Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 767 Accesses

Abstract

Solid-state electrolytes are regarded as an attractive alternative to liquid electrolytes in lithium batteries because of their intrinsic safety features and mechanical strength; however maintaining high bulk and interfacial ion fluxes in scalable electrolyte chemistries remains a significant challenge. In this work, we report on synthesis and electrochemical features of a class of solid-state hybrid polymer electrolytes comprised of silica nanoparticles with grafted poly(ethylene oxide) chains. By regulating the salt content in the materials, we find that it is possible to drive microstructural changes, including nanoparticle arrangements, to achieve appreciable levels of room-temperature ionic conductivity in a solid-state polymer composite. Additionally, we show that rationally designed salt additives can be used to create cathode-electrolyte interphases (CEI) that increase the oxidative stability of PEO-based electrolytes. In so doing, we report that solid-state lithium batteries comprised of a high-voltage nickel manganese cobalt oxide cathode, a metallic Li anode, and a solid-state hybrid polymer electrolyte can be cycled stably with high levels of reversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheng, X., Zhang, R., Zhao, C., Wei, F., Zhang, J., Zhang, Q.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1–20 (2016)

    CAS  Google Scholar 

  2. Tikekar, M.D., Choudhury, S., Tu, Z., Archer, L.A.: Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy. 1, 16114 (2016)

    Article  CAS  Google Scholar 

  3. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  Google Scholar 

  4. Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)

    Article  CAS  Google Scholar 

  5. Wei, S., Choudhury, S., Tu, Z., Zhang, K., Archer, L.A.: Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018)

    Article  CAS  Google Scholar 

  6. Stalin, S., Choudhury, S., Zhang, K., Archer, L.A.: Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chem. Mater. 30, 2058–2066 (2018)

    Article  CAS  Google Scholar 

  7. Agrawal, A., Choudhury, S., Archer, L.A.: A highly conductive, non-flammable polymer-nanoparticle hybrid electrolyte. RSC Adv. 5, 20800 (2015)

    Article  CAS  Google Scholar 

  8. Guo, Q., Han, Y., Wang, H., Hong, X., Zheng, C., Liu, S., Xie, K.: Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes. RSC Adv. 6, 101638–101644 (2016)

    Article  CAS  Google Scholar 

  9. Hu, J., Wang, W., Peng, H., Guo, M., Feng, Y., Xue, Z., Ye, Y., Xie, X.: Flexible organic–inorganic hybrid solid electrolytes formed via thiol–acrylate photopolymerization. Macromolecules. 50, 1970–1980 (2017)

    Article  CAS  Google Scholar 

  10. Khurana, R., Schaefer, J.L., Archer, L.A., Coates, G.W.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014)

    Article  CAS  Google Scholar 

  11. Choudhury, S., Mangal, R., Agrawal, A., Archer, L.A.: A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015)

    Article  CAS  Google Scholar 

  12. Li, J., Ma, C., Chi, M., Liang, C., Dudney, N.J.: Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015)

    Article  Google Scholar 

  13. Takada, K.: Progress in solid electrolytes toward realizing solid-state lithium batteries. J. Power Sources. 394, 74–85 (2018)

    Article  CAS  Google Scholar 

  14. Zheng, F., Kotobuki, M., Song, S., Lai, M.O., Lu, L.: Review on solid electrolytes for all-solid-state lithium-ion batteries. J. Power Sources. 389, 198–213 (2018)

    Article  CAS  Google Scholar 

  15. Put, B., Vereecken, P., Stesmans, A.: On the chemistry and electrochemistry of LiPON breakdown. J. Mater. Chem. A. 6, 4848–4859 (2018)

    Article  CAS  Google Scholar 

  16. Le Van-Jodin, L., Claudel, A., Secouard, C., Sabary, F., Barnes, J.-P., Martin, S.: Role of the chemical composition and structure on the electrical properties of a solid state electrolyte: case of a highly conductive LiPON. Electrochim. Acta. 259, 742–751 (2018)

    Article  Google Scholar 

  17. Bai, L., Xue, W., Li, Y., Liu, X., Li, Y., Sun, J.: The interfacial behaviours of all-solid-state lithium ion batteries. Ceram. Int. 44, 7319–7328 (2018)

    Article  CAS  Google Scholar 

  18. Lei, F., Shuya, W., Siyuan, L., Qi, L., Yingying, L.: Recent progress of the solid-state electrolytes for high-energy metal-based batteries. Adv. Energy Mater. 8, 1702657 (2018)

    Article  Google Scholar 

  19. Yu, X., Bates, J.B., Jellison, G.E., Hart, F.X.: A stable thin-film lithium electrolyte: lithium phosphorus oxynitride. J. Electrochem. Soc. 144, 524–532 (1997)

    Article  CAS  Google Scholar 

  20. Chih-Jung, C., Tatsuhiro, M., Anirudha, J., Hung-Yu, L., Nai-Hsuan, Y., Nae-Lih, W., Ho, C., Shu-Fen, H., Ru-Shi, L.: Optimizing the lithium phosphorus oxynitride protective layer thickness on low-grade composite Si-based anodes for lithium-ion batteries. ChemistrySelect. 3, 729–735 (2018)

    Article  Google Scholar 

  21. Han, X., Gong, Y., Fu, K.K., He, X., Hitz, G.T., Dai, J., Pearse, A., Liu, B., Wang, H., Rubloff, G., et al.: Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572 (2016)

    Article  Google Scholar 

  22. Zhang, W., Tu, Z., Qian, J., Choudhury, S., Archer, L.A., Lu, Y.: Design principles of functional polymer separators for high-energy, metal-based batteries. Small. 14, 1703001 (2018)

    Article  Google Scholar 

  23. Stephan, A.M.: Review on gel polymer electrolytes for lithium batteries. Eur. Polym. J. 42, 21–42 (2006)

    Article  Google Scholar 

  24. Zhang, W., Zhuang, H.L., Fan, L., Gao, L., Lu, Y.: A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries. Sci. Adv. 4, eaar4410 (2018)

    Article  Google Scholar 

  25. Cheng, X.-B., Yan, C., Zhang, X.-Q., Liu, H., Zhang, Q.: Electronic and ionic channels in working interfaces of lithium metal anodes. ACS Energy Lett. 3, 1564–1570 (2018)

    Article  CAS  Google Scholar 

  26. Zhao, C.-Z., Zhang, X.-Q., Cheng, X.-B., Zhang, R., Xu, R., Chen, P.-Y., Peng, H.-J., Huang, J.-Q., Zhang, Q.: An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl. Acad. Sci. 114, 11069–11074 (2017)

    Article  CAS  Google Scholar 

  27. Baker, G.L., Colsons, S.: Composite polymer electrolytes using fumed silica fillers: rheology and ionic conductivity. Chem. Matter. 6, 2359–2363 (1994)

    Article  Google Scholar 

  28. Lu, Y., Korf, K., Kambe, Y., Tu, Z., Archer, L.A.: Ionic-liquid-nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. 126, 498–502 (2014)

    Article  Google Scholar 

  29. Stone, G.M., Mullin, S.A., Teran, A.A., Hallinan, D.T., Minor, A.M., Hexemer, A., Balsara, N.P.: Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012)

    Article  CAS  Google Scholar 

  30. Bruce, P.: Conductivity and transference number measurements on polymer electrolytes. Solid State Ionics. 28–30, 918–922 (1988)

    Article  Google Scholar 

  31. Choudhury, S., Agrawal, A., Kim, S.A., Archer, L.A.: Self-suspended suspensions of covalently grafted hairy nanoparticles. Langmuir. 31, 3222–3231 (2015)

    Article  CAS  Google Scholar 

  32. Kim, S.A., Archer, L.A.: Hierarchical structure in semicrystalline polymers tethered to nanospheres. Macromolecules. 47, 687–694 (2014)

    Article  CAS  Google Scholar 

  33. Wong, D.H.C., Thelen, J.L., Fu, Y., Devaux, D., Pandya, A.A., Battaglia, V.S., Balsara, N.P., DeSimone, J.M.: Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl. Acad. Sci. U. S. A. 111, 3327–3331 (2014)

    Article  CAS  Google Scholar 

  34. Agarwal, P., Srivastava, S., Archer, L.A.: Thermal jamming of a colloidal glass. Phys. Rev. Lett. 107, 268302 (2011)

    Article  Google Scholar 

  35. Agrawal, A., Wenning, B.M., Choudhury, S., Archer, L.A.: Interactions, structure, and dynamics of polymer-tethered nanoparticle blends. Langmuir. 32, 8698–8708 (2016)

    Article  CAS  Google Scholar 

  36. Agrawal, A., Yu, H.-Y., Sagar, A., Choudhury, S., Archer, L.A.: Molecular origins of temperature induced jamming in self-suspended hairy nanoparticles. Macromolecules. 49, 8738 (2016)

    Article  CAS  Google Scholar 

  37. Agrawal, A., Yu, H.-Y., Srivastava, S., Choudhury, S., Narayanan, S., Archer, L.: Dynamics and yielding of binary self-suspended nanoparticle fluids. Soft Matter. 11, 5224–5234 (2015)

    Article  CAS  Google Scholar 

  38. Yu, H.-Y., Srivastava, S., Archer, L.a., Koch, D.L.: Structure factor of blends of solvent-free nanoparticle-organic hybrid materials: density-functional theory and small angle X-ray scattering. Soft Matter. 10, 9120–9135 (2014)

    Article  CAS  Google Scholar 

  39. Ashcroft, N.W., Langreth, D.C.: Structure of binary liquid mixtures. I. Phys. Rev. 16, 685–692 (1967)

    Article  Google Scholar 

  40. Srivastava, S., Choudhury, S., Agrawal, A., Archer, L.A.: Self-suspended polymer grafted nanoparticles. Curr. Opin. Chem. Eng. 16, 92–101 (2017)

    Article  Google Scholar 

  41. Chremos, A., Panagiotopoulos, A.Z., Koch, D.L.: Dynamics of solvent-free grafted nanoparticles. J. Chem. Phys. 136, 44902 (2012)

    Article  Google Scholar 

  42. Chremos, A., Panagiotopoulos, A.Z., Yu, H.-Y., Koch, D.L.: Structure of solvent-free grafted nanoparticles: molecular dynamics and density-functional theory. J. Chem. Phys. 135, 114901 (2011)

    Article  Google Scholar 

  43. Sollich, P.: Rheological constitutive equation for a model of soft glassy materials. Phys. Rev. E. 58, 738–759 (1998)

    Article  CAS  Google Scholar 

  44. Sollich, P., Lequeux, F., Hébraud, P., Cates, M.: Rheology of soft glassy materials. Phys. Rev. Lett. 78, 2020–2023 (1997)

    Article  CAS  Google Scholar 

  45. Zaccarelli, E., Mayer, C., Asteriadi, A., Likos, C., Sciortino, F., Roovers, J., Iatrou, H., Hadjichristidis, N., Tartaglia, P., Löwen, H., et al.: Tailoring the flow of soft glasses by soft additives. Phys. Rev. Lett. 95, 268301 (2005)

    Article  CAS  Google Scholar 

  46. Nugent, J.L., Moganty, S.S., Archer, L.A.: Nanoscale organic hybrid electrolytes. Adv. Mater. 22, 3677–3680 (2010)

    Article  CAS  Google Scholar 

  47. Schaefer, J.L., Moganty, S.S., Yanga, D.A., Archer, L.A.: Nanoporous hybrid electrolytes. J. Mater. Chem. 21, 10094 (2011)

    Article  CAS  Google Scholar 

  48. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016)

    Article  Google Scholar 

  49. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stability analysis of electrodeposition across a structured electrolyte with immobilized anions. J. Electrochem. Soc. 161, A847–A855 (2014)

    Article  CAS  Google Scholar 

  50. Tu, Z., Zachman, M.J., Choudhury, S., Wei, S., Ma, L., Yang, Y., Kourkoutis, L.F., Archer, L.A.: Nanoporous hybrid electrolytes for high-energy batteries based on reactive metal anodes. Adv. Energy Mater. 7, 1602367 (2017)

    Article  Google Scholar 

  51. Tu, Z., Nath, P., Lu, Y., Tikekar, M.D., Archer, L.A.: Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries. Acc. Chem. Res. 48, 2947 (2015)

    Article  CAS  Google Scholar 

  52. Bouchet, R., Maria, S., Meziane, R., Aboulaich, A., Lienafa, L., Bonnet, J., Phan, T.N.T., Bertin, D., Gigmes, D., Devaux, D., et al.: Single-ion BAB triblock copolymers as efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

    Article  CAS  Google Scholar 

  53. Choudhury, S., Tu, Z., Nijamudheen, A., Zachman, M.J., Stalin, S., Deng, Y., Zhao, Q., Vu, D., Kourkoutis, L.F., Mendoza-Cortes, J.L., Archer, L.A.: Stabilizing polymer electrolytes in high-voltage lithium batteries. Nat. Commun. 10, 3091 (2019)

    Article  Google Scholar 

  54. Zheng, J., Engelhard, M.H., Mei, D., Jiao, S., Polzin, B.J., Zhang, J.-G., Xu, W.: Electrolyte additive enabled fast charging and stable cycling lithium metal batteries. Nat. Energy. 2, 17012 (2017)

    Article  CAS  Google Scholar 

  55. Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources. 162, 1379–1394 (2006)

    Article  CAS  Google Scholar 

  56. Beaucage, G.: Small-angle scattering from polymeric mass fractals of arbitrary mass-fractal dimension. J. Appl. Crystallogr. 29, 134–146 (1996)

    Article  CAS  Google Scholar 

  57. Choudhury, S., Agrawal, A., Wei, S., Jeng, E., Archer, L.A.: Hybrid hairy nanoparticle electrolytes stabilizing lithium metal batteries. Chem. Mater. 28, 2147–2157 (2016)

    Article  CAS  Google Scholar 

  58. Wei, S., Xu, S., Agrawral, A., Choudhury, S., Lu, Y., Tu, Z., Ma, L., Archer, L.A.: A stable room-temperature sodium–sulfur battery. Nat. Commun. 7, 11722 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge support of the National Science Foundation, Division of Materials Research, through Award No. DMR-1609125. This work made use of the Cornell Center for Materials Research Shared Facilities, which are supported through the NSF MRSEC program (DMR-1719875).

Author information

Authors and Affiliations

Authors

Appendix: Supplementary Information

Appendix: Supplementary Information

Supplementary Fig. 9.1
figure 7

Melting temperature obtained from DSC plotted with Li:EO ratio

Supplementary Fig. 9.2
figure 8

d.c. conductivity plotted a function of Arrhenius temperature

Supplementary Fig. 9.3
figure 9

Variation of d.c. conductivity with the Li/EO ratios at various temperatures

Supplementary Fig. 9.4
figure 10

Intensity of scattered X-ray as a function of wave vector for different glassy electrolytes with varying salt concentrations

Supplementary Fig. 9.5
figure 11

Cyclic voltammetry at 90 °C for a coin cell comprising of lithium vs. stainless steel battery with the soft glassy electrolyte with Li/EO ratio being 0.05. The dotted line shows the oxidative breakdown potential at ~4.2 V vs. Li/Li+

Supplementary Fig. 9.6
figure 12

Impedance spectra obtained at 30 °C for a coin cell comprising of lithium vs. NCM battery with the soft glassy electrolyte with Li/EO ratio being 0.05 on the anode side along with a layer of liquid electrolyte on the cathode surface that comprises of 0.4 M LiBOB, 0.6 M LiTFSI, and 0.05 M LiPF6 in EC/DMC. The inset shows the equivalent circuit model along with the corresponding resistances. The second inset shows the impedance profile of the same battery after 100 cycles

Supplementary Fig. 9.7
figure 13

FTIR analysis of the NCM cathode after cycling five times. The dashed lines represent the location of the peaks for the carboxylic and boro-oxalate bonds signifying the chemistry of the cathode-electrolyte interphase

Supplementary Fig. 9.8
figure 14

Cycling performance of lithium vs. NCM battery with the soft glassy electrolyte with Li/EO ratio being 0.05 on the anode side along with a layer of liquid electrolyte on the cathode surface that comprises of 0.4 M LiBOB, 0.6 M LiTFSI, and 0.05 M LiPF6 in EC/DMC. The inset shows the equivalent circuit model along with the corresponding resistances

Supplementary Fig. 9.9
figure 15

SEM micrographs of the lithium metal anode and NCM cathode after five cycles

Supplementary Fig. 9.10
figure 16

SEM micrographs of the lithium metal anode and NCM cathode after 100 cycles

Supplementary Table 9.1 VFT parameters for different samples obtained by fitting the experimental conductivity values using least squares method

9.1.1 Materials and Methods

9.1.1.1 Synthesis of Self-Suspended Covalently Grafted Hairy Nanoparticles

Self-suspended covalently grafted nanoparticles were prepared using a previously described method. Briefly, these nanoparticles are prepared using a two-step process, in which polyethylene oxide was first functionalized with a silane group by reacting the isocyanate end in 3-(triethoxysilyl) propyl isocyanate (Sigma-Aldrich) with the amine end in amino-polyethylene oxide (MW ≈ 5000 Da, PDI ≈ 1.1, purchased from Laysan Bio) in a stoichiometric ratio, creating a urethane bond in the process. The prepared silane functionalized polymer was condensed onto silica nanoparticles with diameter 25 ± 2 nm by reaction with the hydroxyl groups on the surface of the particles (TM-50, Sigma-Aldrich). Excess unreacted polymer chains were removed by repeated centrifugation in a chloroform-hexane mixture. The inorganic content of these hairy nanoparticles was analyzed using thermogravimetric analysis (TGA) on a TGA Q1000 (TA Instruments). The TGA for different samples revealed inorganic content of 51% corresponding to grafting density of approximately 1.47 chains/nm2.

9.1.1.2 Characterization

Glassy electrolytes were prepared by mixing the hairy nanoparticles with predetermined amount of LiTFSI salt (Sigma-Aldrich). The molecular structuring in the glassy electrolytes was studied using attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) on a Nicolet iS10 FTIR spectrometer (Thermo Fisher Scientific) equipped with a deuterated triglycine sulfate (DTGS) detector and a SMART iTR diamond ATR accessory. Melting transitions were then investigated using differential scanning calorimetry on a DSC Q2000 (TA Instruments) at a scan rate of 10 °C/min. Morphology of the electrolytes at the electrode-electrolyte interface was studied using scanning electron microscope (Zeiss Gemini 500) at the Cornell Centre for Materials Research (CCMR). Fourier transform infrared spectroscopy (ATR-FTIR) was performed on a Nicolet iS10 FTIR spectrometer (Thermo Fisher Scientific) equipped with a deuterated triglycine sulfate (DTGS) detector and a SMART iTR diamond ATR accessory.

9.1.1.3 Electrochemical Measurements

2030 coin-type cells were assembled in a glovebox (MBraun Labmaster) with Nickel Cobalt Manganese Oxide (NCM) Cathode (2 mA/cm2) as the cathode and lithium foil (Alfa Aesar) as the anode. The NCM cathode has 80% active material (NCM 622), 10% binder (PTFE), and 10% carbon. The active material loading was ~11 mg/cm2. The glassy electrolyte was sandwiched between the two electrodes, after wetting the cathode in a liquid electrolyte comprised of LiBOB (Oakwood Chemicals), LiTFSI (Sigma-Aldrich), and LiPF6 (Sigma-Aldrich) salts in an ethylene carbonate/dimethyl carbonate (Sigma-Aldrich) mixture.

Ionic transport in the bulk and at the interface in this system was studied using conductivity and impedance measurements using a Novocontrol N40 broadband spectrometer fitted with a Quarto temperature control system. The samples were sandwiched between two gold-plated blocking electrodes. The cyclic voltammetry was done in lithium versus stainless steel configuration using a CHI600 potentiostat. The cycling characteristics of the cells were evaluated under galvanostatic conditions using Neware CT-3008 battery testers.

9.1.1.4 Small-Angle X-Ray Scattering Measurements

X-ray scattering (SAXS) measurements were performed on the solventless SiO2-PEGME nanoparticles at sector 12-ID-B of Argonne National Laboratory, using a point collimated X-ray beam. The sample was smeared on a thermal cell, and the measurements were performed at different temperatures, all above melting point of PEG. The measured scattering intensity, I(q), depends on wave vector q and particle volume fraction φ as

$$ I\left(q,\kern0.5em \varphi \right)=P(q)\kern0.5em S\left(q,\kern0.5em \varphi \right) $$

where P(q) and S(q, φ) represent the particle form factor and the interparticle structure factor, respectively. Because in the limit of infinite dilution S(q, φ → 0) ≈ 1, the particle form factor can thus be obtained from the scattering intensities of dilute aqueous suspensions of particles. The structure factor can then be obtained by normalizing the scattering intensity with the form factor.

9.1.1.5 Rheology Measurements

Rheology measurements. Oscillatory shear rheology measurements were performed at a temperature of 90 °C using a Physica MCR 501 rheometer (Anton Paar at Cornell Energy Systems Institute (CESI)), outfitted with a cone and plate geometry (10 mm diameter, 2° cone angle). To study the linear and nonlinear viscoelastic properties of the materials, variable strain amplitude measurements at a fixed angular frequency of ω = 10 rad/s as well as variable frequency measurements at a fixed strain amplitude γ = 0.5% were employed.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhury, S. (2019). Soft Colloidal Glasses as Solid-State Electrolytes. In: Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28943-0_9

Download citation

Publish with us

Policies and ethics