
action ai belongs to the subset of actions associated with the synchronizing
transition, and (3) vi`1 satisfies Λ(�′) where �′ is the target location of the
transition. Then �′ is matched with i ` 1, the new delay δ is set to δi`1, the
clock x is either increased by δ or reset depending on the transition, and the
index becomes i ` 1.

– Otherwise there is no possible matching and the timed path is rejected by
the DTA.

In the first two cases above, when �′ “ �f , the final location, the timed
path is accepted by the DTA whatever its future. This is ensured due to
Λ(�f ) “ J and the existence of the unique (looping) synchronizing transition
from �f with no timing and action conditions. Observe that the synchroniza-
tion may last forever without visiting �f : in this case the timed path is rejected.
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Furthermore the synchronization of the stochastic system with the DTA should
not introduce non determinism. So (1) the formulas associated with the initial
locations are mutually exclusive, (2) synchronizing transitions outgoing from
the same location are never simultaneously enabled, (3) autonomous transi-
tions outgoing from the same location are never simultaneously enabled, and
(4) autonomous transitions have priority over synchronizing transitions.

Definition 2 (DTA). A single-clock Deterministic Timed Automaton with
autonomous transitions is defined by a tuple A “ 〈L,Λ,L0, �f ,AP ,Synch,Aut〉
where L is a finite set of locations, L0 Ď L is the set of initial locations, �f P L is
the final location, Λ : L → BAP is a function that assigns to each location a boolean
expression over the set of propositions AP, Synch Ď L ˆ InC ˆ 2Actˆ{

∅, ↓ }ˆL

is the set of synchronizing transitions, and Aut Ď L ˆ BoundC ˆ 7ˆ{
∅, ↓}ˆL is

the set of autonomous transitions, with E “ Synch Y Aut. �
γ,B,r−−−→ �′ denotes the

transition (�, γ,B, r, �′).
Furthermore A fulfills the following conditions.

– Initial determinism. ∀�, �′ P L0, Λ(l) ^ Λ(l′) ⇔ K.
– Determinism on actions. ∀B,B′ Ď Act s.t . B ∩ B′ 	“ ∅,∀�, �′, �′′ P L,

if �
γ,B,r−−−→ �′ and �

γ′,B′,r′
−−−−−→ �′′ then Λ(�′) ^ Λ(�′′) ⇔ K or γ ^ γ′ ⇔ K.

– Determinism on autonomous transitions. ∀�, �′, �′′ P L,

if �
x“α,7,r−−−−−→ �′ and �

x“α′,7,r′
−−−−−−→ �′′ then Λ(�′) ^ Λ(�′′) ⇔ K or α 	“ α′.

– Conditions on the final location �f . Λ(�f ) “ J and (�f , J,Act , ∅, �f ) P
Synch.

Given a clock constraint γ and a clock valuation x̄, x̄ |“ γ denotes the satisfac-
tion of γ by x̄. Similarly given a boolean formula ϕ and a valuation of atomic
propositions v, v |“ ϕ denotes the satisfaction of ϕ by v.
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Fig. 1. Some examples of DTA.
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Example 2 (DTA). Figure 1, left, shows a DTA with five locations: �0, �1, �2, �3
and �f . There is a single initial location, �0. Autonomous transitions are depicted
as dotted arcs, while synchronizing are depicted as solid arcs. For readability we
omit: (1) the symbol 7 on autonomous transitions; (2) the set r when there is
no reset; (3) Act if a transition accepts all actions; (4) trivially true guards (like
x � 0) and boolean conditions; (5) the name x of the clock in x “ α guards.

As a result an autonomous transition is depicted as either l
α,↓−−→ l′, as between

�1 and �0, or as l
α−→ l′, as between �0 and �2. We informally write “a transition

with reset” or “a transition without reset” to indicate the condition r “ ↓ and
r “ ∅ respectively. The arc from �0 to �1 represents a synchronizing transition
with a clock reset. The arc from �0 to �2 represents an autonomous transition to
be taken when the clock is equal to 1, with no clock reset. Boolean expression
of locations are: p, associated with �0, �1, �2 and (¬p ^ q), associated with �3.

Let us describe a possible run of this DTA. At time 0.5, it goes from �0 to �1
by performing action a and resets x. Then at time 1.5, it autonomously comes
back to location �0 and clock x is again reset. Then it autonomously goes to �2
at time 2.5 and later to �f at time 3.5. While irrelevant, x has current value 2.

Definition 3 (Run of A). A run of a DTA A is a sequence: (�0, v0, x̄0, δ0)
γ0,B0,r0−−−−−→ (�1, v1, x̄1, δ1) · · · (�i, vi, x̄i, δi)

γi,Bi,ri−−−−−→ · · · such that for all i P N: �i P
L, l0 P L0, vi P {J, K}AP , δi P R�0 :

�i
γi,Bi,ri−−−−−→ �i`1 P E, vi |“ Λ(�i), x̄i ` δi |“ γi, x̄i`1 “

{
0 if r “ ↓
x̄i ` δi otherwise

To enforce priority of autonomous transitions,

let x̄7 “ min{α | ∃�i
x“α,7,r−−−−−→ � P E ^ x̄i � α ^ vi |“ Λ(�)} (min(∅) “ 8)

If Bi “ 7 then x̄i ` δi “ x̄7 and vi`1 “ vi else x̄i ` δi ă x7.

A run is therefore a path in the DTA where the visited locations are coupled
with a valuation of propositions, a clock value and a delay in a consistent way
w.r.t. the DTA.

Example 3 (DTA run). Given that v is described in terms of the subset of AP
that evaluate to J, a run for the DTA of Fig. 1, left, is: 0:(�0, {p}, x̄0 “ 0.0, δ0 “
0.2)

x�1,{a},↓−−−−−−→ 1:(�1, {p, q}, 0.0, 1.0)
x“1,7,↓−−−−→ 2:(�0, {p, q}, 0.0, 1.0)

x“1,7,∅−−−−−→
3:(�2, {p}, 1.0, 1.0)

x“2,7,∅−−−−−→ 4:(�f , {p}, 2.0, 3.1)
x�0,Act,∅−−−−−−−→ 5:(�f , {q}, 5.1, 0.5)

x�0,Act,∅−−−−−−−→ 6:(�f , {q}, 5.6, δ) · · ·
A timed path σ is recognized by a run ρ of A such that the occurrences of the

actions in σ are matched by the synchronizing transitions in ρ. This requires to
define a mapping to match the points in the paths in which synchronizing tran-
sitions take place. This can be done by identifying a strictly increasing mapping
for the indices of the timed path σ to the subset of the indices of the run ρ that
correspond to a synchronizing transition. Note that, due to determinism, if such
a run exists, it is unique.
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Definition 4 (Path recognized by A and L(A)). Let σ “ (v0, δ0)
a0−→

(v1, δ1)
a1−→ · · · (vi, δi)

ai−→ · · · be a timed path and ρ “ (�0, v′
0, x̄0, δ

′
0)

γ0,B0,r0−−−−−→
· · · (�i, v

′
i, x̄i, δ

′
i)

γi,Bi,ri−−−−−→ · · · be a run of a DTA A. Then σ is recognized by ρ if
there is a strictly increasing mapping κ : N → N (extended to κ(−1) “ −1), such
that for all i P N

– ai P Bκ(i) and δi “ ∑
κ(i−1)ăh�κ(i) δ′h

– ∀h, κ(i − 1) ă h � κ(i) ⇒ v′
h “ vi and h 	P κ(N) ⇒ Bh “ 7

A timed path σ is accepted by A if σ is recognized by a run ρ and ρ visits �f .
The language L(A) of A is the set of the timed paths σ accepted by A.

Example 4 (Path recognized by a run). A timed path σ “ 0:(p, 0.2) a−→ 1:
({p, q}, 6.1) b−→ 2:(q, 0.5) d−→ 3 ::(p, δ) · · · is recognized by the run of Example 3
with mapping κ: κ(0) “ 0, κ(1) “ 4, κ(2) “ 5, κ(3) “ 6, . . .. The run visits �f

and the path is accepted.

We consider timed paths generated by a CTMC with state properties and
actions.

Definition 5 (CTMC representation). A continuous time Markov chain
with state and action labels is represented by a tuple M “ 〈S, s0,Act ,AP ,
lab,R〉, where S is a finite set of states, s0 P S the initial state, Act is a finite set
of action names, AP is a finite set of atomic propositions, lab : S → {J, K}AP

is a state-labeling function that assigns to each state s a valuation of the atomic
propositions, R Ď SˆActˆS → R�0 is a rate function. If λ “ R(s, a, s′)^λ > 0,

we write s
a,λ−−→ s′.

We assume that each state has at least one successor: for all s P S, exists
a P Act, s′ P S such that R(s, a, s′) > 0. CTMC executions lead to timed
paths, and a CTMC is a generator of a random path. We define by PrM(A) the
probability that the random path of M is accepted by A (probability measure
of all paths accepted by A as in [8]).

3 Autonomous Transitions and Expressiveness

We indicate with A the whole family of automata of Definition 2 and with A
na the

subclass of automata with no autonomous transitions: A
na “ {A P A | Aut(A) “

∅} The comparison of the expressive power of A and A
na is both qualitative

(based on the timed path language) and quantitative (based on accepting prob-
abilities).

Definition 6. Let A1 and A2 be families of DTA. Then:

– A2 is at least as expressive as A1 w.r.t. language, denoted A1 ăL A2,
if for all A1 P A1 there exists A2 P A2 such that L(A2) “ L(A1);
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– A2 is at least as expressive as A1 w.r.t. Markov chains, denoted A1 ăM A2,
if for all A1 P A1 there exists A2 P A2

such that for all Markov chains M, PrM(A2) “ PrM(A1).

As usual, we derive other relations between such families. A1 and A2 are
equally expressive w.r.t. language (resp. Markov chains), denoted A1 „L A2

(resp. A1 „M A2) if A1 ăL A2 and A2 ăL A1 (resp. A1 ăM A2 and A2 ăM A1).
A2 is strictly more expressive than A1 w.r.t. language (resp. Markov chains),
denoted A1 ňL A2 (resp. A1 ňM A2) if A1 ăL A2 and not A2 ăL A1 (resp.
A1 ăM A2 and not A2 ăM A1).

Observe that by definition A1 ăL A2 implies A1 ăM A2. We now establish
that autonomous resetting transitions extend the expressive power of DTA w.r.t.
Markov chains (Ana ňM A). The weaker result w.r.t. language (Ana ňL A) is
shown in [11].

Theorem 1. There exists A P A such that for all A′ P A
na there exists a Markov

chain M with PrM(A′) 	“ PrM(A).

Before proving this theorem, we prove some intermediate properties. We first
establish a kind of 0-1 law for DTA in A

na and Markov chains. In order to obtain
this intermediate result, we introduce some objects. Simple chains are Markov
chains with a single action, no atomic proposition (or equivalently with the same
valuation for all states) and such that each state s has a single successor state
sc(s) reached with rate λs. W.r.t. the acceptance probability of simple chains, we
can consider DTAs without actions and atomic propositions. Moreover we add
to each DTA an additional garbage location and we split the transitions, so that,
w.l.o.g. one can assume that for each location � of a DTA in A

na, there are C `1
outgoing transitions: {� i−1�xăi,ri−−−−−−−→ sci(�) | 1 � i � C} Y {� x�C,rC`1−−−−−−→ scC`1(�)}
where C is the maximal constant occurring in the DTA. The shape of the guards
is not a restriction in the context of Markov chains. For all clock valuations x̄,
the clock valuation sc(�, x̄) is defined by:

– Let i “ min(j | j P {1, . . . , C} ^ x̄ ă j) with min(∅) “ C ` 1;
– If ri “↓ then sc(�, x̄) “ 0 else sc(�, x̄) “ x̄.

Observe the difference between sci, defined at the syntactical level, which maps
a location to its ith successor and sc, defined at the semantical level, which maps
a pair consisting in a location and a clock valuation to the new clock valuation
obtained by firing the single transition enabled w.r.t. the clock valuation.

We also define the region (multi-)graph GA “ (V,E) of such a DTA A as
follows.

– V , the set of vertices, is defined by V “ {(�, i) | � P L ^ 0 � i � C ` 1};
– Let (�, i) be a vertex, then for all j s.t. max(i, 1) � j � C ` 1, there is a

transition from (�, i) to (scj(�), j′) labelled by j with j′ “ 0 if rj “↓ and
j′ “ j otherwise.
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One interprets GA as follows. The vertex (�, 0) corresponds to the region defined
by location � with clock valuation 0. The vertex (�, 1) corresponds to the region
defined by location � with clock valuation in ]0, 1[. The vertex (�, i) for 1 ă i � C
corresponds to the region defined by location � with clock valuation in [i− 1, i[.
The vertex (�, C ` 1) corresponds to the region defined by location � with clock
valuation in [C, 8[. The transition outgoing from (�, i) labelled by j corresponds
to the combination of time elapsing to enter the region (�, j) followed by an
action of the Markov chain, leading to either (�′, j) or to (�′, 0), in case of reset.

Given s a state of a Markov chain, � a location of DTA, and x̄ a clock
valuation, p(s, �, x̄) denotes the probability of acceptance when the Markov chain
starts in s and the DTA starts in � with clock valuation x̄. In particular for a
DTA A applied to a Markov chain M, PrM(A) “ p(s0, �0, 0) where s0 is the
initial state of M and �0 is the initial location of A such that lab(s0) |“ Λ(�0).

Lemma 1. Let s be a state of a simple Markov chain M and � be a location of
a DTA in A

na. Then the function that maps t to p(s, �, t) is continuous and for
i − 1 � t � i � C it is equal to:

∫ i

t

λse−λs(τ−t)p(sc(s), sci(�), sc(�, τ))dτ `
∫ 8

C

λse−λs(τ−t)p(sc(s), scC`1(�), sc(�, τ))dτ

`
∑

iăj�C

∫ j

j−1
λse−λs(τ−t)p(sc(s), scj(�), sc(�, τ))dτ

(1)

The above formula represents the probability of acceptance when the Markov
chain starts in s and the DTA starts in � with clock valuation t, with i−1 � t �
i � C, therefore within the region (l, i). This probability is computed in terms
of the probability of having the next CTMC transition within the region (l, i)
itself, or any later region (l, j), multiplied by the probability of acceptance from
the state reached by accepting the CTMC transition.

Proof. Define pn(s, �, t) as the probability that the run associated with a random
timed path of M starting in s when the DTA starts in � with clock valuation
t reaches location �f after performing n actions. Then for � 	“ �f , p0(s, �, t) “ 0
and p0(s, �f , t) “ 1. Assume that pn(s, �, t) is continuous (and so measurable)
for all s and �. Then the following equation holds for i − 1 � t � i � C:

pn`1(s, �, t) “
∫ i

t

λqe
−λs(τ−t)pn(sc(s), sci(�), sc(�, τ))dτ

`
∑

iăj�C

∫ j

j−1

λse
−λq(τ−t)pn(sc(s), scj(�), sc(�, τ))dτ

`
∫ 8

C

λse
−λs(τ−t)pn(sc(s), scC`1(�), sc(�, τ))dτ
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Observe that for τ > C, pn(sc(s), scC`1(�), sc(�, τ)) is constant since if there is
a reset then sc(�, τ) “ 0 and if there is no reset then sc(�, τ) “ τ > C and so
the valuation of the clock is irrelevant. Thus the equation can be rewritten as
follows.

pn`1(s, �, t) “
∫ i

t

λse
−λs(τ−t)pn(sc(s), sci(�), sc(�, τ))dτ

`
∑

iăj�C

∫ j

j−1

λse
−λs(τ−t)pn(sc(s), scj(�), sc(�, τ))dτ

` e−λs(C−t)pn(sc(s), scC`1(�), sc(�, C ` 1))

Observe that max(1, λs)e−λsτ is uniformly continuous. So pick η′ > 0 such that
for all τ ă τ ′ � τ ` η′ max(1, λs)|e−λsτ − e−λsτ ′ | � ε

3C . Let η “ min(η′, ε
3λs

).
Then for all t ă t′ � t ` η, one bounds |pn`1(s, �, t) − pn`1(s, �, t′)| by the
sum of three terms using the above equation to establish that |pn`1(s, �, t) −
pn`1(s, �, t′)| � ε. Thus pn`1(s, �, t) is continuous. When t > C, pn`1(s, �, t) is
constant and so continuous.
Observe that p(s, �, t) “ limn→8 pn(s, �, t). So the mapping p(s, �, t) is measur-
able as a limit of continuous mappings. Thus Eq. 1 holds for i − 1 � t � i � C:
Repeating the same argument as the one for the inductive case yields the result.
When t > C, p(s, �, t) is constant and so continuous.

Proposition 1. Let A P A
na and z P [0, 1] such that for all Markov chains M,

PrM(A) “ z, then z P {0, 1}.
Proof. We will even prove this result when restricting the quantification to
Markov chains with a single action and a single valuation of propositions for
all states and a single successor for all states. Thus we can omit propositions
and actions in the DTA and only consider simple chains.

Let A be an automaton that satisfies the hypothesis. We want to establish that
for all configurations (�, t) in some region of GA reachable from (�0, 0), and for
all states s of a simple Markov chain, p(s, �, t) “ z. We do this by induction on
the distance from the initial region in the region graph and then we prove that
z is either 0 or 1. The basis case of the induction corresponds to the assumption
PrM(A) “ z, for all M.
For the inductive step we assume that for a given (�, t), and for all states s of a
simple chain, p(s, �, t) “ z and we prove that the p(s′, �′, t′) “ z, for all (s′, �′, t′)
reachable in one step from (s, �, t).
Let M be an arbitrary simple chain and define Mλ as the simple chain with a
single transition outgoing from its initial state to the initial state of M whose
rate is λ. Let s be the initial state of Mλ.
By assumption, p(s, �, t) “ z. Define f(τ) by p(sc(s), scj(�), sc(�, t ` τ)) when
j − 1 ă t ` τ � j � C and by p(sc(s), scC`1(�), sc(�, t ` τ)) when t ` τ > C.
Equation 1 can be rewitten as p(s, �, t) “ ∫

τ�0
λe−λτf(τ)dτ . Since for all λ,
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PrMλ
(A) “ z, the Laplace transform of f(τ) is equal to z

λ , i.e. the Laplace trans-
form of the constant function z. By the theorem of unicity of Laplace transforms,
this entails that f(τ) “ z except for a set of null measure. However, consider a
successor region (�′, i) of location � with clock valuation t′.

• Either i “ 0 (meaning that there has been a reset) and the region has a single
point reached with non null probability. So p(sc(s), �′, 0) “ z.

• Or i > 0, so by Lemma 1, p(sc(s), �′, t′) is continuous inside the region w.r.t.
t′ and thus everywhere equal to z.

So the induction is established. So if a region of �f is reachable in the region
graph, then z “ 1. Otherwise �f is not reachable implying that no run is accept-
ing, and thus z “ 0.

We can now prove Theorem 1 (Ana ňM A).
Proof of Theorem 1. The DTA A in Fig. 1 (lower right) has an action set reduced
to a singleton {a} (omitted in the figure) and an empty set of propositions.
The language of A is the set of timed paths whose first action occurs at time
τ P [2i, 2i`1[ for some i P N. Assume by contradiction that there exists A′ P A

na

such that for all Markov chain M, PrM(A′) “ PrM(A).
Pick an arbitrary Markov chain M and define Mλ as the Markov chain which
has a single transition from its initial state to the initial state of M with rate λ.
It is routine to check that PrMλ

(A) “ 1−e−λ

1−e−2λ (as only the first transition of Mλ

is relevant) and, consequently, limλ→0 PrMλ
(A) “ 1

2 and, given the hypothesis,
also limλ→0 PrMλ

(A′) “ 1
2 .

PrMλ
(A′) can be decomposed as p1,λ ` p2,λ where p1,λ is the probability to

accept the random timed path and that the first action takes place at most at
time C and p2,λ is the probability to accept the random timed path and that
the first action takes place after C, where C is the maximal constant of A′. But
limλ→0 p1,λ “ 0 and therefore limλ→0 p2,λ “ 1

2 .
On the other hand, let �1 be the location of A′ reached from its initial location
when the value of the clock is greater than C, its maximal constant. There
must be one, if not limλ→0 p2,λ “ 0, which contradicts what derived above. We
want to design an automaton A′′ equivalent to A′ when reaching �1 with clock
value greater than C: any timed path is accepted by A′′ iff it is accepted by A′

when starting in �1 with clock valuation greater than C. For the construction
we duplicate the automaton and merge the final location, the initial location is
location �1 of the first copy, and in the first copy we add to the guard of all
transitions the formula x > C and redirect the transitions that reset the clock
to the corresponding location of the second copy.

But then limλ→0 p2,λ “ PrM(A′′). Since limλ→0 p2,λ “ 1
2 and M is arbitrary,

this contradicts Proposition 1 applied to A′′.
The DTA in Fig. 1 (upper right) shows that the above counter-example is of

practical interest. Consider a periodic system that cycles over phases of duration
2, each split in two sub-phases of duration 1 (for example a running and a reset
phase) and that can experience good (G), bad (B), and neutral (N) actions,
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generated from a CTMC of arbitrary complexity. The depicted DTA allows one
to compute the probability of the CTMC behaviours characterized by a good
action in the running sub-phase, given that in the preceding phases no bad
action has happened in the running phase. Any action is instead allowed during
the reset phase.

4 Autonomous Transitions and Conciseness

We have established that there exists DTAs that cannot be translated into
DTAs without autonomous transitions (Ana ňM A). We now investigate whether
restricted forms of use of autonomous transitions are as expressive as A

na. To
this goal we identify two additional subclasses of A, namely A

nra and A
rc, char-

acterized by a limited presence of autonomous transitions and that are in the
following subset relationship: A

na Ď A
nra Ď A

rc Ď A.

Restricted cycles. A
rc is the subclass of automata A P A in which all cycles

of A including an autonomous transition with a reset also include a synchro-
nizing transition (�, γ,B, r, �′) with r “↓ or γ “ (x > C).

No reset on autonomous transitions. A
nra is the subclass of automata A P

A
rc in which there is no autonomous transition that resets the clock: A

nra “
{A P A | (�, γ, 7, r, �′) P Aut(A) ⇒ r “ ∅}.

The DTA on the left of Fig. 1 belongs to A
rc\A

nra: indeed there is an autonomous
transition with reset (from �1 to �0), therefore it is not in A

nra, but although the
transition is part of a cycle, that cycle also includes a synchronizing transition
with reset (from �0 to �1). Any DTA with no reset on autonomous transitions is
an example of A

nra. The family A
rc has been introduced to provide an accurate

syntactical characterization of DTA for which the autonomous transitions do
not add expressive power. In some sense, the DTA of Theorem 1 emphasizes the
interest of A

rc since the cycle performed by the autonomous resetting transition
points out what increases the expressive power. A

nra, which forbids clock resets
on autonomous transitions, removes from CSLTA the capacity of combining time
constants depending on the time elapsed during (a portion of) an execution.
As observed in [12](section 4), clock resets on autonomous transitions are what
makes CSLTA more expressive than asCSL [6].
The following frame summarizes the results for A subclasses.

A
na „L A

nra „L A
rc ňM A

with A
rc (Anra) exponentially more concise than A

nra (Ana, respectively)

We first establish that in A
rc the autonomous resetting transitions can be mim-

icked in A
nra using additional finite memory, but with exponential cost.

Proposition 2. There exists an algorithm operating in exponential time that
takes as input A P A

rc and outputs A′ P A
nra with L(A′) “ L(A).
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Sketch of Proof. The construction (1) duplicates locations by memorizing in the
location an integer value, (2) take into account this value for modifying the
guard and the destination of the outgoing transitions, and (3) deletes the reset
of autonomous transitions. This value corresponds to the accumulated value of
constants in the guards of resetting autonomous transitions since the last visit
of a synchronizing transition with a reset or a guard x > C. The restriction over
A

rc ensures that this value is bounded by some finite integer K. However K may
be exponential in the size of A and thus this transformation is exponential.

The exponential blowup due to the duplication of locations is unavoidable:

Proposition 3. There exists a family {An}nPN in A
rc such that the size of An

is O(n2) and for all A P A
nra with L(A) “ L(An), (|Aut| ` 1)|Synch| � 2n.

We now prove that autonomous transitions in A
nra can be eliminated, also

at an exponential cost.

Proposition 4. There exists an algorithm operating in exponential time that
takes as input A P A

nra and outputs A′ P A
na with L(A′) “ L(A).

Sketch of Proof. The construction proceeds in two steps: at first, cycles of
autonomous transitions are eliminated, then all (linear) paths of autonomous
transitions are eliminated. The first construction is quadratic, as we dupli-
cate each location to store in the location the information on the number of
autonomous transitions visited since the last visit of a synchronized transition.
The idea of this construction is that if a path exceeds the number of autonomous
transitions it must visit twice the same autonomous transition without visiting
a synchronized transition and so diverges. In words: in the resulting DTA, diver-
gence has been transformed into deadlock. This finite memory has a linear size
w.r.t. the size of the original DTA.

The second step consists in eliminating autonomous transitions when there
are no such cycles. The key point is to select a location � which is the source of
the last autonomous transition of a maximal path of such transitions. Thus every
autonomous transition outgoing from � reaches some location �u where only syn-
chronized transitions are possible. Roughly speaking, the construction builds a
synchronized transition corresponding to a sequence of an autonomous transition
followed by a synchronized transition. However the construction is more involved
since � has to be duplicated in order to check which autonomous transition can
be triggered (or if no autonomous transition can be triggered). This duplica-
tion also has an impact on the incoming transitions of �. Repeating (at most
|L| times) this transformation eliminates all autonomous transitions. The expo-
nential blowup due to the repetition of duplication of locations is unavoidable:

Proposition 5. There exists a family of automata {An}nPN in A
nra such that

the size of An belongs to O(n log(n)) and for all A P A
na with L(A) “ L(An)

the number of its locations is at least 2n.
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5 Conclusion and Future Work

We have established that autonomous transitions do enhance expressiveness of
single clock DTAs, and more precisely for the less discriminating case of the
probability of the random paths of a CTMC accepted by the DTA. This is the
most relevant one for comparing some variations of (1-clock) CSLTA defined in
the literature. This enhanced expressiveness is due to the possibility of associ-
ating clock resets with autonomous transitions that occur in a cycle. The small
counterexample of Proposition 1 can be seen as the basic construct to study
systems with periodic behaviours or periodic phases, with clear practical impli-
cations. Even in DTA subclasses for which the autonomous transitions do not
enhance expressiveness, they do play a role in defining concise DTAs: removing
autonomous transitions may lead to an exponential blow up of the DTA.

We plan to investigate whether the precise identification of the characteristics
that enhance expressiveness and conciseness can help the identification of the
best algorithms for CSLTA model-checking, in particular for the component-
based method [4]. Moreover, following the suggestion by an anonymous reviewer,
we intend to investigate further consequences of Proposition 1, for example to
study systems that include probabilistic choices of autonomous transitions.
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