Skip to main content

Conclusions and Recommendations of Biological Control Industry

  • Chapter
  • First Online:
Cottage Industry of Biocontrol Agents and Their Applications

Abstract

Nowadays, there is a big gap between plant nutrients produced and the required nutrients. The agricultural production increase should be attained to face the population increase in a system that conserve the environment, humankind and limits the insecticide uses and unattractive chemicals in agriculture. This chapter summarizes the key biological control industry challenges. This chapter spotlights on the sustainable biological control strategies of the agricultural environment that was documented in this book. Finally, four main contribution areas were identified which include; parasitoids, predacious insects and mites for managing insects and mites, Microorganisms for controlling insect pests, Biocontrol products for plant diseases management, and Bio-products against abiotic factors and micronutrient deficiency. Thus, recommendations and conclusions would be built on scientist and researcher visions added regarding to their research findings. In addition, this chapter includes information on a set of conclusions and recommendations to direct future research toward industry of biological control, which is one of the main tactical strategies of the Egyptian economy and environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Negm AM, Abu-hashim M (eds) (2019) Sustainability of agricultural environment in Egypt: part II—soil-water-plant nexus. In: The handbook of environmental chemistry, vol 77, pp 3–30. Springer International Publishing, Part II © Springer Nature Switzerland. https://doi.org/10.1007/698_2017_76. ISBN 978-3-319-95356-4

  2. Saleh MME, El-Wakeil NE, Elbehery H, Gaafar N, Fahim S (2019) Biological pest control for sustainable agriculture in Egypt. In: Negm AM, Abu-hashim M (eds) Sustainability of agricultural environment in Egypt: Part II. The handbook of environmental chemistry, vol 77, pp 145–188. © Springer Nature Switzerland AG 2019—Soil-Water-Plant Nexus, Springer Publisher. https://doi.org/10.1007/978-3-319-95357-1. ISBN 978-3-319-95356-4

  3. Ajmal M, Hafiza IA, Rashid S, Asna A, Muniba T, Muhammad ZM, Aneesa A (2018) Biofertilizer as an alternative for chemical fertilizers. Nawaz Sharif Medical College, University of Gujrat, Gujrat, Punjab

    Google Scholar 

  4. Nour-El-deen MA, Abo-zid AE, Azouz HA (2014) Use of some environmentally safe materials as alternatives to the chemical pesticides in controlling Polyphagotarsonimus lauts (banks) mite & Myzus persica (Koch) aphid which attack potatoes crop. Middle East J Agric Res 3:32–41

    Google Scholar 

  5. Kumar P, Shenhmar M, Brar KS (2004) Field evaluation of trichogrammatids for the control of Helicoverpa armigera (Hübner) on tomato. Biol Cont 18:45–50

    Google Scholar 

  6. De Moraes CM, Lewis WJ, Tumlinson JH (2000) Examining plant-parasitoid interactions in tritrophic systems. An Soc Entomol Bras 29:189–203

    Article  Google Scholar 

  7. Khosa SS, Brar KS (2000) Effect of storage on the emergence and parasitization efficiency of laboratory reared and field collected population of Trichogramma chilonis Ishii. Biol Cont 14:71–74

    Google Scholar 

  8. Grieshop JG, Flinn PW, Nechols JR (2006) Biological control of Indian meal moth on finished stored products using egg and larval parasitoids. J Econ Entomol 99:1080–1084

    Article  Google Scholar 

  9. Briggs CJ, Latto J (2001) Interactions between the egg and larval parasitoids of a gall-forming midge and their impact on the host. Ecol Entomol 26:109–116

    Article  Google Scholar 

  10. Lacey LA, Unruh TR, Headrick HL (2003) Interactions of two idiobiont parasitoids (Ichneumonidae) of codling moth (Tortricidae) with the entomopathogenic nematode Steinernema carpocapsae (Steinernematidae). J Inverteb Pathol 83:230–239

    Article  Google Scholar 

  11. Batalla-Carrera L, Morton A, García-del-Pino F (2010) Efficacy of entomopathogenic nematodes against the tomato leafminer Tuta absoluta in laboratory and greenhouse conditions. Biocontrol 55:523–530

    Article  Google Scholar 

  12. Nematollahi MR, Fathipour Y, Talebi AA, Karimzadeh J, Zalucki MP (2014) Parasitoid- and hyperparasitoid-mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae). Environ Entomol 43:1542–1551

    Article  Google Scholar 

  13. Saleh AAA, Desuky WMH, Hashem HHA, Gatwary WGT (2009) Evaluation the role of aphid parasitoid Diaeretiella rapae (M´ Intosh) (Hymenoptera: Aphidiidae) on cabbage aphid Brevicoryne brassicae L. (Homoptera: Aphididae) in Sharkia district. Egypt J Biol Pest Cont 19:151–155

    Google Scholar 

  14. Nematollahi MR, Fathipour Y, Talebi AA, Karimzadeh J, Zalucki MP (2014) Parasitoid and hyperparasitoid-mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae). Environ Entomol 43:1542–1551

    Google Scholar 

  15. Holling CS (1961) Principles of insect predation. Annu Rev Entomol 6:163–182

    Article  Google Scholar 

  16. Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398

    Article  Google Scholar 

  17. Zheng Y, Km Daane, Hagen KS, Mittler TE (1993) Influence of larval food consumption on the fecundity of the lacewing Chrysoperla camea. Ent Exp Appl 67:9–14

    Article  Google Scholar 

  18. Lopez-Arroyo JI, Tauber CA, Tauber MJ (2000) Storage of lacewing eggs: post-storage hatching and quality of subsequent larvae and adults. Biol Cont 18:165–171

    Article  Google Scholar 

  19. Gaafar N (2002) Effects of some Neem products on Helicoverpa armigera and their natural enemies Trichogramma spp. and Chrysoperla carnea. MSc. Agric Fac., Goerge August Univ., Goettingen, Germany

    Google Scholar 

  20. Gerson U (2008) The Tenuipalpidae: an under-explored family of plant feeding mites. Syst Appl Acarol 2:83–101

    Google Scholar 

  21. Cohen AC (2004) Insect diets: science and technology. CRC Press, Boca Raton

    Google Scholar 

  22. Hansen LS (1988) Control of Thrips tabaci (Thysanoptera: Thripidae) on glasshouse cucumber using large introductions of predatory mites Amblyseius barkeri (Acarina: Phytoseiidae). Entomophaga 33:33–42

    Article  Google Scholar 

  23. van Maanen R, Vila E, Janssen A (2010) Biological control of broad mite (Polyphagotarsonemus latus) with the generalist predator Amblyseius swirskii. Exp Appl Acarol 52:29–34

    Article  Google Scholar 

  24. Nomikou M, Janssen A, Schraag R, Sabelis MW (2002) Phytoseiid predators suppress populations of Bemisia tabaci on cucumber plants with alternative food. Exp Appl Acarol 27:57–68

    Article  Google Scholar 

  25. Messelink GJ, van Steenpaal SE, Ramakers PM (2006) Evaluation of phytoseiid predators for control of western flower thrips on greenhouse cucumber. Biocontrol 51:753–768

    Article  Google Scholar 

  26. Nguyen DT, Vangansbeke D, De Clercq P (2014) Artificial and factitious foods support the development and reproduction of the predatory mite Amblyseius swirskii. Exp Appl Acarol 2:181–194

    Article  CAS  Google Scholar 

  27. Salama HS, Foda S, Sharaby A (1984) Novel biochemical avenues for enhancing Bacillus thuringiensis endotoxin potency against Spodoptera litoralis. Entomophaga 29:171–178

    Article  CAS  Google Scholar 

  28. Salama HS, Foda S, Sharaby A (1986) Possible extension of the activity spectrum of Bacillus thuringiensis strains through chemical additives. J Appl Ent 101:304–313

    Article  CAS  Google Scholar 

  29. Salama HS (1993) Enhancement of Bacillus thuringiensis for field application. In: Morris O, Rached E, Salama HS (eds) The biopesticide Bacillus thuringiensis and its application in developing countries. Al-Ahram Press, Cairo, pp 105–116

    Google Scholar 

  30. Osman GEH, Already R, Assaeedi ASA, Organji SR El-Ghareeb D, Abulreesh HH, Althubiani AS (2015) Bioinsecticide Bacillus thuringiensis a comprehensive review. Egypt J Biol Pest Control 25:271–288

    Google Scholar 

  31. Shah PA, Pell JK (2003) Entomopathogenic fungi as biological control agents. Appl Microbiol Biotech 61:413–423

    Article  CAS  Google Scholar 

  32. Abdel-Raheem MA (2011) Impact of entomopathogenic fungi on Cabbage Aphids, Brevicoryne brassica. Egypt Bull NRC 36:53–62

    Google Scholar 

  33. Abdel-Raheem et al (2011) Effect of entomopathogenic fungi on the green stink bug, Nezara viridula L. in sugar beet. Bull NRC 36:145–152

    Google Scholar 

  34. Zimmermann (1986) The Galleria bait method for detection of entomopathogenic fungi in soil. J Appl Entomol 102(2):213–215

    Google Scholar 

  35. Sabbour M, Abdel-Raheem M (2015) Efficacy of Beauveria brongniartii and Nomuraea rileyi against the potato tuber moth, Phthorimaea operculella (zeller). Am J Innovative Res Appl Sci 1(6):197–202

    Google Scholar 

  36. Metwally HM, Hafez GA, Hussein MA, Hussein MA, Salem HA, Saleh MME (2012) Low cost artificial diet for rearing the greater wax moth, Galleria mellonella L. (Lepidoptera: Pyralidae) as a host for entomopathogenic nematodes. Egypt J Biol Pest Cont 22:15–17

    Google Scholar 

  37. Shapiro-Ilan DI, Lewis EE, Behle RW, McGuire MR (2001) Formulation of entomopathogenic nematode-infected-cadavers. J Invert Pathol 78:17–23

    Article  CAS  Google Scholar 

  38. Shapiro-Ilan DI, Morales-Ramos JA, Rojas MG, Tedders WL (2010) Effects of a novel entomopathogenic nematode–infected host formulation on cadaver integrity, nematode yield, and suppression of Diaprepes abbreviatus and Aethina tumida under controlled conditions. J Invert Pathol 103:103–108

    Article  Google Scholar 

  39. Saleh MEE, Metwally HM, Mahmoud YA (2018) Potential of the entomopathogenic nematode, Heterorhabditis marelatus, isolate in controlling the peach fruit fly, Bactrocera zonata (Saunders) (Tiphritidae). Egypt J Biol Pest Control 28(22). https://doi.org/10.1186/s41938-018-0029-0

  40. Moawad SS, Saleh MME, Metwally HM, Ebadah IM, Mahmoud YA (2018) Protective and curative treatments of entomopathogenic nematodes against the potato tuber moth, Phthorimaea operculella (Zell.). Biosci Res 15:2602–2610

    Google Scholar 

  41. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41

    Article  CAS  Google Scholar 

  42. Dougherty EM, Guthrie KP, Shapiro M (1996) Optical brighteners provide baculovirus activity enhancement and UV radiation protection. Biol Cont 7:71–74

    Article  Google Scholar 

  43. Petrik DT, Iseli A, Montelone BA, Van Etten JL, Clem RJ (2003) Improving baculovirus resistance to UV inactivation: increased virulence resulting from expression of a DNA repair enzyme. J Invertebr Pathol 82:50–56

    Article  CAS  Google Scholar 

  44. Sun X (2015) History and current status of development and use of viral insecticides in China. Viruses 7:306–319

    Article  Google Scholar 

  45. Sun X, Peng H (2007) Recent advances in biological control of pest insects by using viruses in China. Virol Sin 22:158–162

    Article  CAS  Google Scholar 

  46. Eberle KE, Asser-Kaiser S, Sayed SM, Nguyen HT, Jehle JA (2008) Overcoming the resistance of codling moth against conventional Cydia pomonella granulovirus (CpGV-M) by a new isolate CpGV-I12. J Inverteb Pathol 98:293–298

    Article  CAS  Google Scholar 

  47. Lwin M, Ranamukhaarachchi SL (2006) Development of biological control of Ralstonia solanacearum through antagonistic microbial populations. Int J Agric Biol 8:1560–8530

    Google Scholar 

  48. Verdier V, Vera Cruz C, Leach JE (2011) Controlling rice bacterial blight in Africa: needs and prospects. J Biotechnol 159:320–328

    Article  CAS  Google Scholar 

  49. Ramanamma CH, Santoshkumari M (2017) Biological control of blight of rice using RR8 rhizosphere bacteria. Int J Current Microbiol Appl Sci (Special Issue-5):124–128

    Google Scholar 

  50. Mello MRF, Silveira EB, Viana IO, Guerra ML, Mariano RLR (2011) Use of antibiotics and yeasts for controlling Chinese cabbage soft rot. Hortic Bras 29:78–83

    Article  Google Scholar 

  51. Brundrett MC (2009) Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant Soil 320(1–2):37–77

    Article  CAS  Google Scholar 

  52. Chen M, Arato M, Borghi L et al (2018) Beneficial services of Arbuscular Mycorrhizal fungi—from ecology to application. Front Plant Sci 9:1270

    Article  Google Scholar 

  53. Barros DCM, Fonseca ICB, Balbi-Peña MIP et al (2015) Biocontrol of Sclerotinia sclerotiorum and white mold of soybean using saprobic fungi from semi-arid areas of Northeastern Brazil. Summa Phytopathologica 41(4):251–255

    Article  Google Scholar 

  54. Wang SM, Liang Y, Shen T et al (2016) Biological characteristics of Streptomyces albospinus CT205 and its biocontrol potential against cucumber Fusarium wilt. Biocontrol Sci Techn 26(7):951–963

    Article  Google Scholar 

  55. Noweer EMA, Hasabo SAA (2005) Effect of different management practices for controlling the root-knot nematode Meloidogyne incognita on squash. Egypt J Phytopathol 33:73–81

    Google Scholar 

  56. Rhoades HL (1985) Comparison of fenamiphos and Arthrobotrys amerospora for controlling plant nematodes in central Florida. Nematropica 15:1–7

    Google Scholar 

  57. Noweer EMA, Al-Shalaby MEM (2009) Effect of Verticilium chlamydosporium combined with some organic manure on Meloidogyne incognita and other soil micro-organisms on tomato. Int J Nematol 19:215–220

    Google Scholar 

  58. Noweer EMA (2018) Effect of the nematode-trapping fungus Dactylaria brochopaga and the nematode egg parasitic fungus Verticilium chlamydosporium in controlling citrus nematode infesting mandarin, and interrelationship with the Co inhabitant fungi. Int J Eng Technol 7:19–23

    Google Scholar 

  59. Lewsey M, Palukaitis P, Carr JP (2009) Plant—virus interactions: defence and counter-defence. In: Parker J (ed) Molecular aspects of plant disease resistance. Wiley-Blackwell, Oxford, pp 134–176

    Google Scholar 

  60. Fereres A (2000) Barrier crops as a cultural control measure of non-persistently transmitted aphid-borne viruses. Virus Res 71:221–231

    Article  CAS  Google Scholar 

  61. Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M (2008) Strategies for antiviral resistance in transgenic plants. Mol Plant Pathol 9:73–83

    CAS  Google Scholar 

  62. Abdelkhalek A, ElMorsi A, AlShehaby O, Sanan-Mishra N, Hafez E (2018) Identification of genes differentially expressed in Iris Yellow Spot Virus infected onion. Phytopathol Mediterr 57:334–340

    Google Scholar 

  63. Mohamed SH, Galal AM (2005) Identification and antiviral activities of some halotolerant Streptomycetes isolated from Qaroonlake. Int J Agric Biol 7:747–753

    Google Scholar 

  64. O’Neil MA, Ishiim T, Albersheimm P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Ann Rev Plant Biol 55:109–139

    Article  CAS  Google Scholar 

  65. El-Baz FK, El-Monde EA, Salama ZA, Mohamed AA (1998) Determination of Fe2+ and soluble zinc as biochemical indicators for the diagnosis of iron and zinc deficiency Phaseolus Vulgaris and Vicia faba plants. Egypt J Physiol Sci 22:25–39

    CAS  Google Scholar 

  66. McCauly A, Jones C, Jacobsen J (2009) Plant nutrient functions and deficiency and toxicity symptoms. In: Nutrient management module, no 9, p 16. Montana State University, Bozeman, MT, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabil El-Wakeil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

El-Wakeil, N., Saleh, M., Abu-hashim, M. (2020). Conclusions and Recommendations of Biological Control Industry. In: El-Wakeil, N., Saleh, M., Abu-hashim, M. (eds) Cottage Industry of Biocontrol Agents and Their Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-33161-0_15

Download citation

Publish with us

Policies and ethics