
Limiting the Neighborhood:
De-Small-World Network for Outbreak

Prevention

Ruoming Jin1, Yelong Sheng1, Lin Liu1, Xue-Wen Chen2,
and NhatHai Phan3(B)

1 Department of Computer Science, Kent State University, Kent, USA
{jin,ysheng,lliu}@cs.kent.edu

2 Department of EECS, The University of Kansas, Lawrence, USA
xwchen@ku.edu

3 College of Computing, New Jersey Institute of Technology, Newark, USA
phan@njit.edu

Abstract. In this work, we study a basic and practically important
strategy to help prevent and/or delay an outbreak in the context of net-
work: limiting the contact between individuals. In this paper, we intro-
duce the average neighborhood size as a new measure for the degree of
being small-world and utilize it to formally define the de-small-world
network problem. We also prove the NP-hardness of the general reach-
able pair cut problem and propose a greedy edge betweenness based
approach as the benchmark in selecting the candidate edges for solv-
ing our problem. Furthermore, we transform the de-small-world network
problem as an OR-AND Boolean function maximization problem, which
is also an NP-hardness problem. In addition, we develop a numerical
relaxation approach to solve the Boolean function maximization and the
de-small-world problem. Also, we introduce the short-betweenness, which
measures the edge importance in terms of all short paths with distance
no greater than a certain threshold, and utilize it to speed up our numer-
ical relaxation approach. The experimental evaluation demonstrates the
effectiveness and efficiency of our approaches.

1 Introduction

The interconnected network structure has been recognized to play a pivotal
role in many complex systems, ranging from natural (cellular system), to man-
made (Internet), to the social and economical systems. Many of these networks
exhibit the “small-world” phenomenon, i.e., any two vertices in the network is
often connected by a small number of intermediate vertices (the shortest-path
distance is small). The small-world phenomenon in the real populations was
first discovered by Milgram [12]. In his study, the average distance between two
Americans is around 6. Several recent studies [7,10,13] offer significant evidence
to support similar observations in the online social networks and Internet itself.
In addition, the power-law degree distribution (or scale-free property) which
c© Springer Nature Switzerland AG 2019
A. Tagarelli and H. Tong (Eds.): CSoNet 2019, LNCS 11917, pp. 229–245, 2019.
https://doi.org/10.1007/978-3-030-34980-6_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-34980-6_27&domain=pdf
https://doi.org/10.1007/978-3-030-34980-6_27

230 R. Jin et al.

many of these networks also directly lead to the small average distance [1].
Clearly, the small-world property can help facilitate the communication and
speed up the diffusion process and information spreading in a large network.

However, the small-world effect can be a dangerous double-edged sword. When
a system is benefited from the efficient communication and fast information diffu-
sion, it also makes itself more vulnerable to various attacks: diseases, (computer)
virus, spams, and misinformation, etc. For instance, it has been shown that a
small-world graph can have much faster disease propagation than a regular lat-
tice or a random graph [14]. Indeed, the six degrees of separation may suggest
that a highly infectious disease could spread to all six billion people living in the
earth about size incubation periods of the diseases [14]. The small-word property
of Internet and WWW not only enables the computer virus and spams to be
much easier to spread, but also makes them hard to stop. More recently, the mis-
information problem in the social networks has made several public outcry [3].
These small-world online social network potentially facilitate the spread of mis-
information to reach a large number of audience in short time, which may cause
public panic and have other disruptive effects.

To prevent an outbreak, the most basic strategy is to remove the affected
individuals (or computers) from the network system, like quarantine. However, in
many situations, the explicit quarantine may be hard to achieve: the contagious
individuals are either unknown or hard to detect; or it is often impossible to
detect and remove each infected individual; or there are many already being
affected and it become too costly to remove all of them in a timely fashion. Thus,
it is important to consider alternative strategies to help prevent and even delay
the spreading where the latter can be essential in discovering and/or deploying
new methods for dealing with the outbreaks.

Recently, there have been a lot of interests in understanding the network
factors (such as the small-word and scale-free properties) in the epidemics and
information diffusion process, and utilizing the network structures in detect-
ing/preventing the outbreaks. Several studies have focused on modeling the dis-
ease epidemics on the small-world and/or scale-free networks [14–16]; in [11],
Leskovec et al. study how to deploy sensors cost-effectively in a network system
(sensors are assigned to vertices) to detect an outbreak; in [3], Budak et al. con-
sider how to limit the misinformation by identifying a set of individuals that are
needed to adopt the “good” information (being immune in epidemics) in order
to minimize those being affected by the “bad” information (being infected in
epidemics). In addition, we note that from a different angle (viral marketing),
there have been a list of studies on the influence maximization problem [8,17],
which aim to discover a set of most influential seeds to maximize the information
spreading in the network. From the disease epidemics perspective, those seeds
(assuming being selected using contagious model) may need particular protection
to prevent an outbreak.

In this work, we study another basic and practically important strategy to
help prevent and/or delay an outbreak in the context of network: limiting the
contact between individuals. Different from the pure quarantine approach, here

De-Small-World Network for Outbreak Prevention 231

individuals can still perform in the network system, though some contact rela-
tionships are forbidden. In other words, instead of removing vertices (individuals)
form a network as in the quarantine approach, this strategy focuses on remov-
ing edges so that the (potential) outbreaks can be slowed down. Intuitively, if
an individual contacts less number of other individuals, the chance for him or
her to spread or being infected from the disease (misinformation) becomes less.
From the network viewpoint, the edge-removal strategy essentially make the
underlying (social) network less small-world, or simply “de-small-world”, i.e.,
the distances between individuals increase to delay the spreading process. In
many situations, such a strategy is often easily and even voluntarily adopted.
For instance, during the SARS epidemic in Beijing, 2004, there are much less
people appearing in the public places. This approach can also be deployed in
complement to the quarantine approach.

Our Contribution. Even though the edge-removal or de-small-world approach
seems to be conceptually easy to understand, its mathematical foundation is still
lack of study. Clearly, different edges (interactions) in the network are not being
equivalent in terms of slowing down any potential outbreak: for a given individ-
ual, a link to an individual of high degree connection can be more dangerous
than a link to another one with low degree connection. The edge importance (in
terms of distance) especially coincides with Kleighnberg’s theoretical model [9]
which utilizes the long-range edges on top of an underlying grid for explaining
the small-world phenomenon. In this model, the long-range edges are the main
factors which help connect the otherwise long-distance pairs with a smaller num-
ber of edges. However, there are no direct studies in fitting such a model to the
real world graph to discover those long-range edges. In the mean time, additional
constraint, such as the number of edges can be removed from the network, may
exist because removing an edge can associate with certain cost. These factors
and requirements give arise to the following fundamental research problem: how
can we maximally de-small-world a graph (making a graph to be less small-world)
by removing a fixed number of edges?

To tackle the problem, we make the following contributions:

1. We introduce the average neighborhood size as a new measure for the degree of
being small-world and utilizes it to formally define the de-small-world network
problem. Note that the typical average distance for measuring the small-world
effects cannot uniformly treat the connected and disconnected networks; nei-
ther does it fit well with the spreading process. We also reformulate the de-
small-world as the local-reachable pair cut problem.

2. We prove the NP-hardness of the general reachable pair cut problem and pro-
pose a greedy edge betweenness based approach as the benchmark in selecting
the candidate edges for solving the de-small-world network. We transform the
de-small-world network problem and express it as a OR-AND Boolean func-
tion maximization problem, which is also an NP-hard problem.

232 R. Jin et al.

3. We develop a numerical relaxation approach to solve the de-small-world prob-
lem using its OR-AND boolean format. Our approach can find a local mini-
mum based on the iterative gradient optimization procedure. In addition, we
further generalize the betweenness measure and introduces the short between-
ness, which measures the edge importance in terms of all the paths with dis-
tance no greater than a certain threshold. Using this measure, we can speed
up the numerical relaxation approach by selecting a small set of candidate
edges for removal.

4. We perform a detailed experimental evaluation, which demonstrates the effec-
tiveness and efficiency of proposed approaches.

2 Problem Definition and Preliminary

In this section, we first formally define the de-small-world network problem and
prove its NP-hardness; then we introduce the basic greedy approaches based
on edge betweenness which will serve as the basic benchmark; and finally we
show the de-small-world network problem can be transformed and expressed as
a OR-AND Boolean function maximization problem.

Problem Formulation. In order to model the edge-removal process and for-
mally define the de-small-world network problem, a criterion is needed to pre-
cisely capture the degree of being small-world. Note that here the goal is to
help prevent and/or delay the potential outbreak and epidemic process. The
typical measure of small-world network is based on the average distance (the
average length of the shortest path between any pair of vertices in the entire
network). However, this measure is not able to provide unified treatment of the
connected and cut network. Specifically, assuming a connected network is bro-
ken into several cut network and the average distance on the cut network is not
easy to express. On the other hand, we note that the de-small-world network
graph problem is different from the network decomposition (clustering) prob-
lem which tries to break the entire network into several components (connected
subgraphs). From the outbreak prevention and delaying perspective, the cost of
network decomposition is too high and may not be effective. This is because each
individual component itself may still be small-world; and the likelihood of com-
pletely separating the contagious/infected group from the rest of populations
(the other components) is often impossible.

Given this, we introduce the average neighborhood size as a new measure for
the degree of being small-world and utilize it to formally define the de-small-
world network problem. Especially, the new measure can not only uniformly
treat both connected and cut networks and aims to directly help model the
spreading/diffusion process. Simply speaking, for each vertex v in a network
G = (V,E) where V is the vertex set and E is the edge set, we define the
neighborhood of v as the number of vertices with distance no greater than k to v,
denoted as Nk(v). Here k is the user-specified spreading (or delaying) parameter
which aims to measure the outbreak speed, i.e., in a specified time unit, the
maximum distance between individual u (source) to another one v (destination)

De-Small-World Network for Outbreak Prevention 233

who can be infected if u is infected. Thus, the average neighborhood size of G,∑
v∈V Nk(v), can be used to measure the robustness of the network with respect

to a potential outbreak in a certain time framework. Clearly, a potential problem
of the small-world network is that even for a small k, the average neighborhood
size can be still rather large, indicating a large (expected) number of individuals
can be quickly affected (within time framework k) during an outbreak process.

Formally, the de-small-world network problem is defined as follows:

Definition 1 (De-Small-World Network Problem). Given the edge-
removal budget L > 0 and the spreading parameter k > 1 we seek a subset
of edges Er ⊂ E, where |Er| = L, such that the average neighborhood size is
minimized:

min
|Er|=L

∑
v∈V Nk(v|G\Er)

|V | , (1)

where Nk(v|G\Er) is the neighborhood size of v in the graph G after removing
all edges in Er from the edge set E.

Note that in the above definition, we assume each vertex has the equal prob-
ability to be the source of infection. In the general setting, we may consider
to associate each vertex v with a probability to indicate its likelihood to be
(initially) infected. Furthermore, we may assign each edge with a weight to indi-
cate the cost to removing such an edge. For simplicity, we do not study those
extensions in this work; though our approaches can be in general extended to
handle those additional parameters. In addition, we note that in our problem,
we require the spreading parameter k > 1. This is because for k = 1, this prob-
lem is trivial: the average neighborhood size is equivalent to the average vertex
degree; and removing any edge has the same effect. In other words, when k = 1,
the neighborhood criterion does not capture the spreading or cascading effects
of the small-world graph. Therefore, we focus on k > 1, though in general k is
still relatively small (for instance, no higher than 3 or 4 in general).

Reachable Pair Cut Formulation: We note the de-small-world network prob-
lem can be defined in terms of the reachable pair cut formulation. Let a pair of
two vertices whose distance is no greater than k is referred to as a local-reachable
pair or simply reachable pair. Let RG record the set of all local reachable pairs
in G.

Definition 2 (Reachable Pair Cut Problem). For a given local (u, v), if
d(u, v|G) ≤ k in G, but d(u, v|G\Es) > k, where Es is an edge set in G, then
we say (u, v) is being local cut (or simply cut) by Es. Given the edge-removal
budget L > 0 and the spreading parameter k > 1, the reachable pair cut problem
aims to find the edge set Er ⊆ E, such that the maximum number of pairs in
RG is cut by Er.

Note that here the (local) cut for a pair of vertices simply refers to increase
their distance; not necessarily completely disconnect them in the graph (G\Es).

234 R. Jin et al.

Also, since RG\Er
⊆ RG, i.e., every local-reachable pair in the remaining net-

work G \ Er is also the local-reachable in the original graph G, the problem
is equivalently to maximize |RG| − |RG\Er

| and minimize the number of local
reachable pairs |RG\Er

|. Finally, the correctness of such a reformulation (de-
small-world problem = reachable pair cut problem) follows this simple observa-
tion:

∑
v∈V Nk(v|G) = 2|RG| (and

∑
v∈V Nk(v|G\Er) = 2|RG\Er

|). Basically,
every reachable pair is counted twice in the neighborhood size criterion.

In the following, we study the hardness of the general reachable pair cut
problem.

Theorem 1. Given a set RS of local reachable pairs in G = (V,E) with respect
to k, the problem of finding L edges Er ⊆ E (|Er| = L) in G such that the
maximal number of pairs in RS being cut by Er is NP-Hard.

All the proofs of Theorems and Lemmas can be found in our Appendix1. Note
that in the general problem, RS can be any subset of RG. The NP-hardness of
the general reachable pair cut problem a strong indicator that the de-small-
world network problem is also hard. In addition, we note that the submodular-
ity property plays an important role in solving vertex-centered maximal influ-
ence [8], outbreak detection [11], and limiting misinformation spreading [3] prob-
lems. However, such property does not hold for the edge-centered de-small-world
problem.

Lemma 1. Let set function f : 2E → Z+ records the number of local reachable
pairs in RG is cut by an edge set Es in graph G. Function f is neither submodular
(diminishing return) nor supermodular.

Greedy Betweenness-Based Approach. Finding the optimal solution for the
de-small-world problem is likely to be NP-hard. Clearly, it is computationally
prohibitive to enumerate all the possible removal edge set Er and to measure
how many reachable pairs could be cut or how much the average neighborhood
size is reduced. In the following, we describe a greedy approach to heuristically
discover a solution edge-set. This approach also serves as the benchmark for the
de-small-world problem.

The basic approach is based on the edge-betweenness, which is a useful
criterion to measure the edge importance in a network. Intuitively, the edge-
betweenness measures the edge important with respect to the shortest paths
in the network. The high betweenness suggests that the edge is involved into
many shortest paths; and thus removing them will likely increase the dis-
tance of those pairs linked by these shortest paths. Here, we consider two vari-
ants of edge-betweenness: the (global) edge-betweenness [4] and the local edge-
betweenness [5]. The global edge-betweenness is the original one [4] and is defined
as follows:

B(e) =
∑

s �=t∈V

δst(e)
δst

,

1 https://www.dropbox.com/s/rpkqpn6y7mwconk/Appendix.pdf?dl=0.

https://www.dropbox.com/s/rpkqpn6y7mwconk/Appendix.pdf?dl=0

De-Small-World Network for Outbreak Prevention 235

where δst is the total number of shortest paths between vertex s and t, and δst(e)
the total number of shortest paths between u and v containing edge e.

The local edge-betweenness considers only those vertex pairs whose shortest
paths are no greater than k, and is defined as

LB(e) =
∑

s �=t∈V,d(s,t)≤k

δst(e)
δst

,

The reason to use the local edge-betweenness measure is because in the de-small-
world (and reachable pair cut) problem, we focus on those local reachable pairs
(distance no greater than k). Thus, the contribution to the (global) betweenness
from those pairs with distance greater than k can be omitted. The exact edge-
betweenness can be computed in O(nm) worst case time complexity [2] where
n = |V | (the number of vertices) and m = |E (the number of edges) in a given
graph, though in practical the local one can be computed much faster.

Using the edge-betweenness measure, we may consider the following generic
procedure to select the L edges for Er:

(1) Select the top r < L edges into Er, and remove those edges from the input
graph G;

(2) Recompute the betweenness for all remaining edges in the updated graph
G;

(3) Repeat the above procedure �L/r� times until all L edges are selected.

Note that the special case r = 1, where we select each edge in each iteration,
the procedure is very similar to the Girvan-Newman algorithm [4] in which they
utilize the edge-betweenness for community discovery. Gregory [5] generalizes it
to use the local-edge betweenness. Here, we only consider to pickup L edges and
allow users to select the frequency to recompute the edge-betweenness (mainly
for efficiency consideration). The overall time complexity of the betweenness
based approach is O(�L/r�nm) (assuming the exact betweenness computation
is adopted).

2.1 OR-AND Boolean Function and Its Maximization Problem

In the following, we transform the de-small-world network problem and express
it as a OR-AND Boolean function maximization problem, which forms the basis
for our optimization problem in next section. First, we will utilize the OR-AND
graph to help represent the de-small-world (reachable pair cut) problem. Let us
denote P the set of all the short paths in G that have length at most k.

OR-AND Graph: Given a graph G = (V,E), the vertex set of an OR-AND
graph G = (V, E) is comprised of three kinds of nodes VE , VP and VRG

, where
each node in VE corresponds to a unique edge in E, each node in VP corresponds
to a short path in P , and each node in VRG

corresponds to a unique reachable
pair in G (with respect to k). Figure 1(b) shows those nodes for graph G in
Fig. 1(a). The edge set consists of two types of edges: (1) Each short path node

236 R. Jin et al.

(a) Example Graph (b) OR-AND Graph (c) Algebra Variable

Fig. 1. OR-AND graph and algebra variable

in VP is linked with the vertices in VE corresponding to those edges in the path.
For instance path node p1 in VP links to edge node e1 and e2 in VE in Fig. 1(b).
Each reachable pair node in VRG

links to those path nodes which connects the
reachable pair. For instance, the reachable pair bd is connected with path node
p1 and p2 in Fig. 1(b).

Intuitively, in the OR-AND graph, we can see that in order to cut a reachable
pair, we have to cut all the short paths between them (AND). To cut one short
path, we need to remove only one edge in that path (OR). Let P (u, v) consists
all the (simple) short paths between u and v whose length are no more than
k. For each short path p in P (u, v), let e corresponds to a Boolean variable for
edge e ∈ p: if ei = T , then the edge ei is not cut; if ei = F , then the edge is
cut (ei ∈ Er). Thus, for each reachable pair (u, v) ∈ RG, we can utilize the a
Boolean OR-AND expression to describe it:

I(u, v) =
∨

p∈P (u,v)

∧

e∈p

e (2)

For instance, in the graph G (Fig. 1(b)),

I(b, d) = (e1 ∧ e2) ∨ (e3 ∧ e4)

Here, I(b, d) = T indicating the pair is being cut only if for both p1 and p2

are cut. For instance, if e1 = F and e3 = F , then I(b, d) = F ; and e1 = F , but
e3 = T and e4 = T , I(b, d) = T . Given this, the de-small-world problem (and the
reachable pair cut problem) can be expressed as the following Boolean function
maximization problem.

Definition 3 (Boolean Function Maximization Problem). Given a list
of Boolean functions (such as I(u, v), where (u, v) ∈ RG), we seek a Boolean
variable assignment where exactly L variables are assigned false (e = F iff e ∈ Er,
and |Er| = L), such that the maximal number of Boolean functions being false
(I(u, v) = F corresponding to (u, v) is cut by Er).

De-Small-World Network for Outbreak Prevention 237

Unfortunately, the Boolean function maximization problem is also NP-hard since
it can directly express the general reachable pair cut problem. In the next section,
we will introduce a numerical relation approach to solve this problem.

3 Path Algebra and Optimization Algorithm

In this section, we introduce a numerical relaxation approach to solve the
Boolean function maximization problem (and thus the de-small-world problem).
Here, the basic idea is that since the direct solution for the Boolean function
maximization problem is hard, instead of working on the Boolean (binary) edge
variable, we relax to it to be a numerical value. However, the challenge is that
we need to define the numerical function optimization problem such that it meet
the following two criteria: (1) it is rather accurately match the Boolean function
maximization; and (2) it can enable numerical solvers to be applied to optimize
the numerical function. In Subsect. 3.1, we introduce the numerical optimization
problem based on the path algebra. In Subsect. 3.2, we discuss the optimization
approach for solving this problem.

3.1 Path-Algebra and Numerical Optimization Problem

To construct a numerical optimization problem for the Boolean function maxi-
mization format of the de-small-world problem, we introduce the following path-
algebra to describe all the short paths between any reachable pair in RG. For
each edge e in the graph G = (V,E), we associate it with a variable xe. Then,
for any reachable pair (u, v) ∈ RG, we define its corresponding path-algebra
expression P(u, v) as follows:

P(u, v) =
∑

p∈P (u,v)

∏

e∈p

xe (3)

Taking the path-algebra for (b, d) in Fig. 1 and (c) as example, we have

P(b, d) = x2x1 + x3x4

Basically, the path-algebra expression P(u, v) directly corresponds to the
Boolean expression I(u, v) by replacing AND(∧) with product (×), OR(∨) with
sum (+), and Boolean variable e with algebraic variable xe. Intuitively, P(u, v)
records the weighted sum of each path in P (u, v), where the weight is the product
based on the edge variable xe. Note that when xe = 1 for every edge e, when
P(u, v) simply records the number of different short paths (with length no more
than k) between u and v, i.e., P(u, v) = |P (u, v)|. Furthermore, if assuming
xe ≥ 0, then P(u, v) = 0 is equivalent to in each path p ∈ P (u, v), there is at
least one edge variable is equivalent to 0. In other words, assuming if variable
xe = 0 iff e = T , then P(u, v) = 0 iff I(u, v) = F and P(u, v) > 0 iff I(u, v) = T .

Given this, we may be tempted to optimize the follow objective function
based on the path-algebra expression to represent the Boolean function maxi-
mization problem:

238 R. Jin et al.

∑
(u,v)∈RG

P(u, v). However, this does not accurately reflect our goal, as to min-
imize

∑
(u,v)∈RG

P(u, v), we may not need any P(u, v) = 0 (which shall be our
main goal). This is because P(u, v) corresponds to the weighted sum of path
products. Can we use the path-algebra to address the importance of P(u, v) = 0
in the objective function?

We provide a positive answer to this problem by utilizing an exponential
function transformation. Specifically, we introduce the following numerical max-
imization problem based on the path expression:

∑

(u,v)∈RG

e−λP(u,v), where, 0 ≤ xe ≤ 1,
∑

xe ≥ X − L (4)

Note that 0 ≤ e−λP(u,v) ≤ 1 (each xe ≥ 0), and only when P(u, v) = 0,
e−λP(u,v) = 1 (the largest value for each term). When P(u, v) ≈ 1, the term
e−λP(u,v) can be rather small (approach 0). The parameter λ is the adjusting
parameter to help control the exponential curve and smooth the objective func-
tion. Furthermore, the summation constraint

∑
xe ≥ X − L) is to express the

budget condition that there shall have L variables with xi ≈ 0. Here X is the
total number of variables in the objective function (X = |E| if we consider every
single edge variable xe).

3.2 Gradient Optimization

Clearly, it is very hard to find the exact (or closed form) solution for maximizing
function in Eq. 4 under these linear constraints. In this section, we utilize the
standard gradient (ascent) approach together with the active set method [6] to
discover a local maximum. The gradient ascent takes steps proportional to the
positive of the gradient iteratively to approach a local minimum. The active set
approach is a standard approach in optimization which deals with the feasible
regions (represented as constraints). Here we utilize it to handle the constraint
in Eq. 4.

Gradient Computation: To perform gradient ascent optimization, we need
compute the gradient g(xe) for each variable xe. Fortunately, we can derive a
closed form of g(xe) in

∑
(u,v)∈RG

e−λP(u,v) as follows:

g(xe) =
∂

∑
(u,v)∈RG

e−λP(u,v)

∂xe
=

∑

(u,v)∈RG

−λP(u, v, e)e−λP(u,v),

where P(u, v, e) is the sum of the path-product on all the paths going through e
and we treat xe = 1 in the path-product. More precisely, let P (u, v, e) be the set
of all short paths (with length no more than k) between u and v going through
edge e, and then,

P(u, v, e) =
∑

p∈P (u,v,e)

∏

e′∈p\{e}
xe′ (5)

De-Small-World Network for Outbreak Prevention 239

Using the example in Fig. 1 and (c), we have

P(b, d, e1) = x2

Note that once we have all the gradients for each edge variable xe, then we
update them accordingly,

xe = xe + βg(xe),

where β is the step size (a very small positive real value) to control the rate of
convergence.

P(u, v) and P(u, v, e) Computation To compute the gradient, we need
compute all P(u, v) and P(u, v, e) for (u, v) ∈ RG. Especially, the difficulty is
that even compute the total number of simple short paths (with length no more
than k) between u and v, denoted as |P (u, v)| is known to be expensive. In the
following, we describe an efficient procedure to compute P(u, v) and P(u, v, e)
efficiently. The basic idea is that we perform a DFS from each vertex u with
traversal depth no more than k. During the traversal form vertex u, we maintain
the partial sum of both P(u, v) and P(u, v, e) for each v and e where u can reach
within k steps. After each traversal, we can then compute the exact value of
P(u, ∗) and P(u, ∗, ∗).

The DFS procedure starting from u to compute all P(u, ∗) and P(u, ∗, ∗) is
illustrated in Algorithm 1 (Appendix D). In Algorithm 1, we maintain the current
path (based on the DFS traversal procedure) in p and its corresponding product∑

e∈p xe is maintained in variable w (Line 9 and 10). Then, we incrementally
update P(u, v) assuming v is the end of the path p (Line 11). In addition,
we go over each edge in the current path, and incrementally update P(u, v)
(w/xe =

∏
e′∈p\{e} xe′ , Line 13.) Note that we need invoke this procedure for

every vertex u to compute all P(u, v) and P(u, v, e). Thus, the overall time
complexity can be written as O(|V |dk

) for a random graph where d is the average
vertex degree.

The overall gradient optimization algorithm is depicted in Algorithm 2
(Appendix E). Here, we use C to describe all the edges which need be pro-
cessed for optimization. At this point, we consider all the edges and thus C = E.
Later, we will consider to first select some candidate edges. The entire algorithm
performs iteratively and each iteration has three major steps:

Step 1 (Lines 6–8): it calculates the gradient g(xe) of for every edge variable xe

and an average gradient g;
Step 2 (Lines 9–16): only those variables are not in the active set A will be

updated. Specifically, if the condition (
∑

e∈E xe ≥ |E|−L) is not met, we try
to adjust xe back to the feasible region. Note that by using g(xe)−g (Line 11)
instead of g(xe) (Line 13), we are able to increase the value of those xe whose
gradient is below average. However, such adjustment can still guarantee the
overall objective function is not decreased (thus will converge). Also, we make
sure xe will be between 0 and 1.

240 R. Jin et al.

Step 3 (Lines 17–22): the active set is updated. When an edge variable reaches
0 or 1, we put them in the active set so that we will not need to update
them in Step 2. However, for those edges variables in the active set, if their
gradients are less (higher) than the average gradient for xe = 0 (xe = 1), we
will release them from the active set and let them to be further updated.

Note that the gradient ascent with the active set method guarantees the con-
vergence of the algorithm (mainly because the overall objective function is
not decreased). However, we note that in Algorithm 2, the bounded condition
(
∑

e∈E xe ≥ |E| − L) may not be necessarily satisfied even with the update in
Line 11. Though this can be achieved through additional adjustment, we do not
consider them mainly due to the goal here is not to find the exact optimization,
but mainly on identifying the smallest L edges based on xe. Finally, the overall
time complexity of the optimization algorithm is O(t(|V | ∗ d

k
+ |E|)), given t is

the maximum number of iterations before convergence.

4 Short Betweenness and Speedup Techniques

In Sect. 3, we reformulate our problem into a numerical optimization problem.
We further develop an iterative gradient algorithm to select the top L edges
in to Er. However, the basic algorithm can not scale well to very large graphs
due to the large number (|E|) of variables involved. In this section, we introduce
a new variant of the edge-betweenness and use it to quickly reduce the variables
needed in the optimization algorithm (Algorithm 2). In addition, we can further
speedup the DFS procedure to compute P(u, v) and P(u, v, e) in Algorithm 1.

Short Betweenness. In this subsection, we consider the following question:
What edge importance measure can directly correlate with xe in the objective
function in Eq. 4 so that we can use it to help quickly identify a candidate edge
set for the numerical optimization described in Algorithm 2? In this work, we
propose a new edge-betweenness measure, referred to as the short betweenness
to address the this question. It is intuitively simple and has an interestingly
relationship with respect to the gradient g(xe) for each edge variable. It can even
be directly applied for selecting Er using the generic procedure in Sect. 2 and is
much more effective compared with the global and local edge-betweenness which
measure the edge importance in terms of the shortest path (See comparison in
Sect. 5).

Here we formally define ∇(ei) as short betweenness.

Definition 4 (Short Betweenness). The short betweenness SB(e) for edge
e is as follows, SB(e) =

∑
(u,v)∈RG

|P (u,v,e)|
|P (u,v)| .

Recall that (u, v) ∈ RG means d(u, v) ≤ k; |P (u, v)| is the number of short paths
between u and v; and |P (u, v, e)| is the number of short paths between u and v
which must go through edge e. The following lemma highlights the relationship
between the short betweenness and the gradient of edge variable xe:

De-Small-World Network for Outbreak Prevention 241

Lemma 2. Assuming for all edge variables xe = 1, then g(xe) ≥ −SB(e).

Basically, when xe = 1 for every edge variable xe (this is also the initialization
of Algorithm 2), the (negative) short betweenness serves a lower bound of the
gradient g(e). Especially, since the gradient is negative, the higher the gradient
of |g(e)| is, the more likely it can maximize the objective function (cut more
reachable pairs in RG. Here, the short betweenness SB(e) thus provide an upper
bound (or approximation) on |g(e)| (assuming all other edges are presented in the
graph); and measures the the edge potential in removing those local reachable
pairs. Finally, we note that Algorithm 1 can be utilized to compute |P (u, v)| and
|P (u, v, e)|, and thus the short betweenness (just assuming xe = 1 for all edge
variables).

Scaling Optimization Using Short Betweenness: First, we can directly
utilize the short betweenness to help us pickup a candidate set of edge variables,
and then Algorithm 2 only need to work on these edge variables (considering
other edge variables are set as 1). Basically, we can choose a subset of edges
Es which has the highest short betweenness in the entire graph. The size of Es

has to be larger than L; in general, we can assume |Es| = αL, where α > 1. In
the experimental evaluation (Sect. 5), we found when α = 5, the performance of
using candidate set is almost as good as the original algorithm which uses the
entire edge variables. Once the candidate set edge set is selected, we make the
following simple observation:

Lemma 3. Given a candidate edge set Es ⊆ E, if any reachable pair (u, v) ∈
RG can be cut by Er where Er ⊆ Es and |Er| = L, then, each path in P (u, v)
must contains at least one edge in Es.

Clearly, if there is one path in P (u, v) does not contain an edge in Es, it will
always linked no matter how we select Er and thus cannot cut by Er ⊆ Es. In
other words, (u, v) has to be cut by Es if it can be cut by Er. Given this, we
introduce Rs = RG ⊆ RG\Es

. Note that Rs can be easily computed by the DFS
traversal procedure similar to Algorithm 1. Thus, we can focus on optimizing

∑

(u,v)∈Rs

e−λP(u,v), where, 0 ≤ xe ≤ 1,
∑

xe ≥ X − L (6)

Furthermore, let EP =
⋃

(u,v)∈Rs

⋃
p∈P (u,v) p, which records those edges appear-

ing in certain path linking a reachable pair cut by EP . Clearly, for those edges in
E \ EP , we can simply prune them from the original graph G without affecting
the final results. To sum, the short betweenness measure can help speed up the
numerical optimization process by reducing the number of edge variables and
pruning non-essential edges from the original graph.

5 Experimental Study

In this section, we report the results of the empirical study of our methods.
Specifically, we are interested in the performance (in terms of reachable pair
cut) and the efficiency (running time).

242 R. Jin et al.

Table 1. Network statistics

Dataset |V | |E| π

Gnutella04 10,876 39,994 9

Gnutella05 8,846 31,839 9

Gnutella06 8,717 31,525 9

Gnutella08 6,301 20,777 9

Gnutella09 8,114 26,013 9

Gnutella24 26,518 65,369 10

Gnutella25 22,687 54,705 11

Gnutella30 36,682 88,328 10

Gnutella31 62,586 147,892 11

Gnu04 Gnu05 Gnu06 Gnu08 Gnu09 Gnu24 Gnu25 Gnu30 Gnu31
0

500

1000

1500

2000

2500

3000

de
lta

BT
LB
SB
OMW

Fig. 2. δ for all real datasets

Performance: Given a set of edges Er with budget L, the total number of
reachable pairs being cut by Er is |RG| − |RG\Er

| or simply Δ|RG|. We use the
average pair being cut by an edge, i.e., δ = Δ|RG|

L as the performance measure.

Efficiency: The running time of different algorithms.

Methods: Here we compare the following methods:

(1) Betweenness based method, which is defined in terms of the shortest paths
between any two vertices in the whole graph G; hereafter, we use BT to
denote the method based on this criterion.

(2) Local Betweenness based method, which, compared with betweenness
method(BT), takes only the vertex pair within certain distance into con-
sideration; hereafter, we use LB to stand for the method based on local
betweenness.

De-Small-World Network for Outbreak Prevention 243

(3) Short Betweenness based method, the new betweenness introduced in this
paper, which considers all short paths whose length is no more than certain
threshold. Here we denote the method based on short betweenness as SB.

(4) Numerical Optimization method, which solves the de-small-world problem
iteratively by calculating gradients and updating the edge variables xe.
Based on whether the method use the candidate set or not, we have two
versions of optimization methods: OMW (Optimization Method With can-
didate set) and OMO (Optimization Method withOut candidate set). Note
that we normally choose the top 5L edges as our candidate set.

We have a generic procedure to select L edges depending on parameter r
(batch size) (Sect. 2). We found for different methods BT , LB and SB, the effects
of r seem to be rather small (as illustrated in Fig. 3). Thus, in the reminder of
the experiments, we choose r = L, i.e., we select the top L edges using the
betweenness calculated for the entire (original graph).

 300

 350

 400

 450

 500

 550

 600

 650

 10 20 30 40 50 60 70 80 90 100

δ

r/L(%)

LB
SB
BT

Fig. 3. Varying r
L

Table 2. Time (Seconds)

Time BT LB SB OMW

10,876 382.27 24.82 33.75 1021.66

8,846 21346.54 496.17 8.98 110.80

62586 392.54 25.31 34.60 1092.55

Table 3. δ By Varying l

l BT LB SB OMW OMO

500 240 415 912 996 973

1000 261 372 740 803 805

2000 301 329 572 620 622

Table 4. δ By Varying k

k BT LB SB OMW OMO

2 25 32 55 58 58

3 261 372 740 803 805

4 761 976 2113 2389 -

All the algorithms are implemented using C++ and the Standard Template
Library (STL), and the experiments are conducted on a 2.0 GHz Dual Core AMD
Opteron CPU with 4.0 GB RAM running on Linux.

We study the performance of our algorithms on real datasets. The bench-
marking datasets are listed in Table 1. All networks contain certain properties

244 R. Jin et al.

commonly observed in social networks, such as small diameter. All datasets are
downloadable from Stanford Large Network Dataset Collection2.

In Table 1, we present important characteristics of all real datasets, where π
is graph diameter. All these nine networks are snapshots of the Gnutella peer to
peer file sharing network starting from August 2002. Nodes stand for the hosts
in the Gnutella network topology and the edges for the connections between the
hosts (Table 2).

Varying L: We perform this group of experiments on dataset Gnu05 and we fix
k = 3. Here we run these methods on three different edge buget L: 500, 1000 and
2000. The result is reported in Table 3. The general trend is that with smaller L,
δ becomes bigger. This is because the set of reachable pairs removed by different
edges could have intersection; when one edge is removed, the set of reachable
pairs for other edges is also reduced. For particular methods, BT and OMO
methods produces the lowest and highest δ, and the different between OMW
and OMO is very small.

Varying k: In this group of experiments, we fix L = 1000 and we choose Gnu04.
Here we choose three values for k: 2, 3 and 4. The result is reported in Table 4.
From the result, we can see that when k becomes bigger, δ become higher. This is
also reasonable: when k becomes bigger, more reachable pairs are generated and
meanwhile |E| is constant; therefore, each edge is potentially able to remove more
reachable pairs. From the above three groups of experiments, we can see that
OMO does not produce significant results compared with OMW . Therefore, in
the following experiment, we do not study OMO method again.

δ on all Real Datasets: In this groups of experiment, we study the perfor-
mance of each method on these nine datasets, with L being proportional to |E|.
Specifically, L = |E|×1%. We report the result in Fig. 2. LB generally produces
the lowest δ, around half that of BT ; and also the best method, is the SB and
OMW methods. Specifically, OMW is always slightly better than SB.

6 Conclusion

In this paper, we introduce the de-small-world network problem; to solve it,
we first present a greedy edge betweenness based approach as the benchmark
and then provide a numerical relaxation approach to slove our problem using
OR-AND boolean format, which can find a local minimum. In addition, we
introduce the short-betweenness to speed up our algorithm. The empirical study
demonstrates the efficiency and effectiveness of our approaches. In the future,
we plan to utilize MapReduce framework (e.g. Hadoop) to scale our methods to
handle graphs with tens of millions of vertices.

2 http://snap.stanford.edu/data/index.html.

http://snap.stanford.edu/data/index.html

De-Small-World Network for Outbreak Prevention 245

References

1. Andersen, R., Chung, F., Lu, L.: Modeling the small-world phenomenon with local
network flow. Internet Math. 2, 359–385 (2005)

2. Brandes, U.: A faster algorithm for betweenness centrality. J. Math. Sociol. 25,
163–177 (2001)

3. Budak, C., Agrawal, D., El Abbadi, A.: Limiting the spread of misinformation in
social networks. In: Proceedings of the 20th International Conference on World
Wide Web, WWW 2011 (2011)

4. Girvan, M., Newman, M.E.J.: Community structure in social and biological net-
works. Proc. Nat. Acad. Sci. 99(12), 7821–7826 (2002)

5. Gregory, S.: Local betweenness for finding communities in networks. Technical
report, University of Bristol, February 2008

6. Hager, W.W., Zhang, H.: A new active set algorithm for box constrained optimiza-
tion. SIAM J. Optim. 17, 526–557 (2006)

7. Jin, S., Bestavros, A.: Small-world characteristics of internet topologies and impli-
cations on multicast scaling. Comput. Netw. 50, 648–666 (2006)

8. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through
a social network. In: Proceedings of the Ninth ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining, KDD 2003, pp. 137–146 (2003)

9. Kleinberg, J.: The small-world phenomenon: an algorithmic perspective. In: 32nd
ACM Symposium on Theory of Computing, pp. 163–170 (2000)

10. Leskovec, J., Horvitz, E.: Planetary-scale views on a large instant-messaging net-
work. In: Proceedings of the 17th International Conference on World Wide Web,
WWW 2008 (2008)

11. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.:
Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2007, pp. 420–429 (2007)

12. Milgram, S.: The small world problem. Psychol. Today 2, 60–67 (1967)
13. Mislove, A., Marcon, M., Gummadi, K.P., Druschel, P., Bhattacharjee, B.: Mea-

surement and analysis of online social networks. In: Proceedings of the 7th ACM
SIGCOMM Conference on Internet Measurement, IMC 2007 (2007)

14. Moore, C., Newman, M.E.J.: Epidemics and percolation in small-world networks.
Phys. Rev. E 61, 5678–5682 (2000)

15. Newman, M.E.J.: Spread of epidemic disease on networks. Phys. Rev. E 66,
016128+ (2002)

16. Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in scale-free networks.
Phys. Rev. Lett. 86, 3200–3203 (2001)

17. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral market-
ing. In: Proceedings of the Eighth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD 2002, pp. 61–70 (2002)

	Limiting the Neighborhood: De-Small-World Network for Outbreak Prevention
	1 Introduction
	2 Problem Definition and Preliminary
	2.1 OR-AND Boolean Function and Its Maximization Problem

	3 Path Algebra and Optimization Algorithm
	3.1 Path-Algebra and Numerical Optimization Problem
	3.2 Gradient Optimization

	4 Short Betweenness and Speedup Techniques
	5 Experimental Study
	6 Conclusion
	References

