
Systematic Design of Approximate Adder
Using Significance Based Gate-Level
Pruning (SGLP) for Image Processing

Application

Sisir Kumar Jena(B) , Santosh Biswas, and Jatindra Kumar Deka

Department of CSE, Indian Institute of Technology Guwahati, Guwahati, India
sisir.jena@iitg.ac.in

Abstract. Approximate computing techniques emerged as a novel
design paradigm that utilizes the error-resilience property of many appli-
cations and helps in reducing the power and area consumption with
an expense of loss in accuracy of the result. In this paper, we intro-
duce Significance-based gate-level pruning (SGLP) technique to design
an approximate adder circuit whose accuracy can be controlled using an
Error-Threshold provided by the application user. All previous method
are nonsystematic and conceptually different from each other. Those
methods can either apply to a chain-based adder (adders made up of
a chain of full adders, e.g., Ripple Carry Adder) or unchain-based adder
(e.g., Kogge-Stone Adder) but not both. SGLP follows a systematic app-
roach to generate an approximate version of a Full Adder which is later
used to produce multi-bit adder. By using the SGLP method, we can
also realize an approximate variant of an unchained adder. This charac-
teristic makes the SGLP more superior than the previous methods. To
check the quality and reliability, we have tested our approach using a
DCT architecture for image processing particularly image compression
and found that our result is acceptable to human perception-behavior on
image clarity.

Keywords: Approximate computing · Approximate circuit design ·
Approximate adder · Low power design · Gate-level pruning

1 Introduction

Approximate circuit design (ACD) paradigm is an emerging technique to real-
ize future digital systems with less area and power consumption at a loss of a
negligible amount of Quality of Result (QoR) or accuracy. Compared to con-
temporary IC design flow, ACD generates good enough result rather than an
accurate result. There is a vast application area where these circuits can be used
such as image processing, web search, machine learning, and many others those
have some error resilience property. ACD can be used to design (i) Fundamental
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arithmetic circuits like an adder, multiplier, and a divider, (ii) CPUs and GPUs,
and (iii) Approximate accelerators. This paper mainly focuses on the design of
an approximate adder circuit for image processing application. There are several
ACD schemes proposed in the literature for designing approximate adder circuits
[1–11]. We categorize them into three groups, shown in Fig. 1(a) based on either
reducing the carry chain or redesigning a fundamental block. (1) Block adder
[1–5]: This approach is also called full-adder approximation (AFA). Each FA
is considered as a block, and the FAs present at the lower part of the multi-
bit adder, are replaced with an approximate version of it. Figure 1(b) shows
the overall idea of block adder technique. An approximate variant of an FA
is built through redesigning either by substituting a gate with another (e.g.,
XOR is replaced with OR gate) or removing one or more component (gates
or transistors). (2) Segment Adder [6–10]: This approach divides a given adder
into equal/variable sized sub-adders called segments, shown in Fig. 1(c). One or
more segments present in the lower part are executed inaccurately with no carry
propagation. Hence, reducing the carry chain. The remaining segments being
in the most significant portion will execute accurately and requite in produc-
ing good enough output. The two categories explained above, are often imple-
mented on adders built from a chain of full adder cells (e.g., Ripple Carry Adder
(RCA)), refer Fig. 1(a). So we introduce another category of ACD technique
known as uncut adder that are applied on unchained adders to generate its
approximate version. (3) Uncut Adder [11]: This approach neither divides an
adder into blocks nor segments rather it directly prunes some components, and
realizes an approximate variant of the adder (refer Fig. 1(d)). This technique
mostly applied to adders like Kogge Stone Adder (KSA), Brent Kung Adder
(BKA), etc. The pruning process, in this case, generally starts from the Least
Significant Bits (LSBs) and moves towards the Most Significant Bits (MSBs).
Unfortunately, Literature [11] is the only work published in this category, which
is known as Gate-Level Pruning (GLP) technique. According to GLP, a circuit
netlist is represented as a directed acyclic graph where nodes and edges rep-
resent gates and wires, respectively. The decision to prune a node depends on
Significance-Activity Product (SAP) calculation. The nodes with the lowest SAP
are pruned first. This process uses Error-Rate as the measure of approximation.
GLP treats chained adders as a bad candidate for pruning process. In this paper,
we propose an ACD technique known as Significance-based Gate-Level Pruning
(SGLP) for designing adder circuits. If the above three categories are concerned,
SGLP method comes under uncut as well as block adder category. i.e., we can
apply this method to obtain an approximate version of chained (adders made
up of a chain of full-adders, e.g., RCA), Unchained (e.g., KSA) and full adder
block. As mentioned in [11], chained adders are not suitable for GLP approach
but, with SGLP this is possible. In summary, SGLP approach can do the follow-
ing that defines our contribution in this paper. (1)It is quite easy to get an FA
approximation which can later be used in the lower part of a multi-adder to get
a multi-bit approximate adder (Block adder category). (2) We can apply SGLP
directly on the chain of FA (gate-level netlist) to realize its approximate variant.
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Fig. 1. ACD scheme for approximate adder

(3) Unlike GLP [11], SGLP can also be used to obtain the approximate version
of uncut adders (e.g., KSA).

The other contribution of this paper includes: (1) We introduces a way of
categorizing the ACD techniques for approximate adder design. To the best of
our knowledge, this is the first paper that categorizes the ACD techniques. (2)
We propose a systemic approach that removes gates and reduces the logic com-
plexity at gate-level. (3) We demonstrate the benefits (in terms of power, area,
and accuracy) of SGLP over previous approximate procedures and conventional
adder design. (4) We built a DCT architecture using the approximate adders
generated through SGLP for image compression application, and the result is
outrightly acceptable.

2 SGLP Technique and Implementation

2.1 SGLP for FA Approximation

In this section, we describe the detailed procedure to generate an approximate
FA block (AFA) and later part of this section describes how this AFA block is
used to form a multi-bit adder circuit. We use RCA as the primary architecture
upon which the AFA is implemented to build the required approximate multi-
bit adder. SGLP follows a systematic approach and prune gates one by one and
on every removal, we get one approximate version of the FA. Figure 2 shows
the overall process. There are mainly two processes: (1) Significance Assignment
(SA) and (2) Prune and Truth Table Analysis (PTA). The objective of SA is to
assign an integer numeral to each gate of the given FA netlist. The purpose of
PTA is to prune the gate having the lowest significance and analyze the effect in
the truth table for all exhaustive set of inputs. One gate removal originates one
approximate FA (AFA) which is again going through the SA and PTA method
to produce another AFA. By connecting AFAs, we can generate several multi-
bit approximate adders. Figure 3 shows the detail of the entire AFA generation
started with the SA shown in Fig. 3(a). There are two output lines y and cout,
which is assigned with an initial value 20 and 21, respectively. Hence, the sig-
nificance of the gates connected to y and cout will be 1 and 2, respectively. The
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significance of the remaining gates follows a reverse topological order and is
calculated by adding the significance of its descendants.
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Fig. 2. Systematic process of SGLP for AFA
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Fig. 3. Systematic generation of AFAs using SGLP

Figure 3(a) shows the significance of each gate calculated through the above
approach. We can now prune the gates one by one to obtain AFAs starting with
the gate having the lowest significance. Figure 3(b) shows the first AFA obtained
by removing one gate from the original FA. After the removal, we recalculate the
significance of the newly obtained AFA. The similar process continues to obtain
the remaining AFAs. Figure 3(c)–(e) shows the entire AFAs obtained through
the above approach. Table 1 shows the corresponding truth table analysis of
each AFAs. The first five columns specify the input combinations (a, b and Cin)
and the output of a conventional FA (Sum and Cout). The remaining columns
show the outputs of all the AFAs (AFA1 through AFA4) where a tick mark
(�) is used to indicate the correct output and cross (×) to indicate incorrect
output. Now, we can construct multi-bit adders using the AFAs depending on
the application where it is used and accuracy of output the application needs.



Systematic Design of Approximate Adder Using SGLP 565

Gate-Level Netlist

Significance Assignment 
and Gate Pruning

Calculate ESavg

Is ESavg ≤ ∆?

Approximate 
Circuit

YES

NO

1 2

3

Fig. 4. Significance-based Gate-
Level Pruning process

Table 1. Truth table analysis of approximate FAs

FA AFA1 AFA2 AFA3 AFA4

a b Cin S Co S Co S Co S Co S Co

0 0 0 0 0 0� 0� 0� 0� 0� 0� 0� 0�
0 0 1 1 0 0× 0� 0× 1× 0× 1× 0× 0�
0 1 0 1 0 1� 0� 1� 0� 0× 0� 0× 0�
0 1 1 0 1 1× 1� 1× 1� 0� 1� 0� 0×
1 0 0 1 0 1� 0� 1� 0� 1� 0� 1� 0�
1 0 1 0 1 1× 1� 1× 1� 1× 1� 1× 0×
1 1 0 0 1 0� 1� 0� 1� 1× 1� 1× 1�
1 1 1 1 1 0× 1� 0× 1� 1� 1� 1� 1�

2.2 SGLP for Uncut Adder

This section describes the detailed procedure and algorithm of Significance based
Gate-Level Pruning (SGLP) method for Uncut adder. Figure 4 shows the overall
process flow of SGLP. The SGLP method comprehensively defined as the process
of removing (pruning) the netlist component (in our case, gate) such that, on
execution, the netlist may produce an error but within the threshold defined by
the designer. It is an iterative process (refer Fig. 4), begins with (1) significance
assignment and pruning the gate with lower significance followed by (2) average
Error-Significance (ESavg) calculation and finally, (3) checking whether ESavg is
less than or equal to the error-threshold (Δ). The process repeats until ESavg ≤
Δ, and on completion, we get a pruned version of the netlist with less number of
gates, which produce a result within the error-threshold. Algorithm 1 in Fig. 5
shows the detailed procedure of SGLP method. GN denote the given Gate-Level
netlist with xi and yi as the input and output lines, respectively. We represent
the circuit under consideration (GN) as a tuple set GN =

{〈
gi, s(gi)

〉}
Where:

gi represents gate(s) in GN and s(gi) represents significance of each gate Our
algorithm generates a pruned version of GN (PGN) such that, the following
conditions hold:

1. |PGN(gi)| ≤ |GN(gi)|
2. |PGN(xi)| ≡ |GN(xi)| and |PGN(yi)| ≡ |GN(yi)|
3. ESavg(PGN) ≤ Δ

i.e., PGN has less number of gate and an equal number of input/output lines
compared to GN. Lastly, the result produced is less than or equal to the error-
threshold (Δ). We use the following notations in our proposed algorithm: Te:
Number of exhaustive test patterns of a circuit which is 2n, where n is the
number of input lines. Tk: Set of sample test patterns. Tk is much less than Te.
T j
k : Represent a test pattern in Tk. i.e., T j

k ∈ Tk. Υ : Output produced by the
netlist (GN or PGN). R and R†: Set of all output produced by GN and PGN,
respectively.

Our algorithm starts with the calculation of the golden result produced by the
given netlist (GN). For smaller circuits, we took exhaustive test patterns (Te),
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Algorithm 1: Significance based Gate-Level Pruning
Data: Gate-Level Netlist (GN), Error Threshold , Sample test pattern 
Result: Pruned Gate-Level Netlist (PGN)

// Calculate the Golden result 
of GN and store it in a set

// Gate Pruning: Removing 
the gate from the netlist 
having lowest significance.

1 foreach do 13 Find 
smallest tuple w.r.t. 

2 14
calculation

3 15 Initialization:
4 end 16 foreach do
5 do 17

//Assign Significance to 
each gate

18

6 foreach do 19 end
7 if then 20

8 21

9 else 22
10 23 while
11 end 24 return PGN
12 end

Fig. 5. SGLP algorithm

and for a larger one, we randomly chose a subset (Tk). After applying them to
GN , the output (Υ ) is calculated using Υ = yn−12n−1 + yn−22n−2 + ... + y020

and stored in a set R (refer line number 1 to 3 in Algorithm 1).
The next task of our algorithm is to assign significance to each gate, which

helps in identifying the first one to be removed. The process starts with the
lowest level gates connected to output line and having no successor. It takes the
form 2m (assigns from the Least significant bit) where m = 0, 1, 2..., represents
the number of lines present in the output. Then a reverse topological traversal
is performed to assign significance to the remaining gates present in the circuit.
Significance calculation is carried out using s(gi) =

∑
s
(
gdescendanti

)
(refer line

number 6 to 12 in Algorithm 1). Where: s
(
gdescendanti

)
is the significance of the

immediate descendant of gate i.
After successfully assigning the significance to each gate of the circuit the

pruning process is carried out. Line number 13 and 14 of our algorithm is doing
this job. The function findSmallest(GN) is used to search the entire set and finds
the gate having the lowest significance. This gate is pruned from the GN in line
number 14 to get the PGN. Again, the same set of test-pattern (Tk) is applied
on PGN to calculate the result. The output produced is stored in the set R†

(refer line number 16 to 19 in Algorithm 1). We have two sets of result R and
R†, obtained from GN and PGN , respectively. We subtract them element-by-
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element using ESsum =
|Tk|∑
i=1

(
|Ri−R†

i |
)

to get our error-significance sum (ESsum)

in line number 20. Line number 21 calculates the average error-significance, and
in line number 23 it is compared with the Error-Threshold (Δ). The process
repeats only if ESavg ≤ Δ, else our algorithm returns the PGN shown in line
number 24. In case it reiterates then, the PGN obtained in the last iteration, is
treated as the GN for the current iteration (refer line number 22).

3 Experimental Evaluation

In this section, we describe the detail implementation of the 16-bit adder circuit
for FA approximation. Due to size limitation, we are not showing the detail
implementation of the approximate uncut adder. But we can follow the same
procedure as FA approximation to get our desired result. A simple Ripple Carry
Adder (RCA) is considered in our case which is implemented using Verilog HDL
in Xilinx Vivado 2018.1 environment (Vivado System Generator for DSP 2018.1).
Compatible version Matlab 2017b is used to run our design. A system with Core
i5 processor and 8 GB RAM is used to execute our experiments.

For FA approximation, we divided the entire circuit into two segments not
necessarily equal. We replace the LSBs with the proposed AFAs, and the remain-
ing MSBs uses the regular FA. We use the Design Compiler (DC) EDA tool from
Synopsys with 45-nm open cell library to transform the RTL design into Gate-
Level netlist. The detail of gain in terms of area, power, and delay is shown in
Table 2. Here lb represents the number of FA replaced with AFAs from LSB.
For instance, lb = 4 means we divide the entire circuit into two segments one
segment contains 4 FAs from LSB, and other contains 12 FAs from MSB. We
replace the 4 FAs from LSB with 4 AFAs.

After obtaining all these approximate 16-bit Adders (AFA-16), we generate
the black box for each of them using Vivado System Generator Tool. These
black boxes will be further used to implement the DSP application for image
processing. We have generated black boxes for four AFA-16 with lb = 8 which
replaces AFA1 through AFA4 in each of these AFA-16.

DCT Application: DCT is a computationally unblemished component for
image processing application. For our experiment, we took 8 × 8 pixel blocks
DCT. Several DCT architecture has been proposed in the literature [12–14].
The conventional method requires 64 multiplication and 56 addition operations
which is a substantial number and hence cannot solve our goal. The scope of
our paper needs a multiplier-less DCT architecture. This paper does not present
any new DCT rather we are using an existing multiplier-less state-of-the-art
architecture to test our proposed method. One such architecture is presented
in [14] which is a multiplication-free transform suitable for image compression
commonly referred BAS-2011 in literature. The proposed hardware architecture
of BAS-2011 has total 18 addition operations represent a 1D DCT. Using two
1D DCT block along with a transpose buffer, we can realize a complete 2D-DCT
transform.
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Table 2. Area, Power, and delay charac-
teristics

Adder Matrix lb = 2 lb = 4 lb = 8 lb = 16

RCA Area 68

Power 0.54

Delay 0.8

AFA1 Area 66 64 61 54

Power 0.52 0.51 0.48 0.43

Delay 0.78 0.76 0.72 0.64

AFA2 Area 64 62 55 41

Power 0.50 0.46 0.42 0.32

Delay 0.77 0.72 0.63 0.48

AFA3 Area 59 55 46 27

Power 0.49 0.45 0.37 0.21

Delay 0.74 0.68 0.56 0.32

AFA4 Area 61 54 40 14

Power 0.47 0.42 0.30 0.10

Delay 0.72 0.64 0.48 0.16

Area→[nm2], Power→[mW ], Delay→[ns]

FPGA Implementation: Initially, each 1D DCT is modeled by replacing the
conventional adders with the proposed adder circuit (implemented as black box
using system generator tool) and then linked to form a comprehensive 2D trans-
form. The entire design is realized using Vivado System Generator tool. By
this process, we get four different 2D DCT model named as DCTv1, DCTv2,
DCTopt, and DCTnop. The realized models are physically built using Xilinx
Virtex-6 XC6VLX240T field programmable gate array (FPGA) and connected
to the host computer running Matlab Simulink version 2017b. Image process-
ing activity is carried out by estimating the DCT of sample images acquired
from each model. The transformed image is then fed into Inverse DCT func-
tion to obtain the compressed image. Finally, we calculate the quality mea-
sure PSNR (peak signal-to-noise ratio) of the original and compressed image

for image degradation using PSNR = 10 log10

(
MAX2

MSE

)
. Where MAX repre-

sents the maximum possible pixel value and MSE is the mean square error: the
cumulative squared error between the original image I and obtained compressed
image Î using MSE = 1

MN

∑M
i=1

∑N
j=0[I(i, j) − Î(i, j)]2.

Image Compression and Result Analysis: To show that our proposed app-
roach does not provide any unreasonable output, we conducted the image com-
pression experiment described in [15] and carried by [16–18]. We considered
45 512 × 512 grayscale images obtained from a public image library [19]. Each
image is divided into 8 × 8 blocks and submitted to the 2D transformation sim-
ilar to [17]. For a particular transformation, each block furnished 64 coefficients
in the approximate transform domain. Following the standard zigzag sequence
[20] reconstruction of the image is done by employing r(1 ≤ r ≤ 45) initial
coefficient to each block and zero to the remaining coefficient. Finally, we obtain
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the compressed image by applying the actual inverse transformation. We then
compare the original image with the compressed one for image degradation using
PSNR as the quality measure. Figure 6 shows the average PSNR plot obtained
by the experiment. Analyzing the result, we conclude that the proposed test-
ing method does not produce any unreasonable output and quite competent for
image compression.

Our objective is not to compare our result with other existing DCT algorithm.
The main purpose of the experiment is to determine that approximate testing of
circuit generates a tolerable result. Hence we also present a visual quality evalu-
ation of our experimental result applied to the standard Lena image for r = 25.
Figure 7 shows the effects of the experiment and supports our claim acquainted
in introduction section.

(a) (b) (c) (d) (e) (f)

Fig. 7. Lena image produced with (a) DCT, (b) BAS-2011, (c-f) Proposed method
DCTv1, DCTv2, DCTopt, DCTnop

4 Conclusion

Approximate Computing technique is a novel design paradigm provides several
benefits in terms of area, power consumption, and delay. In this paper, we have
presented an ACD technique named as SGLP which can be used to reproduce
adder circuits for chained and unchained adders. With the previously developed
technique, this is not possible that shows the novelty of our work. We have
tested our approach using a DCT architecture for image processing particularly
image compression and found that our result is acceptable to human perception-
behavior on image clarity.
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