Skip to main content

Relevance Vector Machines for Harmonization of MRI Brain Volumes Using Image Descriptors

  • Conference paper
  • First Online:
  • 807 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11796))

Abstract

With the increased need for multi-center magnetic resonance imaging studies, problems arise related to differences in hardware and software between centers. Namely, current algorithms for brain volume quantification are unreliable for the longitudinal assessment of volume changes in this type of setting. Currently most methods attempt to decrease this issue by regressing the scanner- and/or center-effects from the original data. In this work, we explore a novel approach to harmonize brain volume measurements by using only image descriptors. First, we explore the relationships between volumes and image descriptors. Then, we train a Relevance Vector Machine (RVM) model over a large multi-site dataset of healthy subjects to perform volume harmonization. Finally, we validate the method over two different datasets: (i) a subset of unseen healthy controls; and (ii) a test-retest dataset of multiple sclerosis (MS) patients. The method decreases scanner and center variability while preserving measurements that did not require correction in MS patient data. We show that image descriptors can be used as input to a machine learning algorithm to improve the reliability of longitudinal volumetric studies.

This project received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 765148.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bermel, R.A., Bakshi, R.: The measurement and clinical relevance of brain atrophy in multiple sclerosis. Lancet Neurol. 5(2), 158–170 (2006)

    Article  Google Scholar 

  2. Biberacher, V., et al.: Intra- and interscanner variability of magnetic resonance imaging based volumetry in multiple sclerosis. NeuroImage 142, 188–197 (2016). https://doi.org/10.1016/j.neuroimage.2016.07.035

    Article  Google Scholar 

  3. Biomedical Image Analysis Group, Imperial College London: Ixi dataset. https://brain-development.org/ixi-dataset/. Accessed on 18 Mar 2019

  4. Chen, J., et al.: Exploration of scanning effects in multi-site structural MRI studies. J. Neurosci. Methods 230, 37–50 (2014). https://doi.org/10.1016/j.jneumeth.2014.04.023

    Article  Google Scholar 

  5. Chua, A.S., et al.: Handling changes in MRI acquisition parameters in modeling whole brain lesion volume and atrophy data in multiple sclerosis subjects: comparison of linear mixed-effect models. NeuroImage: Clin. 8, 606–610 (2015)

    Article  Google Scholar 

  6. Fortin, J.P., et al.: Harmonization of cortical thickness measurements across scanners and sites. NeuroImage 167, 104–120 (2018). https://doi.org/10.1016/j.neuroimage.2017.11.024

    Article  Google Scholar 

  7. Jain, S., et al.: Automatic segmentation and volumetry of multiple sclerosis brain lesions from MR images. NeuroImage: Clin. 8, 367–375 (2015). https://doi.org/10.1016/j.nicl.2015.05.003

    Article  Google Scholar 

  8. Jones, B.C., et al.: Quantification of multiple-sclerosis-related brain atrophy in two heterogeneous MRI datasets using mixed-effects modeling. NeuroImage: Clin. 3, 171–179 (2013). https://doi.org/10.1016/j.nicl.2013.08.001

    Article  Google Scholar 

  9. MacKay, D.J.C.: Bayesian interpolation. Neural Comput. 4(3), 415–447 (1992). https://doi.org/10.1162/neco.1992.4.3.415

    Article  MATH  Google Scholar 

  10. Marcus, D.S., et al.: Open access series of imaging studies (oasis): cross-sectional mri data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498–1507 (2007)

    Article  Google Scholar 

  11. Nyúl, L.G., Udupa, J.K.: On standardizing the MR image intensity scale. Magn. Reson. Med. 42(6), 1072–1081 (1999)

    Article  Google Scholar 

  12. Robitaille, N., Mouiha, A., Crépeault, B., Valdivia, F., Duchesne, S.: Tissue-based MRI intensity standardization: application to multicentric datasets. Int. J. Biomed. Imaging 2012, 1–11 (2012)

    Google Scholar 

  13. Salat, D., et al.: Age-associated alterations in cortical gray and white matter signal intensity and gray to white matter contrast. NeuroImage 48(1), 21–28 (2009)

    Article  Google Scholar 

  14. Takao, H., Hayashi, N., Ohtomo, K.: Effect of scanner in longitudinal studies of brain volume changes. J. Magn. Reson. Imaging 34(2), 438–444 (2011). https://doi.org/10.1002/jmri.22636

    Article  Google Scholar 

  15. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1(3), 211–244 (2001). https://doi.org/10.1162/15324430152748236

    Article  MathSciNet  MATH  Google Scholar 

  16. Zhuge, Y., Udupa, J.K.: Intensity standardization simplifies brain MR image segmentation. Comput. Vis. Image Understand. 113(10), 1095–1103 (2009). https://doi.org/10.1016/J.CVIU.2009.06.003

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Ines Meyer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, M.I., de la Rosa, E., Van Leemput, K., Sima, D.M. (2019). Relevance Vector Machines for Harmonization of MRI Brain Volumes Using Image Descriptors. In: Zhou, L., et al. OR 2.0 Context-Aware Operating Theaters and Machine Learning in Clinical Neuroimaging. OR 2.0 MLCN 2019 2019. Lecture Notes in Computer Science(), vol 11796. Springer, Cham. https://doi.org/10.1007/978-3-030-32695-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-32695-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-32694-4

  • Online ISBN: 978-3-030-32695-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics