Skip to main content

Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images

  • Conference paper
  • First Online:
Ophthalmic Medical Image Analysis (OMIA 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11855))

Included in the following conference series:

Abstract

Direct visualization of photoreceptor cells, specialized neurons in the eye that sense light, can be achieved using adaptive optics (AO) retinal imaging. Evaluating photoreceptor cell morphology in retinal diseases is important for monitoring the onset and progression of blindness, but segmentation of these cells is a critical first step. Most segmentation approaches focus on cell region extraction, without directly considering cell boundary localization. This makes it difficult to track cells that have ambiguous boundaries, which result from low image contrast, anisotropic cell regions, or densely-packed cells whose boundaries appear to touch each other. These are all characteristics of the AO images that we consider here. To address these challenges, we develop an AOSegNet method that uses a multi-channel U-Net to predict the spatial probabilities of the cell boundary and obtain cell centroid and region distribution information as a means for facilitating cell segmentation. Five-color theorem guarantees the separation of any touching cells. Finally, a region-based level set algorithm that combines all of these visual cues is used to achieve subpixel cell segmentation. Five-fold cross-validation on 428 high resolution retinal images from 23 human subjects showed that AOSegNet substantially outperformed the only other existing approach with Dice coefficients [%] of 84.7 and 78.4, respectively, and average symmetric contour distances [\(\upmu \)m] of 0.59 and 0.80, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Appel, K., Haken, W.: Every planar map is four colorable. Illinois J. Math. 21(3), 429–490 (1977)

    Article  MathSciNet  Google Scholar 

  2. Chen, H., Qi, X., Yu, L., et al.: DCAN: deep contour-aware networks for object instance segmentation from histology images. MedIA 36, 135–146 (2017)

    Google Scholar 

  3. Chen, L., Papandreou, G., Kokkinos, I., et al.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  4. Gu, Z., Cheng, J., Fu, H., et al.: CE-Net: context encoder network for 2D medical image segmentation. IEEE Trans. Med. Imaging (2019, in press)

    Google Scholar 

  5. Liu, J., Jung, H., Dubra, A., Tam, J.: Cone photoreceptor cell segmentation and diameter measurement on adaptive optics images using circularly constrained active contour model. Invest. Ophthalmol. Vis. Sci. 59(11), 4639–4652 (2018)

    Article  Google Scholar 

  6. Nath, S.K., Palaniappan, K., Bunyak, F.: Cell segmentation using coupled level sets and graph-vertex coloring. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 101–108. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_13

    Chapter  Google Scholar 

  7. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans Cybern. 9(1), 62–66 (1979)

    Article  Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Schmidt, U., Weigert, M., Broaddus, C., Myers, G.: Cell detection with star-convex polygons. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11071, pp. 265–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00934-2_30

    Chapter  Google Scholar 

  10. Scoles, D., Sulai, Y., Langlo, C., et al.: In vivo imaging of human cone photoreceptor inner segments. Invest. Ophthalmol. Vis. Sci. 55(7), 4244–4251 (2014)

    Article  Google Scholar 

  11. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

  12. Valen, D.V., Kudo, T., Lane, K., et al.: Deep learning automates the quantitative analysis of individual cells in live-cell imaging experiments. PLoS Comput. Biol. 12(11), e1005177 (2016). https://doi.org/10.1371/journal.pcbi.1005177

    Article  Google Scholar 

  13. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(7), 271–293 (2002)

    Article  Google Scholar 

  14. Xu, Y., Li, Y., Wang, Y., et al.: Gland instance segmentation using deep multichannel neural networks. IEEE Trans. Biomed. Eng. 64(12), 2901–2912 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johnny Tam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 This is U.S. government work and not under copyright protection in the U.S.; foreign copyright protection may apply

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, J., Shen, C., Liu, T., Aguilera, N., Tam, J. (2019). Deriving Visual Cues from Deep Learning to Achieve Subpixel Cell Segmentation in Adaptive Optics Retinal Images. In: Fu, H., Garvin, M., MacGillivray, T., Xu, Y., Zheng, Y. (eds) Ophthalmic Medical Image Analysis. OMIA 2019. Lecture Notes in Computer Science(), vol 11855. Springer, Cham. https://doi.org/10.1007/978-3-030-32956-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32956-3_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32955-6

  • Online ISBN: 978-3-030-32956-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics