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Abstract The comparison of multiple genome sequences sampled from a bacterial
population reveals considerable diversity in both the core and the accessory parts of
the pangenome. This diversity can be analysed in terms of microevolutionary events
that took place since the genomes shared a common ancestor, especially deletion,
duplication, and recombination. We review the basic modelling ingredients used
implicitly or explicitly when performing such a pangenome analysis. In particular,
we describe a basic neutral phylogenetic framework of bacterial pangenome micro-
evolution, which is not incompatible with evaluating the role of natural selection.
We survey the different ways in which pangenome data is summarised in order
to be included in microevolutionary models, as well as the main methodological
approaches that have been proposed to reconstruct pangenome microevolutionary
history.
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1 Atomic Events in Bacterial Microevolution

Bacterial microevolution is the study of the evolutionary forces that shape the
genetic diversity of a natural population of bacteria. This evolutionary process
takes place as a result of the genetic changes happening within each of the genomes
of the bacterial cells constituting the population. Over time, these changes are
amplified or weakened by the effects of both genetic drift and natural selection.
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Genetic drift represents the evolution caused by the death and birth of cells in the
bacterial population, and it acts at random on all genetic variants (Charlesworth
2009). The effects of genetic drift are higher when the population size is small, and
so it could be thought given the large number of cells in bacterial populations that
genetic drift would be weak. However, bacterial populations sometimes go through
punctual bottlenecks during which genetic drift has a large effect, for example during
transmission of pathogens from one host to another (Didelot et al. 2016). It is also
believed that the strong structure of bacterial habitat, sometimes at the microscale
can lead to much smaller effective population sizes than intuition suggests (Vos et al.
2013). Natural selection on the other hand acts in a nonrandom fashion, amplifying
some variations and suppressing others, and is a very potent evolutionary force in
shaping the diversity of bacterial species (Petersen et al. 2007; Buckee et al. 2008;
Pepperell et al. 2013).

The genetic changes occurring on a single bacterial cell can be classified into
mutation and recombination events, and the events of interest differ whether the
focus is on the core genome (the regions shared by all genomes in the population) or
the accessory genome (the regions that are found in some but not all of the genomes).
As far as the core genome is concerned, the main type of mutation is the point
mutation, whereby a single nucleotide is replaced, and the main type of recombina-
tion is called homologous recombination, in which a relatively short fragment of the
genome is replaced with a homologous fragment coming from another bacterial cell
(Didelot and Maiden 2010). There are three biological mechanisms that can lead to
homologous recombination, namely conjugation (where two bacterial cells come in
contact so that DNA can be transmitted from donor to recipient), transduction (where
a phage acts as vector from donor to recipient) and transformation (where naked
DNA is picked up by the recipient from the environment, possibly following the
death of the donor cell) (Thomas and Nielsen 2005). But since their outcomes are
hard to distinguish this diversity of mechanisms is usually ignored in evolutionary
models of homologous recombination.

Point mutation and homologous recombination events clearly act on the evolution
of the accessory genome in the same way as they do for the core genome. However,
they do not change the genetic content of core genomes. There are two types of
endogenous mutations that can alter the genetic content of a genome, duplication and
deletion, and they can be thought of as opposite forces, with the former increasing
the number of copies of a gene by one and the latter decreasing it by one. Finally, the
accessory genome is also subject to non-homologous recombination, where a bac-
terial cell imports a DNA fragment from another cell and inserts it in its genome,
without overwriting a previously existing homologous fragment (Ochman et al.
2000). Non-homologous recombination is often called lateral gene transfer or
horizontal gene transfer, and in this chapter we will be using these three terms
interchangeably. It should be noted, however, that this terminology is not always
consistently used in the literature, with some authors using the term horizontal gene
transfer to refer to both homologous and non-homologous recombination.

The three biological mechanisms mentioned above for homologous recombina-
tion (conjugation, transduction, and transformation) can lead to non-homologous
recombination and once again, it is helpful when studying the bacterial
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microevolution of the accessory genome to set aside the mechanism at play. Like-
wise, genetic duplication and deletion can have multiple causes that we will not
explore. It should in fact be noted that even though it is useful to present and study
them as separate, the atomic evolutionary events briefly described above are not
biologically independent (Lawrence 1999; Everitt et al. 2014; Oliveira et al. 2017).
For example, a single event of recombination could involve the replacement of some
genes (homologous recombination), the insertion of new genes (non-homologous
recombination) and the loss of some other genes (genetic deletion).

Furthermore, non-homologous recombination can sometimes be duplicative if the
newly imported material is homologous to a sequence found somewhere else in the
genome. In this case, the number of copies of the genes concerned is increased by
one, as in a duplication event. The evolutionary distance between donor and
recipient of such a non-homologous recombination event is then a crucial factor: if
this distance is small the effect is similar to a duplication event, which can be seen as
a transfer event where recipient and donor are the same organism. If distance
between organisms is high, then the difference between the newly imported copy
and the copy already present will likely be high too, providing a clear sign that
duplication was not involved. This situation is analogous to the detection of homol-
ogous recombination in the core genome, where events from a closely related source
do not leave a trace, or perhaps involve just a single substitution in which case they
are undistinguishable from point mutation (Didelot et al. 2010).

2 Neutral Phylogenetic Framework of Bacterial Pangenome
Microevolution

2.1 Challenges with a Comprehensive Model

The microevolutionary events that act on the bacterial pangenome, as briefly
described above, can be combined into an evolutionary model of how the
pangenome evolves over time. Let us consider a comprehensive model, which
would account for the whole population of bacterial cells, including the fact that
cells die and reproduce over time (so that genetic drift is included) and that various
selective pressures are exerted. In this model, the genome of each cell is affected by
various mutation and recombination events, all of which happens at a certain rates
over time for each cell. All the rates involved in this model (birth and death of
individuals, selection for specific variants and various evolutionary events) would
not be assumed to be constant, but would be allowed to vary over time. This model
falls in the class of forward-in-time models, due to the fact that it considers evolution
as it unfolds over time, and famous examples of such models in the general
population genetics literature are the Wright-Fisher model (Fisher 1931; Wright
1931) and the Moran model (Moran 1958). Figure 1 illustrates such a forward-in-
time model of pangenome evolution.
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Fig. 1 Illustration of the forward-in-time evolution of a bacterial population and its pangenome. At
each time step, an individual is removed and another gives birth as in a standard Moran model.
Furthermore, at each time step the accessory genome of each individual may evolve via deletion
(orange cross), duplication (red square) and recombination (orange arrow)

The idea of this comprehensive model is to replicate exactly the processes that we
know occur in nature, so that it is of the highest possible realism. However, a
comprehensive model would also integrate the diversification process of the whole
community of microorganism found at a given spot, with the impact of their biotic
interactions and genetic exchange, but most importantly, of the competitive process
leading to natural selection of the fittest. Such level of description of natural
processes would render the model impossible to use, and that is why it is not
found in the literature. It is educative though to ask ourselves why this model is
unusable, as this will guide us towards more practical models that feature some of
these ideal properties.

The first problem with this comprehensive model is computational: it would
require very large amounts of computer memory to store the state of a population
at a single time point, even much more so to track its evolution over time, and an
equally impossible amount of computer power to consider the evolutionary events



Bacterial Microevolution and the Pangenome 133

happening to all members of the population. But even more importantly, there is
statistical problem with the comprehensive model, in the sense that there are too
many unknown quantities involved, for which we would not be able to take even a
very rough guess at what their value might be. Therefore, even if the computational
problems could be overcome, and analysis conducted under the comprehensive
model, the results would be worthless since the quantities to be estimated would
be unidentifiable. Simplifications will therefore have to be made to reach a model
that has practical use, with the best model being not the most comprehensive one, but
the one that achieves the best trade-off between biological realism on one hand, and
computational and statistical considerations on the other hand.

Beyond the degree of complexity of a model and the search for a trade-off
between computational efficiency and model realism, models may rely on different
conceptual formalisation of bacterial genomes and their evolutionary process. These
different concepts will generate different approaches and methods that are in general
complementary. We will thus present different elements of phylogenetic models of
pangenome evolution, which flavours may be combined to provide a variety of
practical models.

2.2 Analysing Selection Based on Neutral Models

Perhaps the greatest challenge posed by the comprehensive model above would be
its attempt at encompassing the role of natural selection. As previously mentioned, it
is clear that natural selection plays a crucial role in shaping the microevolution of the
pangenomes of bacterial populations, but the effect of this force is different for all
genes or nucleotidic site and their allelic variants, may vary significantly over time,
and be different for different segments of the populations, for example if some
lineages are adapted to a certain environment. Such adaptation of a lineage will
involve many traits distributed in the pangenome of that population, and new
mutation arising in this background might interact with it; this leads to complex
epistatic (i.e. non-additive fitness) interactions between genomic traits, affecting the
probability of selecting new genetic variants in one or another genomic back-
ground—a process that could add infinite degrees of complexity to the exhaustive
model. Model design can, therefore, be greatly simplified by considering no effect of
selection, or in other words neutrality of evolution.

Even if the role of selection is not explicitly included in a model, it does not mean
that analyses based on this model are completely uninformative about selection.
Neutral evolutionary models provide a framework to search for evidence of natural
selection. This can be achieved formally by contrasting observed patterns in com-
pared genomic data to expectations under neutral models. Another approach to
detect selection is to fit a neutral model to genomic data, having heterogeneous
parameters to describe the evolution process of each species lineage and/or gene
family; outlier species or genes with ‘abnormally’ high or low parameters can
provide a clue to non-neutral processes taking place. Similarly, the identification
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of historical changes of processes (e.g. acceleration or slowing down of diversifica-
tion rates) in the scenario of pangenome evolution can provide strong clues of
selection affecting the species lineage or gene under focus (Boussau et al. 2004;
David and Alm 2011; Lassalle et al. 2017).

This approach is similar to the way that the role of selection is being investigated
in the core genome. In this more frequently explored setting, a typical pipeline
(Hedge and Wilson 2016) involves reconstructing a phylogenetic tree, classifying
substitutions in terms of whether they are synonymous or not and estimating
evolutionary rates so that selection tests can be applied based on variations in the
rates of synonymous and non-synonymous substitutions along the genome (Wilson
and McVean 2006; Castillo-Ramirez et al. 2011) or between populations (McDonald
and Kreitman 1991; Vos 2011). In this popular approach, the evolutionary models
used to build the phylogenetic tree and reconstruct substitution events are purely
neutral, but still lead to invaluable insights into the natural selection process.

2.3 Phylogenetic Approach

A neutral version of the comprehensive model described above would still be
impossible to use in practice. A major difficulty is that it considers the evolution
of the population forward-in-time, so that every single cell in the population has to be
included. However, any dataset we may have available for analysis will only include
a small fraction of the population, sampled typically at a single time point (or a few
recent time points in the best-case scenario). However, considering the evolution of
the whole population over time can appear wasteful, since most cells in the past
would not have had any descendants surviving in the present-time sample. A much
more tractable approach is therefore to only consider the genealogical process of the
sampled genomes, which is a backward-in-time process. Under relatively mild
assumptions, and without introducing too much approximation, this genealogical
process can be described without reference to the whole forward-in-time process. In
particular, the coalescent model (Kingman 1982) describes the genealogical process
of a population following either the Wright—Fisher or the Moran model of forward-
in-time evolution. Extensions of the basic coalescent model have been derived to
deal with fluctuating population size (Griffiths and Tavare 1994), homologous
recombination (Griffiths and Marjoram 1997), which for bacteria is analogous to
gene conversion (Wiuf and Hein 2000), and many other forms of relaxation of the
assumptions ruling the evolutionary process (Donnelly and Tavare 1995; Nordborg
2001; Rosenberg and Nordborg 2002).

Considering this genealogical process, and the ability to reconstruct it with
relatively high accuracy from genome sequences, is pivotal to lead to a usable
model of pangenome evolution. A simple approach is to focus on core genome
elements and apply a standard phylogenetic method typically based on maximum
likelihood or Bayesian inference under an evolutionary model of neutral point
mutations (Yang and Rannala 2012). Bacteria reproduce clonally and most species
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recombine relatively rarely (Vos and Didelot 2009; Yang et al. 2018), so that this
simple approach can often be sufficient for our purposes. Phylogenetic methods have
also been developed that can account for the effect of homologous recombination
while still reconstructing a single tree (Didelot and Wilson 2015; Croucher et al.
2015). Methods that attempt to reconstruct a graph of ancestry rather than a single
tree are superior in principle, but rarely used in practice due to their high computa-
tional cost (Didelot et al. 2010; Vaughan et al. 2017).

In the context of a phylogenetic tree reconstructed from the core genome, we can
consider the events of duplication, deletion and non-homologous recombination that
shape the accessory genome. These events happen on the branches of the phylogeny
at certain rates that may vary over time and lineages. Notwithstanding such
remaining complexities, a phylogenetic model of bacterial pangenome microevolu-
tion represents a practical approach relative to the comprehensive forward-in-time
model. The events that affect the accessory genome are relatively rare, which results
in a strong phylogenetic inertia of genome gene contents, i.e. a large correlation
between gene contents and core genome-based diversity (Konstantinidis et al. 2006;
Kislyuk et al. 2011). Ignoring this effect would lead to strong misinterpretation of
gene distribution patterns, especially in case of a diversity bias in genome sampling,
e.g. when surveying a pathogen epidemics where clusters of closely related strains
occur. Modelling the pangenome evolution within a phylogenetic framework where
evolution of the gene content takes place along the genealogical tree avoids such
pitfalls, in the same way as a phylogenetic framework avoids false conclusions to be
reached when performing bacterial genome-wide association mapping (Collins and
Didelot 2018).

3 Description of Pangenome Data for Inclusion
in Microevolutionary Models

3.1 Units of Pangenome Evolution

In order to describe further the existing models of pangenome microevolution, it is
necessary to consider the unit in which the pangenome is being described. Figure 2
illustrates the different approaches that have been used for that purpose. The ideal
starting point would be a complete sequence of each genome of interest, but this is
rarely available due to repeat regions in the genomes that obscure the exact ordering
of sequences along the genomes, at least based on short read sequencing. For that
reason, the most frequently used data is a de novo assembly of each genome, which
can be performed, for example using Velvet (Zerbino and Birney 2008) or SPAdes
(Bankevich et al. 2012). This results a set of genomic regions called contigs, which
occur in an unknown order either on chromosomes or on plasmids.

A first approach considers a genome alignment, where every part of a genome is
assigned to a syntenic block—segments of genome sequences that are all
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homologous and can be aligned (Fig. 2b, c). These sequence segments can have
boundaries falling anywhere in the genome, notably between or within protein-
coding sequences, and the often span many genes. While this is a flexible view of
pangenome evolution that is probably the most realistic—evolving genomes ignore
human annotation of functional elements—it may be cumbersome to implement
with a growing number of compared genome. Indeed, every genome added to the
dataset may result in the breakage of a syntenic block into several parts due to
insertion, deletions, or rearrangements in one of the homologous genome segments.
Homologous genome segments can themselves be difficult to align at the nucleotide
level when they include fast-evolving genome regions. For these reasons, even the
best software for this task such as progressiveMauve (Darling et al. 2010) or
MUGSY (Angiuoli and Salzberg 2011) can only deal with between 10 and
100 genomes, depending on how diverse they are. This first alignment approach
works best on the well-conserved parts of pangenomes, i.e. the core genomes and
possibly large conserved accessory regions of the genomes. This partial sampling of
genome sequences is practical because it allows to represent the homology between
genomes as a concatenated alignment of all these syntenic blocks, which amounts to
a representative map of the genome. Alternatively, a representative whole-genome
alignment can be obtained by mapping all homologous sequences in compared
genomes to the genome of a reference isolate, using, for example MUMmer
(Kurtz et al. 2004). This can result in reference-biased representation, which may
be avoided by restricting the alignment to the core genome.

A second approach focuses on genes, or more specifically on families of homol-
ogous genes. These are usually defined based on sequence similarity and restricted to
protein-coding sequences, even though it can be applied to conserved intergenic
sequences as well (Fig. 2e). In this representation, rather than a reference whole-
genome map, we consider independent gene families, which members need not be
localised in a genome. The diversity of the gene family can conveniently be
represented with a phylogenetic tree based on all nucleotide positions in the aligned
genes, which allows the estimation of statistical support (Fig. 2f). This information
can, in turn, be used to inform the ancestral reconstruction of genome gene content
(as discussed below). There are several ways in which this gene family content
identification can be performed. If a representative from each family is known in
advance, similarity search tools like BLAST (Altschul et al. 1997) can be used to
search them in each genome, and, for example BIGSdb automates this process
(Jolley and Maiden 2010). Alternatively, each de novo assembled genome can be
annotated separately, using, for example Prokka (Seemann 2014) or RAST (Aziz
et al. 2008). Homologs can then be identified by using a combination of similarity
search between genes from different genomes (e.g. with BLAST) and similarity
network analysis, as implemented, for example in the software OrthoMCL (Li et al.
2003), with integrated pipelines implemented in software like Roary (Page et al.
2015) and MMseqs (Steinegger and Soding 2017).

A consequence of this distinction is the way genetic exchange between genomes
is considered. In the nucleotide-centred vision, genetic exchange will result either in
the replacement of a region (homologous recombination) or the insertion of a
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sequence at a defined position in the genome map (non-homologous recombination)
(Fig. 2¢). Similarly, a genetic duplication event will consist in recopying a segment
of genome sequence and inserting it next to its template (tandem duplication) or
away from it. Homologous recombination events can be evidenced based on a scan
of the genome map, looking for increased or decreased sequence similarity
(or phylogenetic relatedness) between compared genomes along the genome map
(Didelot et al. 2007). Non-homologous recombination and duplication events consist
of insertion events and are simply evidenced by some region being only represented
in some genomes in the alignment—the others featuring a large ‘gap’, or long string
of missing characters. Distinguishing non-homologous recombination from dupli-
cation events can be tricky: even comparing the inserted segment to the rest of the
genome and finding a similar region is not conclusive that it would be the duplication
template (or copy) of the studied region. Such a pattern could also result from a
recombination with a related organism leading to the insertion of genetic material
that had homologous counterpart already residing in the recipient genome. Not
finding a similar region is not conclusive of the insertion resulting from a
non-homologous recombination event either, as an ancient duplication followed by
a loss (or deletion) in the compared lineage may result in the same pattern. The
answer to this conundrum is modelling of the possible sequences of events, or
scenarios, and determine the most likely based on patterns of sequence divergence.

In the second approach centred on genes, the exchange of genetic material is
made most evident in the phylogeny of genes, or gene tree, because the gene from
the recipient will be more closely related to genes from the donor than to genes from
closely related species. In this context, the event is rather called horizontal gene
transfer, in opposition to vertical evolution, which would have resulted in the
‘normal’ clustering of genes from closely related species. Again, this representation
ignores the locus where genes sit, and it is therefore not straightforward to know
from the gene tree whether the horizontal gene transfer event resulted in the
replacement of a resident sequence or in the addition of a new one.

There are also other evolving units that can be considered as the basis of
pangenome microevolution modelling, including conserved protein domains or
short sequences of a constant length, which are also known as words, features, or
k-mers (Sims and Kim 2011; Sheppard et al. 2013b). Some units may seem more
natural than others from a theoretical point of view, but in practice all units have pros
and cons, and the choice of unit is guided by the evolutionary resolution required by
each pangenome investigation.

3.2  Granularity of Homologous Groups

When modelling the pangenome diversity with homologous gene families, a further
distinction can be done on which homologous link to consider clustering genes into
families. A popular approach is to consider orthology relationships. In theory, genes
are orthologous when they are related only by events of speciation (i.e. diversification
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of the whole genome), not by duplication of horizontal gene transfer. Because the true
course of gene diversification events is unknown, we must rely on practical defini-
tions of orthology. This theoretical definition implies that two orthologues cannot
occur in the same genome. A usual criteria is thus to look for the bidirectional best hit
(BBH) in a similarity search of all the genes in a genome against all of the genes in
another genome pairwise genome (Altenhoff and Dessimoz 2009).

This pairwise relationship can be used to build a network of genes covering the
whole pangenome dataset, where cliques (groups where the found relationship is
transitive among members) are recognised as clusters of orthologous genes or COGs
(Tatusov et al. 1997). Using this practical definition, it is straightforward to classify
any gene into a cluster, many of which will however be clusters of genes on their
own: orphan genes with no homologues, but also those resulting from a recent
transfer or duplication. By construction, these COGs can only be absent or present
in a single copy in a genome, which proves very convenient for representing the
distribution of genes in the pangenome by a genome-to-COG binary matrix filled
with zeros and ones. This representation can be handled by many simple methods
that model the transition between these binary states over the tree of the genomes,
i.e. events of gene gain and loss (Fig. 3a) (Mirkin et al. 2003). This approach has
been widely used, but suffers from its stringent definition that leaves many homol-
ogous genes out of COGs under scrutiny, which may strongly flaw the inferred
ancestral genome gene contents and the derived conclusions on ancestral functional
repertoires.

Instead, it is possible to consider a whole family of homologues, which distribu-
tion of the family in genomes can again be represented in a matrix of counts, where
this time values range from zero to any integer number. Models of pangenome
evolution can account for this multiplicity of gene copy number by invoking extra
gene gain events (Fig. 3b) (Csurds 2008; Csurds and Mikl6s 2009). The nature of
these gain events—duplication or horizontal gene transfer—is, however, not inferred
as it fundamentally requires to know the phylogenetic relationships between genes
within a homologous family.

3.3 Linkage of Genes and Syntenic Blocks

Notwithstanding the type of evolving unit considered (aligned genome segment or
gene family), all units are usually considered to evolve independently on the
phylogeny. This is, however, not always realistic given the high linkage disequilib-
rium found in bacterial genome—the non-independence of physically linked char-
acters in evolution, a consequence of their clonal mode of reproduction.

Linkage can be introduced in a pangenome evolution model by specifying the
location of genes on a genomic map. The evolution of genes on the map is then
modelled through events of insertion, deletion and rearrangement. This map can
relate the absolute position of genes in contemporary genomes (i.e. with nucleotide
site coordinates) by chopping all genomes in the dataset into syntenic blocks, where
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homology and overall gene order between genomes is conserved (Vallenet et al.
2006; Darling et al. 2010). However, as mentioned above, the larger the genome
sample, the more syntenic blocks will split and shrink. Based on such genome maps,
the history of each syntenic blocks can be estimated, describing the ancestral events
of pangenome evolution. Even though in theory the map evolves over time due to
genome rearrangements (Darling et al. 2008), in practice the maps are assumed to be
constant in order to allow to focus on fine-grained changes within the syntenic
blocks. This assumption is commonly made, for example when investigating homol-
ogous recombination in the core genome (Didelot et al. 2010).

Another option is to map the relative position of smaller evolving units (usually
gene families) in each genome of the dataset. Such a relative map can be represented
by a matrix of presence or absence of a direct adjacency between genes in a given
genome, contemporary or ancestral. This more abstract representation allows the use
of incomplete data, such as draft genome assemblies, where the physical linkage of
sequences is not fully or not unambiguously documented. The evolution of gene
neighbourhood is modelled by invoking events of creation and breakage of adja-
cencies between neighbour genes, thereby modelling any insertion, deletion and
rearrangement. Ancestral state reconstruction (see below) is then undertaken, by
estimating a genome map at each ancestral node of a species phylogeny (Fig. 3d)
(Bérard et al. 2012; Patterson et al. 2013; Duchemin et al. 2017). These models are,
however, quite heavy computationally and may become overwhelmed by large
structural diversity in the dataset.

4 Methodological Approaches to the Reconstructing
Pangenome Microevolution

4.1 Ancestral State Reconstruction

The inference of ancestral genomes and corresponding gene gain and loss scenarios
can be a complex and computationally intensive task, but it can also be simplified to
the point that it becomes almost straightforward if the research questions are
relatively simple. For example, using profiles of gene presence/absence in genomes
and a phylogenetic tree as only input, ancestral state reconstruction can be applied to
infer in which internal nodes of the tree the genes were present, and therefore on
which branches the genes were gained and lost. For a general review on ancestral
state reconstruction, see Joy et al. (2016). One of the simplest and most popular
approach is to perform a parsimonious reconstruction, where the number of gain and
loss events is minimised without the need to estimate any parameter (Mirkin et al.
2003). In practice, this is more or less equivalent to performing maximum likelihood
inference under a model in which gain and loss happen at the same small rates.
However, probabilistic modelling of state evolution has the interesting property to
integrate over several possible scenarios. Even a maximum likelihood point estimate
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of the presence of a gene at a given ancestral node will therefore consist of a
non-binary probability, a nuanced result allowing to consider the uncertainty in the
ancestral reconstruction (Pagel 1999). A similar Bayesian approach is stochastic
character mapping (Huelsenbeck et al. 2003), which consists in sampling gain and
loss histories from their posterior probability distribution via a Monte Carlo method.

Ancestral state reconstruction is particularly well suited to analyses focused on
specific genes rather than the whole pangenome, for example analysing the gain and
loss of pathogenicity genes (Dingle et al. 2014) or resistance genes (Ward et al.
2014). It can also be applied more generally to all genes in a pangenome, and the
rates of gain and loss would typically be assumed to be equal meaning that the
genome size is at equilibrium (Touchon et al. 2009). Alternatively, the reconstruc-
tion can be based on genomic elements known to be gained and lost in one block,
such as bacteriophages, plasmids, and integrative conjugational elements (Zhou
et al. 2013). This represents one simple way of dealing with the linkage of genes
mentioned previously, although at the cost of potentially losing information about
the gene content evolution of the genomic elements assumed to be perfectly linked.
At the other end of the spectrum, the reconstruction can be based on smaller elements
than genes, for example k-mers, but in this case it becomes vital to relax the
assumption of a fixed clock on gain and loss, for example using a local clock
model (Didelot et al. 2009) as illustrated in Fig. 4. This technique has been applied
to the pangenomes of Escherichia coli (Didelot et al. 2012) and Campylobacter
Jjejuni (Sheppard et al. 2013a), showing in both cases a strong relationship between
evolution of the accessory genome via gain and loss events and evolution of the core
genome via homologous recombination.

An important drawback of ancestral state reconstruction methods is that they
ignore the nature (recombination or duplication) and origins (recombination donor)
of gene gain events, which can yield partial and inaccurate scenarios when the true
history is complex, especially with many recombination events. In particular, the
exploitable signal from a profile of gene presence/absence in extant genomes are
quickly saturated when several gene copies coexist in a genome, and likely descend
from separate past events. This issue can sometimes be tackled by defining strict
families of orthologs, where every gene is present in one copy or none, but at the cost
of losing the information on evolution of homologues. Ancestral state reconstruction
could also in principle be applied to data on family of homologues, where each
genome can contain zero, one or more copies of a gene. This would require to fit a
ladder model similar to the ones used when analysing microsatellite data (Ohta and
Kimura 1973; Wilson and Balding 1998). This approach is difficult in practice
because bacterial accessory gene families of interest have often too complex histo-
ries to reliably infer orthologous groups and have high gain and/or loss rates that
quickly saturate signals. It has, however, been applied successfully in studies where
genomes of single representatives from fairly distant species were compared, thus
ignoring the ‘messy’ variation introduced by within-population evolution (Csurds
and Miklés 2009).
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Fig. 4 Illustration of a pangenome gain and loss model with local clock. The clonal genealogy is
shown in black. The width of the red block on the left of the branches is proportional to the rate of
gain. Similarly, the blue block on the right of each branch represents the rate of loss. Both the gain
and loss rates occasionally change over time. Individual gain events are represented by red arrows,
and individual loss events are represented by blue arrows

4.2 Phylogenetic Reconciliation

To deliver more informative scenarios of evolution, it is necessary to know the origin
of gene gains, which effectively means to know the relationship between observed
genes. Gene tree versus species tree reconciliation methods compare the topologies
of phylogenetic trees built from individual gene sequences against a reference
species tree (Maddison 1997). In the context of pangenome analysis, the species
tree is a phylogenetic tree reconstructed from the whole of the core genome. Species
and gene trees often have inconsistent topologies, which could happen by chance,
especially since the gene tree typically has limited statistical support, or may be the
result of evolutionary events affecting the history of the gene relative to the clonal
history. Reconciliation methods intend to explain the significant topological discords
by events of gene duplication, transfer, or loss (Szollosi et al. 2015). Figure 3c
illustrates the principles behind reconciliation methods. Practically, both trees are
annotated with the inferred events, such that there is a full agreement on the course of
events, from the root of the gene lineage to the contemporary distribution of genes in
genomes—thus reconstructing the path of evolution and diversification of genes in
the clonal frame of genome evolution. As a result, this approach allows to explicitly
determine the donors and recipients of transferred genes, or the ancestor in which a
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gene was duplicated. Methods for pangenome reconciliation analysis have been
proposed based on parsimonious reconstruction (Abby et al. 2010; Jacox et al. 2016)
and probabilistic models (Szollosi et al. 2012, 2013).

The ancestral state reconstruction approach and the reconciliation approach have a
lot in common, and the latter can be thought of as a natural extension of the former
when observation is not limited to presence or absence or number of copies of a gene,
but also includes the phylogenetic relationships between genes from separate
genomes. Reconciliation methods are therefore superior in the sense that they exploit
more of the available signal, but they are also much more challenging to implement
computationally and have so far been limited to analysis of a handful of genomes.
Ancestral state reconstruction methods are currently more popular but we predict that
reconciliation methods will become increasingly widespread in the near future with
the development of more effective statistical methods. Beyond the study of the atomic
events whereby the pangenome evolves, both methods allow to infer ancestral states
in hypothetical ancestors, or in other words to reconstruct ancestral genomes. Doing
so, one can derive the expected phenotypic traits of the ancestors—antimicrobial
resistance, metabolic activities, even ecological lifestyle. These inferred traits can
then be compared to historical records of Earth evolution or pathogen epidemic
spread to try and find causal relations between biological activity and the course of
events (David and Alm 2011; Holden et al. 2013), or be considered in support of
further ancestral reconstruction, such as scenarios of ecological niche colonisation
(Lassalle et al. 2017).
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