Skip to main content

Mechanics–Based Virtual Prototyping of Robots with Deformable Bodies and Flexible Joints

  • Conference paper
  • First Online:
Book cover Design Tools and Methods in Industrial Engineering (ADM 2019)

Abstract

This paper describes a mechanics–based framework for virtual prototyping of soft robots, i.e. robots with deformable bodies and flexible joints. The framework builds on top of the screw theory, and uses geometrically exact nonlinear beam models for describing the behavior of deformable bodies, as well as the finite element method for space discretization. The computer implementation of this framework results in SimSOFT, a physics engine for soft robots. The capabilities of the framework are illustrated with one general example, an articulated chain of rigid and soft links connected through rigid and flexible joints. Furthermore, several case studies are shown for industrial and medical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.3ds.com/.

  2. 2.

    https://www.mscsoftware.com/.

  3. 3.

    https://functionbay.com/.

References

  1. De Luca, A., Book, W.J.: Robots with flexible elements. In: Springer Handbook of Robotics, pp. 243–282. Springer (2016)

    Google Scholar 

  2. Della Santina, C., Bianchi, M., Grioli, G., Angelini, F., Catalano, M., Garabini, M., Bicchi, A.: Controlling soft robots: balancing feedback and feedforward elements. IEEE Robot. Autom. Mag. 24(3), 75–83 (2017)

    Article  Google Scholar 

  3. Trivedi, D., Rahn, C.D., Kier, W.M., Walker, I.D.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5(3), 99–117 (2008)

    Article  Google Scholar 

  4. Majidi, C.: Soft robotics: a perspective-current trends and prospects for the future. Soft Robot. 1(1), 5–11 (2014)

    Article  Google Scholar 

  5. Zorriassatine, F., Wykes, C., Parkin, R., Gindy, N.: A survey of virtual prototyping techniques for mechanical product development. Proc. Inst. Mech. Eng., Part B: J. Eng. Manuf. 217(4), 513–530 (2003)

    Article  Google Scholar 

  6. Wasfy, T.M., Noor, A.K.: Computational strategies for flexible multibody systems. Appl. Mech. Rev. 56(6), 553–613 (2003)

    Article  Google Scholar 

  7. Bilancia, P., Berselli, G., Bruzzone, L., Fanghella, P.: A CAD/CAE integration framework for analyzing and designing spatial compliant mechanisms via pseudo-rigid-body methods. Robot. Comput.-Integr. Manuf. 56, 287–302 (2019)

    Article  Google Scholar 

  8. Shabana, A.A.: Continuum-based geometry/analysis approach for flexible and soft robotic systems. Soft Robot. 5(5), 613–621 (2018)

    Article  Google Scholar 

  9. Albu-Schaffer, A., Eiberger, O., Grebenstein, M., Haddadin, S., Ott, C., Wimbock, T., Wolf, S., Hirzinger, G.: Soft robotics. IEEE Robot. Autom. Mag. 15(3), 20–30 (2008)

    Article  Google Scholar 

  10. Trivedi, D., Lotfi, A., Rahn, C.D.: Geometrically exact models for soft robotic manipulators. IEEE Trans. Robot. 24(4), 773–780 (2008)

    Article  Google Scholar 

  11. Rucker, D.C., Jones, B.A., Webster III, R.J.: A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans. Robot. 26(5), 769 (2010). A Publication of the IEEE Robotics and Automation Society

    Article  Google Scholar 

  12. Renda, F., Boyer, F., Dias, J., Seneviratne, L.: Discrete cosserat approach for multisection soft manipulator dynamics. IEEE Trans. Robot. 34(6), 1518–1533 (2018)

    Article  Google Scholar 

  13. Grazioso, S., Di Gironimo, G., Siciliano, B.: A geometrically exact model for soft continuum robots: the finite element deformation space formulation. Soft Robot. (2018)

    Google Scholar 

  14. Grazioso, S.: Geometric soft robotics: a finite element approach. Ph.D. thesis, University of Naples Federico II (2018)

    Google Scholar 

  15. Lynch, K.M., Park, F.C.: Modern Robotics. Cambridge University Press, New York (2017)

    Google Scholar 

  16. Simo, J.C., Vu-Quoc, L.: A three-dimensional finite-strain rod model. Part II: computational aspects. Comput. Methods Appl. Mech. Eng. 58(1), 79–116 (1986)

    Article  Google Scholar 

  17. Sonneville, V., Cardona, A., Brüls, O.: Geometrically exact beam finite element formulated on the special euclidean group SE (3). Comput. Methods Appl. Mech. Eng. 268, 451–474 (2014)

    Article  MathSciNet  Google Scholar 

  18. Grazioso, S., Di Gironimo, G., Siciliano, B.: From differential geometry of curves to helical kinematics of continuum robots using exponential mapping. In: International Symposium on Advances in Robot Kinematics, pp. 319–326. Springer (2018)

    Google Scholar 

  19. Sonneville, V., Brüls, O.: A formulation on the special Euclidean group for dynamic analysis of multibody systems. J. Comput. Nonlinear Dyn. 9(4), 041002 (2014)

    Article  Google Scholar 

  20. Grazioso, S., Sonneville, V., Di Gironimo, G., Bauchau, O., Siciliano, B.: A nonlinear finite element formalism for modelling flexible and soft manipulators. In: 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots, pp. 185–190. IEEE (2016)

    Google Scholar 

  21. Brüls, O., Cardona, A., Arnold, M.: Lie group generalized-\(\alpha \) time integration of constrained flexible multibody systems. Mech. Mach. Theory 48, 121–137 (2012)

    Article  Google Scholar 

  22. Keep, J., Wood, S., Gupta, N., Coleman, M., Loving, A.: Remote handling of demo breeder blanket segments: blanket transporter conceptual studies. Fus. Eng. Des. 124, 420–425 (2017)

    Article  Google Scholar 

  23. Grazioso, S., Di Gironimo, G., Iglesias, D., Siciliano, B.: Screw-based dynamics of a serial/parallel flexible manipulator for demo blanket remote handling. Fus. Eng. Des. 139, 39–46 (2019)

    Article  Google Scholar 

  24. Grazioso, S., Di Gironimo, G., Siciliano, B.: Modeling and vibration control of flexible mechanical systems for demo remote maintenance: results from the flexARM project. Fus. Eng. Des. (2019)

    Google Scholar 

  25. Grazioso, S., Powell, R., Skilton, R., Di Gironimo, G., Siciliano, B.: Multibody simulations of the telescopic articulated remote manipulator with flexible payload for demo studies on remote handling. Fus. Eng. Des. (2019)

    Google Scholar 

  26. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–1280 (2015)

    Article  Google Scholar 

  27. Polygerinos, P., Correll, N., Morin, S.A., Mosadegh, B., Onal, C.D., Petersen, K., Cianchetti, M., Tolley, M.T., Shepherd, R.F.: Soft robotics: review of fluid-driven intrinsically soft devices; manufacturing, sensing, control, and applications in human-robot interaction. Adv. Eng. Mater. 19(12), 1700016 (2017)

    Google Scholar 

  28. Di Gironimo, G., Lanzotti, A.: Designing in VR. Int. J. Interact. Des. Manuf. 3(2), 51–53 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stanislao Grazioso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Grazioso, S., Di Gironimo, G., Lanzotti, A. (2020). Mechanics–Based Virtual Prototyping of Robots with Deformable Bodies and Flexible Joints. In: Rizzi, C., Andrisano, A.O., Leali, F., Gherardini, F., Pini, F., Vergnano, A. (eds) Design Tools and Methods in Industrial Engineering. ADM 2019. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-31154-4_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31154-4_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31153-7

  • Online ISBN: 978-3-030-31154-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics