Skip to main content

Improvement of the Antibacterial Activity of Benzylpenicillin in Combination with Green Silver Nanoparticles Against Staphylococcus aureus

  • Conference paper
  • First Online:
4th International Conference on Nanotechnologies and Biomedical Engineering (ICNBME 2019)

Part of the book series: IFMBE Proceedings ((IFMBE,volume 77))

Abstract

The antibiotic resistance crisis is one of the most pressing public health issues worldwide. Nanoparticles (NPs) can offer a promising solution, since they have antibacterial properties, and can act as carriers for antibiotics and natural antimicrobial compounds. The purpose of this work was to study the antibacterial activity of silver nanoparticles, which are obtained by “green synthesis” from Ocimum araratum extract, against Staphylococcus aureus bacteria, as well as to study their combined action with antibiotic benzylpenicillin. The results show that the antibacterial effect of silver nanoparticles is higher than that of nanoparticles stabilized by the extract on the growth of S. aureus. It has been shown that benzylpenicillin can interact with the allosteric site of penicillin-binding protein 2a. It has also been shown that “green” AgNPs, which include phytocompounds of the extract of O. araratum can enhance the antibacterial effect of benzylpenicillin synergistically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hemeg, H.: Nanomaterials for alternative antibacterial therapy. Int. J. Nanomed. 10(12), 8211–8225 (2017). https://doi.org/10.2147/ijn.s132163-329

    Article  Google Scholar 

  2. Slavin, Y., Asnis, J., et al.: Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J. Nanobiotechnol. 15, 65 (2017). https://doi.org/10.1186/s12951-017-0308-z

    Article  Google Scholar 

  3. Falagas, M., Kasiakou, S., et al.: Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin. Infect. Dis. 40(9), 1333–1341 (2005). https://doi.org/10.1086/429323

    Article  Google Scholar 

  4. Peulen, T.-O., Wilkinson, K.: Diffusion of nanoparticles in a biofilm. Environ. Sci. Technol. 45(8), 3367–3373 (2011). https://doi.org/10.1021/es103450g

    Article  Google Scholar 

  5. Li, P., Pu, X., et al.: FocVel1 influences asexual production, filamentous growth, biofilm formation, and virulence in Fusarium oxysporum f. sp. cucumerinum. Front. Plant. Sci. 6, 312 (2015). https://doi.org/10.3389/fpls.2015.00312

  6. Isiaku, A., Sabri, M., et al.: Biofilm is associated with chronic streptococcal meningoencephalitis in fish. Microb. Pathog. 102, 59–68 (2017). https://doi.org/10.1016/j.micpath.2016.10.029

    Article  Google Scholar 

  7. Fehaid, A., Taniguchi, A.: Silver nanoparticles reduce the apoptosis induced by tumor necrosis factor-α. Sci. Technol. Adv. Mater. 19(1), 526–534 (2018). https://doi.org/10.1080/14686996.2018.1487761

    Article  Google Scholar 

  8. Mahasenan, K., Molina, R., et al.: Conformational dynamics in penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus, allosteric communication network and enablement of catalysis. J. Am. Chem. Soc. 139(5), 2102–2110 (2017). https://doi.org/10.1021/jacs.6b12565

    Article  Google Scholar 

  9. Bauer, A.: Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45(1), 493–496 (1966). https://doi.org/10.1093/ajcp/45.4_ts.493

    Article  Google Scholar 

  10. Vardapetyan, H., et al.: Antioxidant and antibacterial activities of selected Armenian medicinal plants. JEBAS 2(3), 300–307 (2014)

    Google Scholar 

  11. Ramachandran, S., Kota, P., et al.: Automated minimization of steric clashes in protein structures. Proteins 79(1), 261–270 (2010). https://doi.org/10.1002/prot.22879

    Article  Google Scholar 

  12. Kim, S., Thiessen, P., et al.: PubChem Substance and Compound databases. Nucleic Acids Res. 44(D1), D1202–D1213 (2015). https://doi.org/10.1093/nar/gkv951

    Article  Google Scholar 

  13. Trott, O., Olson, A.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2009). https://doi.org/10.1002/jcc.21334

    Article  Google Scholar 

  14. Forli, S., Huey, R., et al.: Computational protein–ligand docking and virtual drug screening with the AutoDock suite. Nat. Protoc. 11(5), 905–919 (2016). https://doi.org/10.1038/nprot.2016.051

    Article  Google Scholar 

  15. Feinstein, W., Brylinski, M.: Calculating an optimal box size for ligand docking and virtual screening against experimental and predicted binding pockets. J. Cheminform. 7(1) (2015). https://doi.org/10.1186/s13321-015-0067-5

  16. McGibbon, R., Beauchamp, K., et al.: MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109(8), 1528–1532 (2015)

    Article  Google Scholar 

  17. Laskowski, R., Swindells, M.: LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. J. Chem. Inf. Model. 51(10), 2778–2786 (2011). https://doi.org/10.1021/ci200227u

    Article  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Hovhannisyan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ohanyan, S., Grabski, H., Rshtuni, L., Tiratsuyan, S., Hovhannisyan, A. (2020). Improvement of the Antibacterial Activity of Benzylpenicillin in Combination with Green Silver Nanoparticles Against Staphylococcus aureus. In: Tiginyanu, I., Sontea, V., Railean, S. (eds) 4th International Conference on Nanotechnologies and Biomedical Engineering. ICNBME 2019. IFMBE Proceedings, vol 77. Springer, Cham. https://doi.org/10.1007/978-3-030-31866-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31866-6_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31865-9

  • Online ISBN: 978-3-030-31866-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics