Skip to main content

Analyzing Gene Pathways from Microarrays to Sequencing Platforms

  • Chapter
  • First Online:
Statistical Modeling for Biological Systems

Abstract

Genetic microarrays have been the primary technology for quantitative transcriptome analysis since the mid-1990s. Via statistical testing methodology developed for microarray data, researchers can study genes and gene pathways involved in a disease. Recently a new technology known as RNA-seq has been developed to quantitatively study the transcriptome. This new technology can also study genes and gene pathways, although the statistical methodology used for microarrays must be adapted to this new platform. In this manuscript, we discuss methods of gene pathway analysis in microarrays and next generation sequencing and their advantages over standard “gene by gene” testing schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allison, D. B., Cui, X., Page, G. P., & Sabripour, M. (2006). Microarray data analysis: From disarray to consolidation and consensus. Nature Reviews Genetics, 7, 55–65.

    Article  Google Scholar 

  2. Efron, B., & Tibshirani, R. (2007). On testing the significance of sets of genes. The Annals of Applied Statistics, 1, 107–129.

    Article  MathSciNet  Google Scholar 

  3. Hänzelmann, S., Castelo, R., & Guinney, J. (2013). GSVA: Gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics, 14, 7.

    Article  Google Scholar 

  4. Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28, 27–30.

    Article  Google Scholar 

  5. Langmead, B., Hansen, K. D., & Leek, J. T. (2010). Cloud-scale RNA-Sequencing differential expression analysis with Myrna. Genome Biology, 11, R83.

    Article  Google Scholar 

  6. Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25, 1754–1760.

    Article  Google Scholar 

  7. Li, H., Ruan, J., & Durbin, R. (2008). Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Research, 18, 1851–1858.

    Article  Google Scholar 

  8. Li, J., Witten, D. M., Johnstone, I. M., & Tibshirani, R. (2012). Normalization, testing, and false discovery rate estimation for RNA-Sequencing data. Biostatistics, 13, 523–538.

    Article  Google Scholar 

  9. Li, R., Yu, C., Li, Y., Lam, T. W., Yiu, S. M., Kristiansen, K., et al. (2009). SOAP2: An improved ultrafast tool for short read alignment. Bioinformatics, 25, 1966–1967.

    Article  Google Scholar 

  10. Mak, H. C., & Storey, J. D. (2011). Interview with nature biotechnology: New statistical methods for high-throughput sequencing. Nature Biotechnology, 29, 331–333.

    Article  Google Scholar 

  11. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., & Gilad, Y. (2008). RNA-Seq: An assessment of technical reproducibility and comparison with gene expression arrays. Genome Research, 18, 1509–1517.

    Article  Google Scholar 

  12. Miecznikowski, J. C., Liu, S., & Ren, X. (2012). Statistical modeling for differential transcriptome analysis using RNA-seq technology. Journal of Solid Tumors, 2, 33–44.

    Article  Google Scholar 

  13. Miecznikowski, J. C., Wang, D., Gold, D. L., & Liu, S. (2012). Meta-analysis of high throughput oncology data. In R. Chakraborty, C. R. Rao, & P. K. Sen (Eds.), Handbook of statistics: Bioinformatics in human health and heredity (pp. 67–96). Amsterdam: North Holland.

    Google Scholar 

  14. Miecznikowski, J. C., Wang, D., Liu, S., Sucheston, L., & Gold, D. (2010). Comparative survival analysis of breast cancer microarray studies identifies important prognostic genetic pathways. BMC Cancer, 10, 573.

    Article  Google Scholar 

  15. Mishra, G. R., Suresh, M., Kumaran, K., Kannabiran, N., Suresh, S., Bala, P., et al. (2006). Human protein reference database–2006 update. Nucleic Acids Research, 34, D411.

    Article  Google Scholar 

  16. Robinson, M. D., & Smyth, G. K. (2008). Small-sample estimation of negative binomial dispersion, with applications to SAGE data. Biostatistics, 9, 321–332.

    Article  Google Scholar 

  17. Rumble, S. M., Lacroute, P., Dalca, A. V., Fiume, M., Sidow, A., & Brudno, M. (2009). SHRiMP: Accurate mapping of short color-space reads. PLoS Computational Biology, 5, e1000386.

    Article  Google Scholar 

  18. Sanger, F., & Coulson, A. R. (1975). A rapid method for determining sequences in DNA by primed synthesis with DNA polymerase. Journal of Molecular Biology, 94, 441–448.

    Article  Google Scholar 

  19. Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences of the United States of America, 74, 5463–5467.

    Google Scholar 

  20. Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., et al. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences of the United States of America, 102, 15545–15550.

    Google Scholar 

  21. Varemo, L., Nielsen, J., & Nookaew, I. (2013). Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Research, 1, 14.

    Google Scholar 

  22. Young, M. D., Wakefield, M. J., Smyth, G. K., Oshlack, A., Young, M., Wakefield, M., et al. (2010). Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biology, 11, R14.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey Miecznikowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miecznikowski, J., Wang, D., Ren, X., Wang, J., Liu, S. (2020). Analyzing Gene Pathways from Microarrays to Sequencing Platforms. In: Almudevar, A., Oakes, D., Hall, J. (eds) Statistical Modeling for Biological Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-34675-1_16

Download citation

Publish with us

Policies and ethics