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Abstract  The complexity of computing along the cloud-to-edge contin-
uum presents significant challenges to ICT operations and in particular 
reliable capacity planning and resource provisioning to meet unpredict-
able, fluctuating, and mobile demand. This chapter presents a high-level 
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conceptual overview of RECAP—an architectural innovation to support 
reliable capacity provisioning for distributed clouds—and its operational 
modes and functional building blocks. In addition, the major design con-
cepts informing its design—namely separation of concerns, model-
centricism, modular design, and machine learning and artificial intelligence 
for IT operations—are also discussed.
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1.1    Introduction

The objective of this book is to introduce readers to RECAP, an architec-
tural innovation in cloud, fog, and edge computing based on the concepts 
of separation of concerns, model-centricism, modular design, and machine 
learning and artificial intelligence (AI) for IT operations to support reli-
able capacity provisioning for distributed clouds. The remainder of this 
chapter provides a brief overview of computing across the cloud-to-edge 
(C2E) continuum and the challenges of distributing and managing appli-
cations across geo-distributed infrastructure. This chapter also introduces 
some of the major design concepts informing the RECAP architectural 
design and provides an overview of the RECAP architecture and 
components.
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1.2    From the Cloud to the Edge and Back Again

The convergence and increasing ubiquity of wireless internet access, cloud 
computing, Big Data analytics, social and mobile technologies presage the 
possibilities of billions of people and things connected through mobile 
devices and smart objects in the cloud. This phenomenon is heralded as 
the coming of the fourth industrial revolution, the networked society, the 
Internet of Things (IoT), indeed the Internet of Everything. Connecting 
but a fraction of the 1.4 trillion “things” worldwide today is predicted to 
create US$14.4 trillion and US$4.6 trillion in private and public sector 
value, respectively, through accelerated innovation and improved asset 
utilisation, employee productivity, supply chain, logistics, and customer 
experience (Cisco 2013a, b).

Today, while we are moving towards a society whose social structures 
and activities, to a greater or lesser extent, are organised around digital 
information networks that connect people, processes, things, data, and 
social networks, the reality is still some distance away (Lynn et al. 2018). 
The dawn, if not the day, of the Internet of Things is here. Haller et al. 
(2009) define IoT as:

A world where physical objects are seamlessly integrated into the informa-
tion network, and where the physical objects can become active participants 
in business processes. Services are available to interact with these “smart 
objects” over the Internet, query their state and any information associated 
with them, taking into account security and privacy issues. (Haller et  al. 
2009, p. 15)

This definition largely assumes that smart objects (end-devices), rang-
ing from the simple to the complex in terms of compute, storage, and 
networking capabilities, will interact with each other and the cloud to 
provide and consume services and data, but not necessarily at all times. 
Furthermore, these smart end-devices, e.g. smart phones or transport sen-
sors, may move to different geographic areas where, for economic, geo-
graphic, or technological reasons, they cannot always be connected, yet 
will be expected to carry on functioning regardless. IoT embodies many of 
the drivers that see an increased move from cloud-centric deployments to 
distributed application deployments in the cloud or on the edge 
infrastructure.
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Within the traditional cloud computing paradigm, processing and stor-
age typically take place within the boundaries of a cloud and its underlying 
infrastructure, and are often optimised for specific types of applications 
and workloads with predictable patterns. Neither the cloud nor the net-
works connecting these objects to the cloud were designed to cater for the 
flood of geographically dispersed, heterogeneous end points in the IoT 
and the volume, variety, and velocity of data that they generate.

Fog computing and edge computing are two relatively new paradigms 
of computing that have been proposed to address these challenges. Fog 
computing is a horizontal, physical, or virtual resource paradigm that 
resides between smart end-devices and traditional cloud data centres. It is 
designed to support vertically isolated, latency-sensitive applications by 
providing ubiquitous, scalable, layered, federated, and distributed com-
puting, storage, and network connectivity (Iorga et al. 2018). In contrast, 
edge computing is local computing at the edge of the network layer 
encompassing the smart end-devices and their users (Iorga et al. 2018). If 
one imagines a cloud-to-edge (C2E) continuum, data processing and 
storage may be local to an end-device at the edge of a network, located in 
the cloud, or somewhere in between, in “the fog”.

As discussed, while fog computing and edge computing offer solutions 
for delivering IoT to industry and the masses, they introduce new and 
significant challenges to cloud service providers, network operators and 
enterprises using this infrastructure. These environments face a high 
degree of dynamism as an immediate consequence of user behaviour. 
Overall, this setting creates a set of challenges regarding how to distribute 
and run applications in such unpredictable geo-distributed environments. 
Similar demands are seen at the network edge given the growth of rela-
tively nascent services, e.g. Content Delivery Networks. Spreading infra-
structure out over large geographic areas increases the complexity and cost 
of planning, managing, and operating that physical infrastructure. Firstly, 
it raises the question of how much infrastructure of what type to place 
where in the network—a decision that must be made in advance of any 
service being offered. Secondly, applications deployed over large geo-
graphically distributed areas require a detailed understanding of the tech-
nical requirements of each application and the impact on the application 
when communication between an application’s components suffers due to 
increased latency and/or reduced bandwidth. Thirdly, for a service pro-
vider along the C2E continuum, the question arises about which (parts) 
of the various applications in a multi-tenant setting should be operated at 

  J. DOMASCHKA ET AL.



5

the edge and which should not be. This is of critical importance due to the 
potentially limited compute resources available at each edge location. To 
add to the complexity, some of these questions must be answered in 
advance with incomplete data on user demand while others require near 
real-time decision making to meet unpredictable and fluctuating user 
demands.

Incorrect placement decisions may result in inflexible, unreliable, 
expensive networks and services. This is more likely as the decision space 
becomes so complex; it is no longer realistic for IT teams to cost-effectively 
foresee and manually manage all possible configurations, component 
interactions, and end-user operations on a detailed level. As such, mecha-
nisms are needed for the automated and intelligent placement and scaling 
of dynamic applications and for the management of the physical resources 
that underpin such applications. RECAP—an architectural innovation in 
cloud and edge computing to support reliable capacity provisioning for 
distributed clouds—is posited as such a mechanism.

1.3    Design Principles

This section outlines some of the major design concepts informing the 
RECAP architectural design, namely separation of concerns, model-
centricism, modular design, and machine learning and AI for IT operations.

1.3.1    Separation of Concerns

Separation of concerns is a concept that implements a “what-how” 
approach to cloud architectures separating application lifecycle manage-
ment and resource management where the end user or enterprise cus-
tomer focuses its efforts on what needs to be done and the cloud service 
provider or cloud carrier focuses on how it should be done (Lynn 2018). 
At its core, the end user or enterprise customer focuses on specifying the 
business functionality, constraints, quality of service (QoS), and quality of 
experience (QoE) (together KPIs) they require, with minimal interference 
with the underlying infrastructure (Papazoglou 2012). To support a sepa-
ration of concerns, a detailed understanding of the KPIs but also the rela-
tionship between the performance of the applications and underlying 
infrastructure, and the achievement of these APIs is required.

In multi-tenant environments, for example clouds and networks, the 
separation of concerns is complicated because the actors will, most likely, 
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belong to different organisations (including competitors), have very dif-
ferent KPIs, different load patterns, different network topologies, and 
more critically, different priorities. Any architecture for reliable capacity 
provisioning, whether from an application or infrastructure perspective, 
across the C2E continuum must have mechanisms to support separation 
of concerns in an agile way.

1.3.2    Model-Centricism

Due to the complexity, heterogeneity, and dynamic nature of (i) the busi-
ness domains in which enterprises, cloud service providers, and cloud car-
riers operate; (ii) the application landscape (including legacy and next 
generation applications); and (iii) the infrastructure in and upon which 
these applications operate and are consumed, a flexible software architec-
ture is required that can evolve in line with business, application, and infra-
structure requirements. Model-centricism is a design principle that uses 
machine-readable, highly abstract models developed independently of the 
implementation technology and stored in standardised repositories 
(Kleppe et al. 2003). This provides a separation of concerns by design, and 
thus supporting greater flexibility when architecting and evolving 
enterprise-scale and hyperscale systems. Brown (2004, pp. 319–320) enu-
merates the advantages of using models including:

•	 Models help people understand and communicate complex ideas.
•	 Many different kinds of elements can be modelled depending on the 

context offering different views of the world.
•	 There is commonality at all levels of these models in both the prob-

lems being analysed, and in the proposed solutions.
•	 Applying the ideas of different kinds of models and transforming 

them between representations provide a well-defined style of devel-
opment, enabling the identification and reuse of common approaches.

•	 Existing model-driven and model-centric conceptual frameworks 
exist to express models, model relationships, and model-to-model 
transformations.

•	 Tools and technologies can help to realise this approach, and make it 
practical and efficient to apply.

To meet the needs of infrastructure providers as well as application 
operators, an understanding is needed on how the impact of load and load 
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changes on the application layer influences the application’s resource 
demands at the infrastructure layer and further, how competing resource 
demands from multiple applications, and indeed multiple application pro-
viders, impact the infrastructure layer.

From a high-level perspective, users impose a certain load on the appli-
cations; that load will change over time. At the same time, users have 
performance requirements for a given application. For instance, a lack of 
responsiveness from a website may make them switch while otherwise they 
would have stayed. The operators of that application want to ensure that 
some level of performance is guaranteed in order to keep their customers. 
Hence, it is their task to adapt the performance of the application to the 
amount of workload imposed by the users. How and whether this can be 
done depends on the architecture and implementation of the application. 
For distributed applications (that constitute a huge portion of today’s 
applications), horizontal scaling increases the computational capacity. 
This, in turn, reduces queuing and keeps latency constant despite increas-
ing workload. Moreover, for applications composed of multiple different 
components, it is important to understand how load imposed at the 
customer-facing components ripples through the application graph and 
impacts the loads on each and every component. Finally, to understand 
how much performance a component running on a dedicated hardware 
unit (e.g. processor type, RAM type, and disk type) can deliver under a 
specific configuration (e.g. available RAM and available cores), a mapping 
needs to be available that translates load metrics on the application level 
such as arrival rate of requests of a specific type to load metrics on hard-
ware such as CPU used, RAM used, disk usage, as well as the performance 
achieved from it. In multi-tenant environments such as virtualised cloud 
and cloud/edge systems, the mutual impact of multiple, concurrently 
running components from different owners on the same physical hard-
ware is critical.

A model-centric approach for capacity provisioning for distributed 
clouds requires at least six models—(1) user models, (2) workload models, 
(3) application models, (4) infrastructure models, (5) load translation 
models, and (6) Quality-of-Service (QoS) models (Fig. 1.1).

User models describe the behaviour of users with respect to the usage 
of individual network-based services. That is, they capture different types 
of users and their usage patterns over time. What is more, they also describe 
their movement over geographical regions such that it becomes possible 
to understand which edge parts of the network will have dedicated 
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demands for specific services. This is of special interest to edge computing 
systems as user mobility impacts network load and application access 
patterns.

Workload models describe the workload issued on a system from users 
and external systems. While the user model captures the location and type 
of users, the workload model describes what actions these users execute 
and how this translates into interaction with which parts of an application.

Application models fulfil multiple purposes. First and foremost, they 
describe which components compose a distributed application and how 
these components are linked with each other (static application topology). 
This part of the application model also captures how to technically install 
the application in the infrastructure and how to update a running deploy-
ment. Deploying an application creates a run-time application topology 
that describes how many instances of each application component are cur-
rently available at which location and how they communicate with each 
other on a per-instance basis. The (work)load transition models as a 
sub-model of the application model describe for the application how 
incoming workload propagates through the applications’ components and 
the impact this has on the outgoing links of the component.

As application models are not capable of determining whether or not a 
given application topology (or scaling factor) is capable of servicing a cer-
tain amount of load, as they neither have an understanding of the available 
hardware and its capabilities nor about how the application load translates 
on load on the physical layers.

Fig. 1.1  Interdependencies between models
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Infrastructure models capture the layout of the physical and virtual 
infrastructure and represent key components such as compute, storage, 
and network capabilities, as well as their grouping in racks, data centres, 
and similar. Furthermore, they describe capabilities of the hardware 
including hardware architecture, virtualisation platform (e.g. type of 
hypervisor), and virtual machines (containers) running on the host.

Load translation models enhance the infrastructure models and pro-
vide a mapping from workload on application components to resource 
demands on the physical infrastructure. They are crucial for understanding 
whether enough physical resources are available to handle workload on 
application level. In addition, they describe the impact of congestion 
caused by components with similar hardware demands concurrently run-
ning on the same hardware.

Finally, Quality-of-Service (QoS) models provide a means to express 
QoS demands towards an application and monitor the fulfilment of these 
QoS requirements. In addition, they are able to represent the interdepen-
dencies between QoS aspects on different levels, e.g. what QoS require-
ments at the infrastructure level follow from QoS requirements on the 
application level. QoS models may be taken as constraints for the optimi-
sation problems solved for rearranging application and infrastructures.

1.3.3    Modular Design

A modular architecture is an architecture where at least some components 
are optional and there exists the ability to add or remove modules or com-
ponents according to the needs of a given use case (Aissaouii et al. 2013). 
The benefits of modular design are well known, not least it supports sepa-
ration of concerns and provides greater implementation flexibility thus 
reducing costs and risk. A discrete module or component can be imple-
mented without having to implement the entire system. Enterprises, cloud 
service providers, and cloud carriers (to a lesser extent) come in all sizes 
and with their own constraints. A modular design provides these firms 
with greater choice and flexibility.

1.3.4    Machine Learning and AI for IT Operations

As discussed above, the complexity and scale of distributed cloud infra-
structure increasingly require an automated approach. As the deluge of 
data generated by IoT continues to increase, and as demands from new 
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use cases increasingly require edge deployments, e.g. vCDN, the ability of 
cloud service providers and cloud carriers to respond quickly to demands 
on infrastructure, service incidents, and improve on key metrics decreases 
(Masood and Hashmi 2019). Increasingly, enterprises are looking to AI 
for IT Operations (or AIOps).

AI for IT Operations (AIOps) seeks to use algorithms and machine 
learning to dramatically improve the monitoring, operation, and mainte-
nance of distributed systems (Cardoso 2019). Although at a nascent stage 
of development, AIOps has the potential of ensuring QoS and customer 
satisfaction, boosting engineering productivity, and reducing operational 
costs (Prasad and Rich 2018; Dang et al. 2019). This is achieved by:

	1.	 automating and enhancing routine IT operations so that expensive 
and scarce IT staff have more time to focus on high value tasks,

	2.	 predicting and recognising anomalies, serious issues, and outages 
more quickly and with greater accuracy than humanly possible 
thereby reducing mean time to detect (MTTD) and increasing mean 
time to failure (MTTF), and

	3.	 suggesting intelligent remediation that reduces mean time to repair 
(MTTR) (IBM 2019; Masood and Hashmi 2019).

Predictions suggest that by 2024, 60% of enterprises will have adopted 
AIOps suggesting that novel solutions to capacity provisioning must 
accommodate this shift in enterprise IT operations (Gillen et al. 2018).

1.4    Operational Modes

A model-centric approach assumes cloud-edge applications, and the envi-
ronments that they run in, can be described by a set of models and that, 
based on these models, it is possible to optimise both cloud-edge infra-
structures and their applications at run-time. As such, an optimisation 
(control) system and mechanism for creating, validating, and extrapolat-
ing these models to large-scale environments are required. This requires a 
variety of interoperating components, which we refer to here as modes.

Data Analytics Mode: The creation of high-quality models requires an 
in-depth understanding of many aspects ranging from users to application 
to infrastructure. For deriving this understanding, a sufficient amount of 
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data needs to be available that can either come from a live system or be 
derived from a simulation environment. The Data Analytics Mode pro-
vides the necessary tooling and guidelines to process those data and gener-
ate models from it. The analytics itself is a manual or semi-automated 
process that applies approaches from statistics and machine learning in 
order to create the models. It consists of pre-processing and data analysis 
(or model training respectively). When complete, there is a newly gener-
ated insight in the form of a mathematical formula, a statistical relation-
ship, some other model, or a trained neural network. These insights form 
the baseline of the models that are used by other modes and underlying 
components.

Run-time Operation Mode: The Run-time Operation Mode uses 
online optimisation to continuously update geo-distributed infrastructure 
based on the models and the current deployment scenario (deployed 
applications, available infrastructure, and user behaviour). Data on the 
actual usage of the hardware and software requirements are collected dur-
ing run-time. These data are used by optimisers in the system to weight 
the current placement and usage against other options and come up with 
new and better configurations. These are output in the form of an optimi-
sation plan that can then be enacted. This changes the configuration of the 
actual system. The decisions made in order to improve the system are 
based on mathematical, stochastic, or programmatic models of the system 
itself, e.g. the capabilities of the hardware, the needs of the application, 
current and predicted workload in the system, and the movement of users 
in the real world.

Simulation and Planning Mode: The Simulation and Planning Mode 
is capable of performing the same steps as the run-time in what-if scenar-
ios and, hence, evaluates the use and acquisition of new, updated, or re-
allocated hardware. This mode supports scenario (what-if) analyses such 
as “what if I bought more or different hardware at existing sites”, “what if 
I added a new network site in the topology”, and “how much longer can 
the available hardware handle my workload, if it keeps growing as pre-
dicted”. Hence, simulation helps operators to take strategic decisions 
about their infrastructure. What is more, using simulation, different place-
ment scenarios are explored and weighed against each other to serve as 
calibration and constraints for optimisation algorithms.
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1.5    RECAP Conceptual Reference Model

Figure 1.2 presents an overview of the RECAP conceptual reference 
model which identifies the main components in RECAP and how they 
interoperate. The diagram depicts a generic high-level architecture and is 
intended to facilitate the understanding of how RECAP operates.

The diagram below outlines the components in the RECAP architec-
ture and shows the process flow loops in the optimisation framework. The 
Landscaper Component (1) acquires information on the state and con-
figuration of the physical and virtual infrastructure resources from dispa-
rate sources and presents same as a graph. The Monitoring Component 
(2) uses probes to collect telemetry metrics needed for the modelling and 
optimisation tasks, including CPU consumption, disk I/O, memory 
loads, network loads, and packet statistics—both from virtual and physical 
resources. These are input to the optimisers and the output is used to 
orchestrate and enact resource changes in the cloud network.

The Application Optimiser (3) is used to optimally autoscale the 
applications and resources. Application scaling refers to horizontal scaling, 
namely adding additional application components into the system dynam-
ically, while infrastructure scaling relates to vertical scaling, whereby vir-
tual resources are increased for a component. Applications can be scaled 
locally or globally and may be in response to run-time traffic limits or 

Fig. 1.2  RECAP conceptual reference model
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resource levels being reached or may be controlled by data analytic work-
load predictive systems. The application to be deployed is composed of 
multiple connected service components in the form of service function 
chains (SFC), which need to be placed together. In order to achieve better 
than a very sub-optimal application deployment onto a distributed virtual 
cloud infrastructure, it is necessary to introduce sufficient functional gran-
ularity into the application structure to allow separate components to be 
provisioned and scaled independently. Application optimisation is essen-
tially a mapping of a graph of application components and dependencies 
to the network of computing resources that delivers an optimal overall 
KPI target such as maximum latency or minimum throughput or maxi-
mum usage cost. The mapping is done subject to application-specific rules 
or constraints relating the individual resource requirements for compo-
nents (Minimum/Maximum instance constraints) and their mutual co-
hosting needs (Affinity/Anti-Affinity constraints).

The outputs of the application optimiser are treated as requests or rec-
ommendations for application scaling and placement, to be subsequently 
evaluated by the Infrastructure Optimiser (4) which augments the ini-
tial placement decision by taking into account the additional knowledge of 
the available physical infrastructures, the infrastructure policies of the 
infrastructure provider and specific committed Service Level Agreement 
(SLA) targets. This allows the infrastructure optimiser to retain full con-
trol of the infrastructure resources and to ultimately decide what applica-
tion requests are enacted and how applications are orchestrated. The 
Infrastructure Optimiser (4) includes (1) Application Placement which 
optimally maps application components to virtual infrastructure resources 
to deliver an optimal overall target such as maximum power consumption, 
maximum operational cost, or specific committed Service Level Agreement 
(SLA) targets; (2) Infrastructure Optimisation to optimally utilise the 
physical infrastructure; and (3) Capacity Planning to perform what-if sce-
narios for additional physical infrastructure.

The Infrastructure Optimiser and Simulator use Infrastructure 
Models (landscapes) (6). These models/landscapes present the physical 
and virtual structure, configuration, and topology of the known resources. 
The telemetry utilisation and performance statistics and the application 
KPI information are also needed for the Infrastructure Optimiser. Together 
these inputs form a consolidated infrastructure model that has the appro-
priate granularity tailored for the given use case thus making optimisation 
practicably achievable.
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Application and Workload Models (7 and 9) describe the application 
components and their behaviours and dependencies and map the applica-
tion components with their virtual resource requirements. The Workload 
Models describe the traffic flows through the application components. 
Both models are used by the workload predictor and application optimiser 
to forecast workloads and application components and recommend how 
these components should be placed on the network topology based on 
optimising the overall application KPIs. The application models describe 
applications as graphs of components with interdependencies and con-
straints in the form of graph links. The workload models describe the 
relationships between control and data plane traffic, between end-to-end 
latency and traffic, and between traffic and resource usage. They have 
been built based on the data analysis of historical trace and synthetic work-
load data using statistical and machine learning techniques.

In the Application Optimiser (3), the traffic workloads are mapped to 
the application sub-components, and the propagation of workloads is 
modelled to account for the migratory capability of the components and 
the mobile nature of users. The Optimisers use Load Distribution 
Models (6) to account for this mobility of application components and 
the impact of component migration on application performance. They 
effectively model the traffic flows in the system and can predict the effect 
on workloads if application components are changed. They are based on 
the results of load balancing after a component migrates and on user mod-
els which drive component migration. These models are used by the opti-
misers to calculate the cost of component migration when selecting an 
optimisation option.

Load Translation Models (7) are used by the Infrastructure 
Optimiser (4) to map application configuration to physical infrastructure 
capacity. The optimiser correlates the virtual resources (VMs/Containers) 
to physical resources, and the physical resource utilisation with the appli-
cation component KPIs (throughput, response time, availability, speed of 
service creation, and speed of service remediation). The translation pro-
vides a mapping of actual (specific in time) telemetry metrics of physical 
resource consumption (utilisation metrics) to application components 
workloads (i.e. the utilisation of resources by the components that are 
running on those physical machines). Effectively, this maps the application 
placement with the performance of components so placed.

The User Models (9) are based on an agent-based modelling of users, 
e.g. citizens navigating through a city and utilising mobile services.
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It is possible to create models based on historical trace data and simu-
lated synthetic data. In this case, Simulators (5) are a valuable tool for 
generating the user mobile behaviour and demand for application services 
as well as the corresponding traffic from the related cloud services.

1.5.1    Optimisation Process Flows

Process A: The Application Optimiser (3) is fed with appropriate out-
put from the Landscaper Component (1) and Monitoring Component 
(2), which represents the current resource capacity and utilisation, as well 
as the Application Models, which represent the application workload and 
performance targets. The Application Optimiser’s (3) prediction engine 
produces a recommended deployment of components and outputs this to 
the Infrastructure Optimiser (4) for evaluation, and then to the 
Orchestrator (11) for orchestration. The Application Optimiser (3) 
can be subsequently triggered dynamically to handle variations in applica-
tion workloads and user behaviours so that placement and autoscaling can 
take place. In its most proactive mode, the optimiser can create virtual 
resources, placing and autoscaling based on machine-learning models that 
are run against workload and user metrics in real-time.

Process B: The Infrastructure Optimiser (4) uses the output of the 
Landscaper Component (1) and Monitoring Component (2), which 
represents the current resource capacity and utilisation, as well as the 
Workload and Infrastructure Models to optimise the utilisation of the 
physical hardware resources based on required Service Level targets and 
policies. The Infrastructure Optimiser (4) optimises the use of the phys-
ical resources taking energy, equipment, and operational costs into account 
as well as the plans and policies around physical resource utilisation. This 
is based on a logical model of the infrastructure, virtual and physical 
resources, and their utilisation mappings. The Infrastructure Optimiser 
(4) also needs to represent the mobile nature of workloads and the ability 
of application component migration to properly optimise the deployment. 
The Infrastructure Optimiser uses the Simulator (5) in a Human-in-the-
Loop fashion, using the simulator to formulate deployment mapping 
selections and calibrating the optimiser’s algorithmic process. The 
Simulator (5) validates the results of the optimisation and provides 
“what-if” scenario planning.
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1.6    RECAP Building Blocks

While the previous section presents RECAP as a loosely integrated con-
ceptual architecture, this section focuses on four high-level functional 
building blocks (subsystems) that encapsulate RECAP logic and provide 
the necessary functionality to realise the three operational modes discussed 
in Sect. 1.4. The respective building blocks are loosely coupled and are a 
frame for the RECAP architecture. The building blocks are themselves 
distributed so that the entire RECAP system represents a distributed 
architecture. The major functional building blocks (subsystems) are 
Infrastructure Modelling and Monitoring, Optimisation, Simulation and 
Planning, and Data Analytics and Machine Learning. Each of the blocks is 
discussed in-depth in the remaining chapters of the book.

1.6.1    Infrastructure Modelling and Monitoring

The old adage “garbage in, garbage out” particularly applies to making 
valued optimisation decisions. Thus, within RECAP’s Run-time Operation 
Mode, having an accurate understanding of the current state of applica-
tions and the underpinning infrastructure is of paramount importance. 
Furthermore, the long-term collection of accurate data is a key require-
ment for being able to apply meaningful data analytics and machine learn-
ing strategies (see Data Analytics Mode). Hereby the current state of 
application and infrastructure is represented by two complementary data 
sets, the infrastructure landscape and the infrastructure monitoring (telem-
etry) provided through the Landscaper Component and the Monitoring 
Component respectively. As discussed earlier, the Landscaper Component 
is tasked with providing physical and virtual infrastructure data as “a land-
scape” consisting of nodes and edges. In that landscape, nodes represent 
for instance physical servers, virtual machines, or application instances. In 
contrast, edges either represent mappings from applications to virtual 
resources and further to physical resources, or (network) connections 
between instances on the same abstraction layer. In short, the Landscaper 
Component identifies what type of infrastructure is available and where, 
while the Monitoring Component provides live data from that infrastruc-
ture. Both are essential for modelling and optimisation and are encom-
passed in a requisite distributed design.

As discussed in Sect. 1.5, the RECAP Monitoring Component collects 
telemetry-like data from physical infrastructure, virtual infrastructure, and 
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applications; stores this data in a unified format; and ultimately provides 
the data in a consumer-specific format to other components in the wider 
RECAP system. Both the Landscaper Component and the Monitoring 
Component have been designed to operate on a per-location (data centre) 
basis. This helps in respecting administrative domains and, in the case of 
monitoring, reduces overall network traffic.

1.6.2    Optimisation

Optimisation goals in a multi-tenant distributed cloud-edge environment 
vary depending on the respective perspective. On the one hand, infra-
structure optimisation has the goal to enforce a scheduling strategy that 
best reflects the intention of the infrastructure provider, e.g. to improve 
the utilisation of the available hardware or to save energy. On the other 
hand, application optimisation strategies try to find the best-possible con-
figuration for an application deployment. Hence, the latter will increase 
the available compute capacity when high workload is expected. This, 
however, will only lead to satisfaction when the scheduling at the infra-
structure level does not apply strategies that counteract these goals. 
Consequently, RECAP’s optimisation subsystem realises a cooperative 
two-level optimisation framework, in which the optimisers at the two lev-
els (application and infrastructure) interact in order to avoid conflicting 
scheduling decisions. Besides infrastructure-level and application-level 
optimisers, the subsystem further contains an optimisation orchestrator 
that mediates between the two levels. All entities in that subsystem con-
sume monitoring data, application load data, and infrastructure data. The 
outputs of the optimisation algorithms in turn are optimisation steps that 
are then processed by the Enactor.

Figure 1.3 illustrates the dependencies between the major components 
of the optimisation subsystem. While there is just one Infrastructure 
Optimiser in a given installation, there may be multiple Application 
Optimisers, one per deployed application. Each of these is equipped with 
its own application-specific optimisation strategy and optimisation rules. 
The Infrastructure Optimiser in turn is equipped with provider-specific 
optimisation policies.

The Application Optimisers constantly receive the current status infor-
mation from the Infrastructure and Modelling subsystems and, based on 
this information, estimate the future coming workload. Based on the cur-
rent and predicted workload, each Application Optimiser suggests 
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optimisation steps for its particular application. These suggestions are fed 
to the optimisation orchestrator, which, based on the input received, trig-
gers the infrastructure optimiser that then decides on whether these oper-
ations are feasible and also the mapping between application components 
(bundled in virtual machines or containers) and physical resources. 
Application Optimisation and Infrastructure Optimisation are presented 
in detail in Chaps. 3 and 4 respectively.

1.6.3    Simulation and Planning

Figure 1.4 illustrates the core architecture of the RECAP Simulation 
Framework. It consists of an API Component, a Simulation Manager, and 
Simulation Engines. The API component serves as an entry point for 
users, be they human or other RECAP components, or external parties. 
The API Component offers an interface for controlling simulation runs. 
In particular, it is used for submitting experiments and retrieving simula-
tion results from these runs. From the API Component, the experiment 
data is forwarded to the Simulation Manager, which, in turn, checks model 
validity and submits models to an appropriate Simulation Engine. The 
RECAP Simulation Framework currently supports two simulation engines 
that address different use case requirements. First, the discrete event simu-
lator (DES), based on CloudSim, is targeted towards the simulation of 

Fig. 1.3  Component-oriented overview of the RECAP optimisation subsystem
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large-scale cloud-computing infrastructures, data centres, virtual machines, 
and virtual machine components. It is tailored for fine-grained and detailed 
simulations. On the other hand, the discrete time simulator (DTS), based 
on the CloudLightning Simulator, is well suited for large-scale simulations 
that need to run at speed and whose execution time is bounded.

The primary input to a RECAP simulation is a simulation experiment 
comprising instances of the application model, the infrastructure model, 
the workload model, and in addition, an experiment configuration. All of 
these models are represented in the very same way for both simulation 
engines. Once the input has been validated by the Simulation Manager, it 
has to be transformed to the simulation engine-specific format. This is 
done by the Model Mapper components shown in Fig. 1.4.

1.6.4    Data Analytics and Machine Learning

The Data Analytics and Machine Learning subsystems make use of the 
data collected by Landscaper Component and the Monitoring Component. 
The primary goal of this functional block is to distil statistical properties 
and patterns from load traces. Previously, this activity would be under-
taken within an engineering team; however, due to the massive volume of 
data involved, this can no longer be easily undertaken by humans. As such, 
the Data Analytics and Machine Learning subsystem operates in a separate 
processing pipeline that is decoupled from the Optimisation and the 

Fig. 1.4  High-level overview on RECAP simulation framework
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Simulation and Planning subsystems. The steps for analytics cannot be 
fully automated and require the involvement of a data analyst. Despite this 
decoupled processing, the results of the analysis do flow back into the 
RECAP optimisation cycles, either through insights gained by the data 
analyst performing the analytics (generally in the case of descriptive and/
or visual statistical analysis) or through codified models integrated into 
other RECAP components as libraries or micro-services (more applicable 
in the machine learning case).

The overall approach of the Data Analytics and Machine Learning 
subsystem is shown in Fig. 1.5. First, a data scientist retrieves data col-
lected from the Monitoring Component. Then, they perform pre-process-
ing followed by the actual analysis and/or training on the pre-processed 
data set. Both steps take place in iterations so that the analyst may go back 
and perform different types of analysis, but they may also go back and 
perform different types of pre-processing. Finally, as a last step, the results 
are exported as mathematical models, as codified models, as a library, or as 
an instantiable service. Due to the decoupled nature of the offline process-
ing, requirements towards the API of the actual data analytics components 
are less strict than for other RECAP components. The only exception to 
that rule is the format of the data retrieved from the Monitoring 
Component. After the data has been fetched, pre-processing and all other 
steps performed by the data analyst are open and not fixed by APIs. Also, 
the integration of results into, for example, the optimisation algorithm 
needs to be defined on a case-to-case basis.

Fig. 1.5  The RECAP approach to retrieve data, analyse it, and export the result-
ing models to other RECAP components
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1.7    Mapping Functional Blocks 
to Operational Modes

This section describes how the functional building blocks introduced in 
the previous section interact to deliver the operational modes introduced 
earlier.

1.7.1    Run-time Operation Mode

The Run-time Operation Mode (see Fig. 1.6) manages a set of applica-
tions spread out over a distributed physical and virtual infrastructure such 
as an IaaS infrastructure with different geo-distributed locations. Based on 
the user behaviour, and the current and predicted load in the system, the 
run-time cycle identifies improvements to the current live system on both 
infrastructure and application level and enacts them by executing optimi-
sation steps. For that purpose, the Run-time Operation Mode makes use 
of the infrastructure modelling and monitoring subsystem and the optimi-
sation subsystem. Depending on the type of system to optimise, the opti-
miser may be configured with or without the Infrastructure Optimiser. 
Not using it yields classical infrastructure unaware application-level opti-
misation. Internally, the optimisers may make use of additional compo-
nents generated by the Data Analytics and Machine Learning subsystem. 
The optimisation plans produced by the optimisers are consumed by the 
Enactor that interacts with application, physical infrastructure, and virtual 
infrastructure to enact the optimisations.

Infrastructure Models
and

Monitoring Data Application Models
and

Workload Models

Application
and

Infrastructure
Optimisation

Infrastructure and
Applications

RECAP
Operations

Fig. 1.6  Run-time loop of RECAP
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1.7.2    Simulation and Planning Mode

As discussed in Sect. 1.4, the purpose of the Simulation Mode is to per-
form two kinds of tasks. Firstly, it helps users and operators conducting 
experiments about the performance of their infrastructure and applica-
tions running therein. This includes the interplay of different types of 
applications but also the choice of configuration patterns for the Run-time 
Operation Mode. Secondly, it can be used as a tool for operators to esti-
mate future needs with respect to the amount and type of hardware. Both 
of these tasks require interaction with the Infrastructure Optimiser.

Figure 1.7 shows how the Simulation Mode is embedded in the wider 
RECAP architecture. It supports (but does not mandate) importing real-
world telemetry and infrastructure landscape data that serve as input to 
the simulation. These data are combined with the user models, workload 
models, and load translation models to define a simulation (experiment). 
Alternatively, parts of the input, or even all of the input, to a simulation 
can be manually constructed by the user. For helping operators improve 
their hardware choice, the Simulation Component supports an 
optimisation-oriented approach that iterates over different simulation 
configurations and picks the best-possible one for a given application mix 
and usage scenario.

1.7.3    Data Analytics Mode

The Data Analytics Mode enables statistical evaluation and analysis, as well 
as applying state-of-the-art machine learning techniques to the data col-
lected by the Monitoring Component. This mode envisions a data 
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Fig. 1.7  High-level overview on simulation interaction
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scientist performing many of the steps. Hence, while a certain degree of 
automation can be achieved in the process, it still requires human interac-
tion, guidance, and input. Figure 1.8 summarises the interaction of the 
Data Analytics and Machine Learning subsystem with the other RECAP 
subsystems. It relies on the monitoring subsystems to export metrics as 
bulk in a normalised manner. This data is then analysed, and the resulting 
insights and models provided to other RECAP components. In particular, 
the optimisation components are users of these models, for instance, for 
the purpose of workload prediction.

1.8    Conclusion

The chapter introduces the challenges of reliable capacity provisioning 
across the cloud-to-edge continuum. The scale and complexity across this 
continuum is so complex; it is no longer realistic for IT teams to cost-
effectively foresee and manage manually cloud and network operations on 
a detailed level due to high levels of dynamism and dependencies in the 
system. This chapter, and the book as a whole, presents a high-level con-
ceptual overview of RECAP—an architectural innovation to support reli-
able capacity provisioning for distributed clouds— and some of the major 
design concepts informing its design, namely separation of concerns, 
model-centricism, modular design, and machine learning and artificial 
intelligence for IT operations.

The remainder of this book is organised around the four functional 
building blocks outlined in Sect. 1.6 above. Chapter 2 describes the Data 
Analytics and Machine Learning subsystem, followed by Application 
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Fig. 1.8  High-level overview on data analytics subsystems
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Optimisation (Chap. 3), Infrastructure Optimisation (Chap. 4), and 
Simulation and Planning (Chap. 5). The book ends in Chap. 6 with four 
case studies each illustrating an implementation of one or more RECAP 
subsystems. The first case study presents a case study on infrastructure 
optimisation for a 5G network use case. The second case study explores 
application optimisation for virtual content distribution networks (vCDN) 
on a large Tier 1 network operator. The third case study presents how data 
analytics and simulation components, within RECAP, can be used by a 
small-to-medium-sized enterprise (SME) for cloud capacity planning. The 
final case study looks at how RECAP components can be embedded in an 
IoT platform to reduce costs and increase quality of service.
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