Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 846 Accesses

Abstract

Metal-based batteries that comprise of a reactive metal anode like lithium, sodium, or potassium are the future of energy storage devices because of their high volumetric and gravimetric energy density. However, these batteries fail by three distinct modes – chemical instability due to internal reactions, morphological instability due to uneven electrodeposition, and hydrodynamic instability due to convective flows at the vicinity of electrode-electrolyte interface. Both liquid-based and solid-state electrolytes have their individual advantages and disadvantages in mitigating these issues. Here, we show that solid polymer interphases based on cross-linked polymer networks can essentially possess qualities from both of these worlds. We find that by tuning the thermodynamic interactions between the polymer network and oligomer diluents, one can control the bulk properties like ion transport and mass transfer rate. Thus, it is possible to design solid-like electrolyte phases where the electroconvective flows can be inhibited while maintaining high ionic conductivity. We further show that these polymer networks act as excellent interfacial layer for lithium metal electrode to inhibit dendrite growth and side reactions. On pairing with high voltage cathodes, the lithium metal battery at ambient conditions exhibit over 250 cycles of stable operation even at a high rate of 1 mA/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wei, S., Choudhury, S., Tu, Z., Zhang, K., Archer, L.A.: Electrochemical interphases for high-energy storage using reactive metal anodes. Acc. Chem. Res. 51, 80–88 (2018)

    Article  CAS  Google Scholar 

  2. Cheng, X., et al.: A review of solid electrolyte interphases on lithium metal anode. Adv. Sci. 3, 1–20 (2016)

    CAS  Google Scholar 

  3. Lin, D., Liu, Y., Cui, Y.: Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017)

    Article  CAS  Google Scholar 

  4. Cheng, X.-B., Zhang, R., Zhao, C.-Z., Zhang, Q.: Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017)

    Article  CAS  Google Scholar 

  5. Armand, M., Tarascon, J.-M.: Building better batteries. Nature. 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  6. Ma, L., Hendrickson, K.E., Wei, S., Archer, L.A.: Nanomaterials: science and applications in the lithium–sulfur battery. Nano Today. 10, 315–338 (2015)

    Article  CAS  Google Scholar 

  7. Aurbach, D., McCloskey, B.D., Nazar, L.F., Bruce, P.G.: Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy. 1, 16128 (2016)

    Article  CAS  Google Scholar 

  8. Choudhury, S., et al.: Confining electrodeposition of metals in structured electrolytes. Proc. Natl. Acad. Sci. 115, 6620 (2018)

    Article  CAS  Google Scholar 

  9. Bai, P., Li, J., Brushett, F.R., Bazant, M.Z.: Transition of lithium growth mechanisms in liquid electrolytes. Energy Environ. Sci. 9, 3221–3229 (2016)

    Article  CAS  Google Scholar 

  10. Zhang, S.S.: A review on electrolyte additives for lithium-ion batteries. J. Power Sources. 162, 1379–1394 (2006)

    Article  CAS  Google Scholar 

  11. Suo, L., et al.: Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl. Acad. Sci. 115, 1156 (2018)

    Article  CAS  Google Scholar 

  12. Choudhury, S., Archer, L.A.: Lithium fluoride additives for stable cycling of lithium batteries at high current densities. Adv. Electron. Mater. 2, 1–6 (2015). https://doi.org/10.1002/aelm.201500246

    Article  CAS  Google Scholar 

  13. Lu, Y., Tu, Z., Archer, L.A.: Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014)

    Article  CAS  Google Scholar 

  14. Tikekar, M.D., Choudhury, S., Tu, Z., Archer, L.A.: Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy. 1, 16114 (2016)

    Article  CAS  Google Scholar 

  15. Tikekar, M.D., Archer, L.A., Koch, D.L.: Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016)

    Article  Google Scholar 

  16. Liu, W., Lin, D., Pei, A., Cui, Y.: Stabilizing lithium metal anodes by uniform Li-ion flux distribution in nanochannel confinement. J. Am. Chem. Soc. 138, 15443–15450 (2016)

    Article  CAS  Google Scholar 

  17. Zheng, G., et al.: Interconnected hollow carbon nanospheres for stable lithium metal anodes. Nat. Nanotechnol. 9, 618–623 (2014)

    Article  CAS  Google Scholar 

  18. Choudhury, S., Mangal, R., Agrawal, A., Archer, L.A.: A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015)

    Article  CAS  Google Scholar 

  19. Kozen, A.C., et al.: Next-generation lithium metal anode engineering via atomic layer deposition. ACS Nano. 9, 5884–5892 (2015)

    Article  CAS  Google Scholar 

  20. Khurana, R., Schaefer, J.L., Archer, L.A., Coates, G.W.: Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014)

    Article  CAS  Google Scholar 

  21. Bouchet, R., et al.: Single-ion BAB triblock copolymers as efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013)

    Article  CAS  Google Scholar 

  22. Wei, S., et al.: Stabilizing electrochemical interfaces in viscoelastic liquid electrolytes. Sci. Adv. 4, eaao6243 (2018)

    Article  Google Scholar 

  23. Jonscher, A.K.: The “universal” dielectric response. Nature. 267, 673–679 (1977)

    Article  CAS  Google Scholar 

  24. Funke, K., Cramer, C.: Conductivity spectroscopy. Curr. Opin. Solid State Mater. Sci. 2, 483–490 (1997)

    Article  CAS  Google Scholar 

  25. Gurevitch, I., et al.: Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013)

    Article  CAS  Google Scholar 

  26. Stone, G.M., et al.: Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012)

    Article  CAS  Google Scholar 

  27. Choudhury, S., et al.: Electroless formation of hybrid lithium anodes for fast interfacial ion transport. Angew. Chem. Int. Ed. 56, 13070–13077 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Supplementary Information

Appendix: Supplementary Information

Supplementary Fig. 10.1
figure 5

Photograph of the flexible cross-linked membrane

Supplementary Fig. 10.2
figure 6

FTIR analysis of the cross-linked membrane at various PEGDMA content that shows C=O bond at (1700 cm−1) shifting to lower intensity values as the volume percent PEGDMA is increased in solution

Supplementary Fig. 10.3
figure 7

Schematic demonstrating the concept of stabilization using a solid polymer interphase

Supplementary Fig. 10.4
figure 8

Thermograms obtained from differential scanning calorimetry for pure diglyme (Φ = 0%) and pure PEGDMA network (Φ = 100%). The dotted lines mark the step-change in the heat flow

Supplementary Fig. 10.5
figure 9

d.c. conductivity as a function of inverse absolute temperature. Measured values are shown as markers, and the data is fitted to Vogel-Fulcher-Tamman function

Supplementary Fig. 10.6
figure 10

Current as a function of voltage. Divergence in current was seen for Φ = 0% and Φ = 20%, signaling the presence of electroconvection. For Φ = 40% and beyond, the current reached a limiting value at higher voltages

Supplementary Fig. 10.7
figure 11

Coulombic efficiency measurement in Li||stainless steel coin cell with and without the solid polymer interphase at a current density of 1 mA cm−2 and capacity of 1 mAh cm−2, using the 1 M LiPF6 in EC/DMC electrolyte

Supplementary Fig. 10.8
figure 12

Cycling performances for Li||NMC cell operated at a C-rate of (a) C/5 and (b) C/2. Here the lithium metal electrode was coated with the solid polymer interphase that comprises of the polymer network and diglyme, with PEGDMA content of 40%. The thickness of the polymer coating was ~100 μm. The capacity of cathode is 2 mAh/cm2, and the electrolyte used here is 0.6 M LiTFSI, 0.4 M LiBOB, and 0.05 LiPF6 in EC/DMC (1:1 by wt.)

Supplementary Fig. 10.9
figure 13

Cycling performances for Li||NMC cell operated at a C-rate of C/5. Here the electrolyte utilized was an all-solid-state polymer electrolyte that comprises of the polymer network and diglyme, with PEGDMA content of 40% and with the salt LiNO3 (Li:EO = 0.10) and 0.4 M LiBOB as additive. The thickness of the solid polymer electrolyte was ~400 μm. The capacity of cathode is 2 mAh/cm2. The cathode surface was wetted by liquid electrolyte of diglyme-LiNO3 (Li:EO = 0.1) and 0.4 M LiBOB

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Choudhury, S. (2019). Solid Polymer Interphases for Lithium Metal Batteries. In: Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-28943-0_10

Download citation

Publish with us

Policies and ethics