Skip to main content

The Marine Physical Environment During the Polar Night

  • Chapter
  • First Online:
POLAR NIGHT Marine Ecology

Part of the book series: Advances in Polar Ecology ((AVPE,volume 4))

Abstract

The physical environment of the Arctic is captured in popular perception as being an isolated, frozen and intensely cold ocean. The reality is surprisingly different; an ocean system that supports warm inflow to the Arctic and exchange with the adjacent ocean basins, influenced by stormy weather systems that can originate in mid-latitudes, and having a sea-ice cover that is experiencing ongoing reduction in its extent and thickness. We review the primary oceanographic and bathymetric features of the Arctic Ocean, highlighting the significance of the Arctic in terms of the global oceans. An important feature of the Arctic is the increasing dominance of water originating in the Atlantic that brings heat to the Arctic influencing both the ocean and the sea ice. Within the seasonal cycle of the shallow coastal waters, we demonstrate fundamental ideas of how Polar Night is characterised by relative warmth, differing from the oceanic winter where water is close to freezing. The advective nature of the atmosphere is a further source of heat, and we consider the changes in storm systems during the Polar Night and the impact on ocean and ice through direct surface fluxes but also by driving shelf-exchange processes. Finally, the ice cover during the Polar Night is shown to be vulnerable to future changes to the heat balance in the Arctic both in terms of ice formation, thickness, and snow cover.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Defined as atmospheric events where the air temperatures exceed −5 °C

  2. 2.

    Extent is typically defined as the areal coverage of sea ice with at least 15% concentration.

References

  • Alexeev VA, Walsh JE, Ivanov VV, Semenov VA, Smirnov AV (2017) Warming in the Nordic Seas, North Atlantic storms and thinning Arctic sea ice. Environ Res Lett 12:084011

    Article  Google Scholar 

  • Årthun M, Eldevik T, Smedsrud LH, Skagseth Ø, Ingvaldsen R (2012) Quantifying the influence of Atlantic heat on Barents Sea ice variability and retreat. J Clim 25:4736–4743

    Article  Google Scholar 

  • Årthun M, Eldevik T, Smedsrud LH (2019) The role of Atlantic heat transport in future Arctic winter sea ice loss. J Clim 32:3327–3341

    Article  Google Scholar 

  • Asplin MG, Scharien R, Else B, Howell S, Barber DG, Papakyriakou T, Prinsenberg S (2014) Implications of fractured Arctic perennial ice cover on thermodynamic and dynamic sea ice processes. J Geophys Res – Oceans 119:2327–2343

    Article  Google Scholar 

  • Barton BI, Lenn Y-D, Lique C (2018) Observed Atlantification of the Barents Sea causes the polar front to limit the expansion of winter sea ice. J Phys Oceanogr 48:1849–1866

    Article  Google Scholar 

  • Bathiany S, Notz D, Mauritsen T, Raedel G, Brovkin V (2016) On the potential for abrupt Arctic winter sea ice loss. J Clim 29:2703–2719

    Article  Google Scholar 

  • Berge J, Cottier F, Last KS, Varpe Ø, Leu E, Søreide J, Eiane K, Falk-Petersen S, Willis KJ, Nygård H, Vogedes D, Griffiths C, Johnsen G, Lorentzen D, Brierley AS (2009) Diel vertical migration of Arctic zooplankton during the polar night. Biol Lett 5:69–72

    Article  PubMed  Google Scholar 

  • Berge J, Heggland K, Lønne OJ, Cottier F, Hop H, Gabrielsen GW, Nøttestad L, Misund OA (2015) First records of Atlantic mackerel (Scomber scombrus) from the Svalbard archipelago, Norway, with possible explanations for the extension of its distribution. Arctic 68:54–61

    Article  Google Scholar 

  • Beszczynska-Möller A, Woodgate RA, Lee C, Melling H, Karcher M (2011) A synthesis of exchanges through the main oceanic gateways to the Arctic Ocean. Oceanography 24:82–99

    Article  Google Scholar 

  • Bluhm B, Kosobokova K, Carmack E (2015) A tale of two basins: an integrated physical and biological perspective of the deep Arctic Ocean. Prog Oceanogr 139:89–121

    Article  Google Scholar 

  • Carmack E, Barber D, Christensen J, Macdonald R, Rudels B, Sakshaug E (2006) Climate variability and physical forcing of the food webs and the carbon budget on panarctic shelves. Prog Oceanogr 71:145–181

    Article  Google Scholar 

  • Carmack EC, Yamamoto-Kawai M, Haine TW, Bacon S, Bluhm BA, Lique C, Melling H, Polyakov IV, Straneo F, Timmermans ML (2016) Freshwater and its role in the Arctic marine system: sources, disposition, storage, export, and physical and biogeochemical consequences in the Arctic and global oceans. J Geophys Res Biogeo 121:675–717

    Article  CAS  Google Scholar 

  • Carton JA, Ding Y, Arrigo KR (2015) The seasonal cycle of the Arctic Ocean under climate change. Geophys Res Lett 42:7681–7686

    Article  Google Scholar 

  • Cottier F, Nilsen F, Inall ME, Gerland S, Tverberg V, Svendsen H (2007) Wintertime warming of an Arctic shelf in response to large-scale atmospheric circulation. Geophys Res Lett 34:L10607

    Article  Google Scholar 

  • Cottier F, Nilsen F, Steele M (2017) Sea ice and Arctic oceanography. In: Thomas DN (ed) Sea ice. 3rd edn. Wiley, Chichester, UK pp 197–215

    Google Scholar 

  • Cottier F, Skogseth R, David D, Berge J (2019) Temperature time series in Svalbard fjords: a contribution from the “Integrated Marine Observatory Partnership” (iMOP) in: SESS report 2018: the state of environmental science in Svalbard – an annual report. Svalbard Integrated Arctic Earth Observing System (SIOS), Longyearbyen, p 108–118

    Google Scholar 

  • Day JJ, Holland MM, Hodges KI (2018) Seasonal differences in the response of Arctic cyclones to climate change in CESM1. Clim Dyn 50:3885–3903

    Article  Google Scholar 

  • Førland EJ, Benestad R, Hanssen-Bauer I, Haugen JE, Skaugen TE (2011) Temperature and precipitation development at Svalbard 1900–2100. Adv Meteorol :1–14.

    Google Scholar 

  • Geoffroy M, Berge J, Majaneva S, Johnsen G, Langbehn TJ, Cottier F, Mogstad AA, Zolich A, Last K (2018) Increased occurrence of the jellyfish Periphylla periphylla in the European high Arctic. Polar Biol 41:2615–2619

    Article  Google Scholar 

  • Gjelten HM, Nordli Ø, Isaksen K, Førland EJ, Sviashchennikov PN, Wyszynski P, Prokhorova UV, Przybylak R, Ivanov BV, Urazgildeeva AV (2016) Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Polar Res 35:29878

    Article  Google Scholar 

  • Goszczko I, Ingvaldsen RB, Onarheim IH (2018) Wind-driven cross-shelf exchange—West Spitsbergen Current as a source of heat and salt for the adjacent shelf in Arctic Winters. J Geophys Res – Oceans 123:2668–2696

    Article  Google Scholar 

  • Graham RM, Cohen L, Petty AA, Boisvert LN, Rinke A, Hudson SR, Nicolaus M, Granskog MA (2017a) Increasing frequency and duration of Arctic winter warming events. Geophys Res Lett 44:6974–6983

    Article  Google Scholar 

  • Graham RM, Rinke A, Cohen L, Hudson SR, Walden VP, Granskog MA, Dorn W, Kayser M, Maturilli M (2017b) A comparison of the two Arctic atmospheric winter states observed during N-ICE2015 and SHEBA. J Geophys Res – Atmos 122:5716–5737

    Article  Google Scholar 

  • Granskog MA, Assmy P, Gerland S, Spreen G, Steen H, Smedsrud LH (2016) Arctic research on thin ice: consequences of Arctic sea ice loss. Eos Trans AGU 97:22–26

    Article  Google Scholar 

  • Haas C (2017) Sea ice thickness distribution. In: Thomas DN (ed) Sea ice. Wiley, Chichester, UK p 42–64

    Google Scholar 

  • Häkkinen S, Rhines PB, Worthen DL (2011) Atmospheric blocking and Atlantic multidecadal ocean variability. Science 334:655–659

    Article  PubMed  CAS  Google Scholar 

  • Hop H, Cottier F, Berge J (2019) Autonomous marine observatories in Kongsfjorden, Svalbard. In: The Ecosystem of Kongsfjorden. Springer, Svalbard, pp 515–533

    Chapter  Google Scholar 

  • Isaksen K, Nordli Ø, Førland E, Łupikasza E, Eastwood S, Niedźwiedź T (2016) Recent warming on Spitsbergen—influence of atmospheric circulation and sea ice cover. J Geophys Res – Atmos 121:11,913–911,931

    Article  Google Scholar 

  • Johnson M, Eicken H (2016) Estimating Arctic sea-ice freeze-up and break-up from the satellite record: a comparison of different approaches in the Chukchi and Beaufort seas. Elem Sci Anth 4:000124

    Article  Google Scholar 

  • Katlein C, Arndt S, Nicolaus M, Perovich DK, Jakuba MV, Suman S, Elliott S, Whitcomb LL, McFarland CJ, Gerdes R (2015) Influence of ice thickness and surface properties on light transmission through Arctic sea ice. J Geophys Res – Oceans 120:5932–5944

    Article  PubMed  PubMed Central  Google Scholar 

  • Last KS, Hobbs L, Berge J, Brieley AS, Cottier F (2016) Moonlight drives ocean-scale mass vertical migration of zooplankton during the Arctic winter. Curr Biol 26:244–251

    Article  CAS  PubMed  Google Scholar 

  • Lind S, Ingvaldsen R, Furevik T (2018) Arctic warming hotspot in the northern Barents Sea linked to declining sea-ice import. Nat Clim Chang 8:634–639

    Article  Google Scholar 

  • McPhee MG, Kikuchi T, Morison JH, Stanton TP (2003) Ocean-to-ice heat flux at the north pole environmental observatory. Geophys Res Lett 30:2274

    Article  Google Scholar 

  • Meier WN, Hovelsrud GK, Oort BE, Key JR, Kovacs KM, Michel C, Haas C, Granskog MA, Gerland S, Perovich DK (2014) Arctic sea ice in transformation: a review of recent observed changes and impacts on biology and human activity. Rev Geophys 52:185–217

    Article  Google Scholar 

  • Muckenhuber S, Nilsen F, Korosov A, Sandven S (2016) Sea ice cover in Isfjorden and Hornsund, Svalbard (2000–2014) from remote sensing data. Cryosphere 10:149–158

    Article  Google Scholar 

  • Nansen DF (1897) Farthest north. Archibald, Constable and Company, Westminster

    Google Scholar 

  • Nilsen F, Skogseth R, Vaardal-Lunde J, Inall M (2016) A simple shelf circulation model: intrusion of Atlantic water on the West Spitsbergen shelf. J Phys Oceanogr 46:1209–1230

    Article  Google Scholar 

  • Onarheim IH, Årthun M (2017) Toward an ice-free Barents Sea. Geophys Res Lett 44:8387–8395

    Article  Google Scholar 

  • Onarheim IH, Smedsrud LH, Ingvaldsen RB, Nilsen F (2014) Loss of sea ice during winter north of Svalbard. Tellus A 66:23933

    Article  Google Scholar 

  • Onarheim IH, Eldevik T, Årthun M, Ingvaldsen RB, Smedsrud LH (2015) Skillful prediction of Barents Sea ice cover. Geophys Res Lett 42:5364–5371

    Article  Google Scholar 

  • Onarheim IH, Eldevik T, Smedsrud LH, Stroeve JC (2018) Seasonal and regional manifestation of Arctic sea ice loss. J Clim 31:4917–4932

    Article  Google Scholar 

  • Park D-SR, Lee S, Feldstein SB (2015) Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J Clim 28:4027–4033

    Article  Google Scholar 

  • Perovich DK (2017) Sea ice and sunlight. In: Thomas DN (ed) Sea ice. Wiley, Chichester, UK p 110–159

    Google Scholar 

  • Polyakov I, Timokhov LA, Alexeev VA, Bacon S, Dmitrenko IA, Fortier L, Frolov IE, Gascard J-C, Hansen E, Ivanov VV (2010) Arctic Ocean warming contributes to reduced polar ice cap. J Phys Oceanogr 40:2743–2756

    Article  Google Scholar 

  • Polyakov I, Pnyushkov AV, Rember R, Padman L, Carmack EC, Jackson JM (2013) Winter convection transports Atlantic water heat to the surface layer in the eastern Arctic Ocean. J Phys Oceanogr 43:2142–2155

    Article  Google Scholar 

  • Polyakov I, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC, Goszczko I, Guthrie J, Ivanov VV, Kanzow T (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–291

    Article  CAS  PubMed  Google Scholar 

  • Polyakov IV, Pnyushkov AV, Carmack EC (2018) Stability of the arctic halocline: a new indicator of arctic climate change. Environ Res Lett 13:125008

    Article  Google Scholar 

  • Renner AH, Sundfjord A, Janout MA, Ingvaldsen RB, Beszczynska-Möller A, Pickart RS, Pérez-Hernández MD (2018) Variability and redistribution of heat in the Atlantic water boundary current north of Svalbard. J Geophys Res – Oceans 123:6373–6391

    Article  Google Scholar 

  • Rinke A, Maturilli M, Graham RM, Matthes H, Handorf D, Cohen L, Hudson SR, Moore JC (2017) Extreme cyclone events in the Arctic: wintertime variability and trends. Environ Res Lett 12:094006

    Article  Google Scholar 

  • Rudels B, Korhonen M, Schauer U, Pisarev S, Rabe B, Wisotzki A (2015) Circulation and transformation of Atlantic water in the Eurasian Basin and the contribution of the Fram Strait inflow branch to the Arctic Ocean heat budget. Prog Oceanogr 132:128–152

    Article  Google Scholar 

  • Serreze MC, Stroeve J (2015) Arctic sea ice trends, variability and implications for seasonal ice forecasting. Philos Trans R Soc A Math Phys Eng Sci 373:20140159

    Article  Google Scholar 

  • Smedsrud LH, Esau I, Ingvaldsen RB, Eldevik T, Haugan PM, Li C, Lien VS, Olsen A, Omar AM, Otterå OH (2013) The role of the Barents Sea in the Arctic climate system. Rev Geophys 51:415–449

    Article  Google Scholar 

  • Søreide JE, Leu E, Berge J, Graeve M, Falk-Petersen S (2010) Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Glob Chang Biol 16:3154–3163

    Google Scholar 

  • Stroeve J, Notz D (2018) Changing state of Arctic sea ice across all seasons. Environ Res Lett 13:103001

    Article  Google Scholar 

  • Stroeve J, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP (2012) The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Clim Chang 110:1005–1027

    Article  Google Scholar 

  • Stroeve J, Markus T, Boisvert L, Miller J, Barrett A (2014) Changes in Arctic melt season and implications for sea ice loss. Geophys Res Lett 41:1216–1225

    Article  Google Scholar 

  • Sturm M, Massom R (2017) Snow in the sea ice system: friend or foe? In: Thomas DN (ed) Sea ice. Wiley, Chichester, UK p 65–109

    Google Scholar 

  • Timmermans M-L, Toole J, Proshutinsky A, Krishfield R, Plueddemann A (2008) Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. J Phys Oceanogr 38:133–145

    Article  Google Scholar 

  • Tverberg V, Skogseth R, Cottier F, Sundfjord A, Walczowski W, Inall ME, Falck E, Pavlova O, Nilsen F (2019) The Kongsfjorden Transect: seasonal and inter-annual variability in hydrography. In: The ecosystem of Kongsfjorden. Springer, Svalbard, pp 49–104

    Chapter  Google Scholar 

  • Vinje T (2009) Sea ice. In: Sakshaug E, Johnsen G, Kovacs K (eds) Ecosystem Barents sea. Tapir Academic Press, Trondheim, pp 65–82

    Google Scholar 

  • Wassmann P (2015) Overarching perspectives of contemporary and future ecosystems in the Arctic Ocean. Prog Oceanogr 139:1–12

    Article  Google Scholar 

  • Webster MA, Rigor IG, Nghiem SV, Kurtz NT, Farrell SL, Perovich DK, Sturm M (2014) Interdecadal changes in snow depth on Arctic sea ice. J Geophys Res Oceans 119:5395–5406

    Article  Google Scholar 

  • Williams WJ, Carmack EC (2015) The ‘interior’ shelves of the Arctic Ocean: physical oceanographic setting, climatology and effects of sea-ice retreat on cross-shelf exchange. Prog Oceanogr 139:24–41

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Finlo Cottier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cottier, F., Porter, M. (2020). The Marine Physical Environment During the Polar Night. In: Berge, J., Johnsen, G., Cohen, J. (eds) POLAR NIGHT Marine Ecology. Advances in Polar Ecology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-33208-2_2

Download citation

Publish with us

Policies and ethics