Skip to main content

Interlacing Diffusions

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 2252))

Abstract

We study in some generality intertwinings between h-transforms of Karlin–McGregor semigroups associated with one dimensional diffusion processes and those of their Siegmund duals. We obtain couplings so that the corresponding processes are interlaced and furthermore give formulae in terms of block determinants for the transition densities of these coupled processes. This allows us to build diffusion processes in the space of Gelfand–Tsetlin patterns so that the evolution of each level is Markovian. We show how known examples naturally fit into this framework and construct new processes related to minors of matrix valued diffusions. We also provide explicit formulae for the transition densities of the particle systems with one-sided collisions at either edge of such patterns.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. M. Adler, E. Nordenstam, P. van Moerbeke, Consecutive minors for Dyson’s Brownian motions. Stochastic Process. Appl. 124(6), 2023–2051 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. T. Assiotis, Hua-Pickrell diffusions and Feller processes on the boundary of the graph of spectra. Ann. Inst. Henri Poincaré Probab. Stat. (2019, accepted). https://arxiv.org/abs/1703.01813

  3. T. Assiotis, Intertwinings for general β Laguerre and Jacobi processes. J. Theor. Probab. https://doi.org/10.1007/s10959-018-0842-0

  4. T. Assiotis, Random growth and Karlin-McGregor polynomials. Electron. J. Probab. 23, 106 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Bakry, I. Gentil, M. Ledoux, Analysis and Geometry of Markov Diffusion Operators (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  6. P. Biane, P. Bougerol, N. O’Connell, Littelmann paths and Brownian paths. Duke Math. J. 130(1), 127–167 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Bornemann, P.J. Forrester, Singular values and evenness symmetry in random matrix theory. Forum Mathematicum (2015). https://www.degruyter.com/view/j/form.ahead-of-print/forum-2015-0055/forum-2015-0055.xml

  8. F. Bornemann, M. LaCroix, The singular values of the GOE. Random Mat. Theory Appl. 4(2), 1550009 (2015)

    Google Scholar 

  9. A. Borodin, P. Ferrari, Anisotropic growth of random surfaces in 2 + 1 dmensions. Commun. Math. Phys. 325, 603–684 (2014)

    Article  MATH  Google Scholar 

  10. A. Borodin, J. Kuan, Random surface growth with a wall and Plancherel measures for O(). Commun. Pure Appl. Math. 63, 831–894 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Borodin, G. Olshanski, Markov processes on the path space of the Gelfand-Tsetlin graph and on its boundary. J. Funct. Anal. 263, 248–303 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. A.N. Borodin, P. Salminen, Handbook of Brownian Motion-Facts and Formulae Second Edition. Probability and Its Applications (Birkhauser, Basel, 2002)

    Google Scholar 

  13. M-F. Bru, Wishart processes. J. Theor. Probab. 4(4), 725–751 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Burdzy, W. Wang, K. Ramanan, The Skorokhod problem in a time dependent interval. Stoch. Process. Appl. 119(2), 428–452 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. F. Calogero, Solution of the one-dimensional N-body problems with quadratic and/or inversely quadratic pair potentials. J. Math. Phys. 12, 419–439 (1971)

    Article  MathSciNet  Google Scholar 

  16. P. Carmona, F. Petit, M. Yor, Beta-gamma random variables and intertwining relations between certain Markov processes. Rev. Mat. Iberoamericana 14(2), 311–367 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Cerenzia, A path property of Dyson gaps, Plancherel measures for Sp(), and random surface growth. arXiv:1506.08742 (2015)

    Google Scholar 

  18. M. Cerenzia, J. Kuan, Hard-edge asymptotics of the Jacobi growth process (2016). https://arxiv.org/abs/1608.06384

  19. L. Chen, D.W. Stroock, The fundamental solution to the Wright–Fisher equation. SIAM J. Math. Anal. 42(2), 539–567 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. B. Conrey, Notes on eigenvalue distributions for the classical compact groups, in Recent Perspectives in Random Matrix Theory and Number Theory, ed. by F. Mezzadri, N.C. Snaith. London Mathematical Society Lecture Note Series, vol. 332 (Cambridge University Press, Cambridge, 2005), pp. 111–146

    Google Scholar 

  21. T. Cox, U. Rösler, A duality relation for entrance and exit laws for Markov processes. Stochastic Processes Appl. 16(2), 141–156 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. C. Cuenca, Markov processes on the duals to infinite-dimensional classical lie groups (2016). http://arxiv.org/abs/1608.02281

  23. M. Defosseux, Orbit measures, random matrix theory and interlaced determinantal processes. Annales de l’Institut Henri Poincare, Probabilites et Statistiques 46(1), 209–249 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Demni, The Laguerre process and the generalized Hartman-Watson law. Bernoulli 13(2), 556–580 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. P. Diaconis, J.A. Fill, Strong stationary times via a new form of duality. Ann. Probab. 18(4), 1483–1522 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  26. T. Dieker, J. Warren, Determinantal transition kernels for some interacting particles on the line. Annales de l’Institut Henri Poincare, Probabilites et Statistiques 44(6), 1162–1172 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Dieker, J. Warren, On the largest-eigenvalue process for generalized Wishart random matrices. ALEA 6, 369–376 (2009)

    MathSciNet  MATH  Google Scholar 

  28. Y. Doumerc, Matrices aleatoires, processus stochastiques et groupes de reflexions Ph.D. Thesis (2005). http://perso.math.univ-toulouse.fr/ledoux/files/2013/11/PhD-thesis.pdf

  29. S. Ethier, T. Kurtz, Markov Processes Characterization and Convergence. Wiley Series in Probability and Statistics (Wiley, Hoboken, 1986)

    Google Scholar 

  30. P. Ferrari, R. Frings, On the partial connection between random matrices and interacting particle systems. J. Stat. Phys. 141(4), 613–637 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Ferrari, R. Frings, Perturbed GUE minor process and Warren’s process with drifts. J. Stat. Phys. 154(1), 356–377 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  32. J.A. Fill, V. Lyzinski, Strong stationary duality for diffusion processes. J. Theor. Probab. (2015). http://link.springer.com/article/10.1007/s10959-015-0612-1

  33. P.J. Forrester, T. Nagao, Determinantal correlations for classical projection processes. J. Stat. Mech. Theory Exp. 2011, 1–28 (2011)

    Article  Google Scholar 

  34. P.J. Forrester, E.M. Rains, Inter-relationships between orthogonal, unitary and symplectic matrix ensembles, in Random Matrix Models and Their Applications, ed. by P.M. Bleher, A.R. Its, Mathematical Sciences Research Institute Publications, vol. 40 (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  35. A. Going-Jaeschke, M. Yor, A survey and some generalizations of Bessel processes. Bernoulli 9(2), 313–349 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. V. Gorin, Noncolliding Jacobi processes as limits of Markov chains on the Gelfand-Tsetlin graph. J. Math. Sci. 158(6), 819–837 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  37. M.R. Hestenes, Extension of the range of a differentiable function. Duke Math. J. 8(1), 183–192 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  38. J.R. Ipsen, H. Schomerus, Isotropic Brownian motions over complex fields as a solvable model for May-Wigner stability analysis (2016). https://arxiv.org/abs/1602.06364

  39. K. Ito, H.P. McKean, Diffusion Processes and Their Sample Paths, Second Printing (Springer, Berlin, 1974)

    MATH  Google Scholar 

  40. K. Johansson, A multi-dimensional Markov chain and the Meixner ensemble. Ark. Mat. 46(1), 79–95 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. K. Johansson, Two time distribution in Brownian directed percolation. Commun. Math. Phys. 351(2), 441–492 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  42. L. Jones, N. O’Connell, Weyl chambers, symmetric spaces and number variance saturation. ALEA 2, 91–118 (2006)

    MathSciNet  MATH  Google Scholar 

  43. O. Kallenberg, Foundations of Modern Probability, Probability and its Applications, 2nd edn. (Springer, Berlin, 2002)

    Book  MATH  Google Scholar 

  44. S. Karlin, Total Positivity, vol. 1 (Stanford University Press, Palo Alto, 1968)

    MATH  Google Scholar 

  45. S. Karlin, J. McGregor, Coincidence probabilities. Pac. J. Math. 9(6), 1141–1164 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  46. S. Karlin, H.M. Taylor, A Second Course in Stochastic Processes (Academic, Cambridge, 1981)

    MATH  Google Scholar 

  47. W. König, N. O’Connell, Eigenvalues of the laguerre process as non-colliding squared bessel processes. Electron. Commun. Probab. 6, 107–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. Y. Le Jan, O. Raimond, Flows, coalescence and noise. Ann. Probab. 32(2), 1247–1315 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. C. Lun, Eigenvalues of a Hermitian matrix of Brownian motions with drift. M.Sc. Thesis, University of Warwick (2012)

    Google Scholar 

  50. K. Matetski, J. Quastel, D. Remenik, The KPZ fixed point (2017). https://arxiv.org/abs/1701.00018

  51. O. Mazet, Classification des semi-groupes de diffusion sur \(\mathbb {R}\) associes a une famille de polynomes orthogonaux. Seminaire de probabilités de Strasbourg 31, 40–53 (1997)

    Google Scholar 

  52. H.P. McKean, Elementary solutions for certain parabolic partial differential equations. Trans. Am. Math. Soc. 82, 519–548 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  53. E. Meckes, Concentration of measure and the compact classical matrix groups. Lecture Notes, IAS Program for Women and Mathematics (2014). https://www.math.ias.edu/files/wam/Haarnotes-revised

  54. N. O’Connell, Directed polymers and the quantum Toda lattice. Ann. Probab. 40(2), 437–458 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. S. Pal, M. Shkolnikov, Intertwining diffusions and wave equations (2015). https://arxiv.org/abs/1306.0857

  56. E.J. Pauwels, L.C.G. Rogers, Skew-product decompositions of Brownian motions, in Geometry of Random Motion, ed. by R. Durrett, M. Pinsky. Contemporary Mathematics, vol. 73 (American Mathematical Society, Providence, 1988), pp. 237–262

    Google Scholar 

  57. D. Revuz, M. Yor, Continuous Martingales and Brownian Motion. A Series of Comprehensive Studies in Mathematics, vol. 293, 3rd edn. (Springer, Berlin, 1999)

    Google Scholar 

  58. L.C.G. Rogers, J. Pitman, Markov functions. Ann. Probab. 9(4), 573–582 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  59. G. Schutz, Exact solution of the master equation for the asymmetric exclusion process. J. Stat. Phys. 88(1), 427–445 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  60. D. Siegmund, The equivalence of absorbing and reflecting barrier problems for stochastically Monotone Markov processes. Ann. Probab. 4(6), 914–924 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  61. L. Slominski, T. Wojciechowski, Stochastic differential equations with time-dependent reflecting barriers. Stochastics Int. J. Probab. Stochastic Process. 85(1), 27–47 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  62. D.W. Stroock, Partial Differential Equations for Probabilists. Cambridge Studies in Advanced Mathematics, vol. 112 (Cambridge University Press, Cambridge, 2008)

    Google Scholar 

  63. Y. Sun, Laguerre and Jacobi analogues of the Warren process (2016). https://arxiv.org/abs/1610.01635

  64. B. Sutherland, Exact results for a quantum many-body problem in one dimension. Phys. Rev. A 4, 2019–2021 (1971)

    Article  Google Scholar 

  65. B. Tóth, Generalized ray−knight theory and limit theorems for self-interacting random walks on \(\mathbb {Z}^1\). Ann. Probab. 24(3), 1324–1367 (1996)

    Google Scholar 

  66. J. Warren, Dyson’s Brownian motions,intertwining and interlacing. Electron. J. Probab. 12, 573–590 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  67. J. Warren, S. Watanabe, On the spectra of noises associated with Harris flows. Adv. Stud. Pure Math. 41, 351–373 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  68. J. Warren, P. Windridge, Some examples of dynamics for gelfand-tsetlin patterns. Electron. J. Probab. 14, 1745–1769 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  69. T. Weiss, P. Ferrari, H. Spohn, Reflected Brownian Motions in the KPZ Universality Class. Springer Briefs in Mathematical Physics, vol. 18, 1st edn. (Springer, Berlin, 2017)

    Google Scholar 

Download references

Acknowledgements

Research of N.O’C. supported by ERC Advanced Grant 669306. Research of T.A. supported through the MASDOC DTC grant number EP/HO23364/1. We would like to thank an anonymous referee for many useful comments and suggestions which have led to many improvements in presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Assiotis .

Editor information

Editors and Affiliations

Appendix

Appendix

We collect here the proofs of some of the facts regarding conjugate diffusions that were stated and used in previous sections.

We first give the derivation of the table on the boundary behaviour of a diffusion and its conjugate. Keeping with the notation of Sect. 13.2 consider the following quantities with x ∈ I arbitrary,

$$\displaystyle \begin{aligned} & N(l)=\int_{(l^+,x]}^{}(s(x)-s(y))M(dy)=\int_{(l^+,x]}^{}(s(x)-s(y))m(y)dy ,\\ &\Sigma(l)=\int_{(l^+,x]}^{}(M(x)-M(y))s(dy)=\int_{(l^+,x]}^{}(M(x)-M(y))s'(y)dy. \end{aligned} $$

We then have the following classification of the boundary behaviour at l (see e.g. [29]):

  • l is an entrance boundary iff N(l) < ,  Σ(l) = .

  • l is a exit boundary iff N(l) = ,  Σ(l) < .

  • l is a natural boundary iff N(l) = ,  Σ(l) = .

  • l is a regular boundary iff N(l) < ,  Σ(l) < .

From the relations \(\hat {s}'(x)=m(x)\) and \(\hat {m}(x)=s'(x)\) we obtain the following,

$$\displaystyle \begin{aligned} &\hat{N}(l)=\int_{(l^+,x]}^{}(\hat{s}(x)-\hat{s}(y))\hat{m}(y)dy=\Sigma(l),\\ &\hat{\Sigma}(l)=\int_{(l^+,x]}^{}(\hat{M}(x)-\hat{M}(y))\hat{s}'(y)dy=N(l). \end{aligned} $$

These relations immediately give us the table on boundary behaviour, namely: If l is an entrance boundary for X, then it is exit for \(\hat {X}\) and vice versa. If l is natural for X, then so it is for its conjugate. If l is regular for X, then so it is for its conjugate. In this instance as already stated in Sect. 13.2 we define the conjugate diffusion \(\hat {X}\) to have boundary behaviour dual to that of X, namely if l is reflecting for X then it is absorbing for \(\hat {X}\) and vice versa.

Proof (Proof of Lemma 2.1)

There is a total number of 52 boundary behaviours (5 at l and 5 at r) for the L-diffusion (the boundary behaviour of \(\hat {L}\) is completely determined from L as explained above) however since the boundary conditions for an entrance and regular reflecting (\(\mathcal {D}_sv=0\)) and similarly for an exit and regular absorbing boundary (\(\mathcal {D}_m\mathcal {D}_sv=0\)) are the same we can pair them to reduce to 32 cases (b.c.(l), b.c.(r)) abbreviated as follows:

$$\displaystyle \begin{aligned} & (nat,nat),(ref,ref),(abs,abs),(nat,abs),(ref,abs),\\ & \quad (abs,ref),(abs,nat),(nat,ref),(ref,nat). \end{aligned} $$

We now make some further reductions. Note that for x, y ∈ I,

$$\displaystyle \begin{aligned} \mathsf{P}_t {\mathbf{1}}_{[l,y]}(x)=\hat{\mathsf{P}}_t {\mathbf{1}}_{[x,r]}(y) \iff \mathsf{P}_t {\mathbf{1}}_{[y,r]}(x)=\hat{\mathsf{P}}_t {\mathbf{1}}_{[l,x]}(y). \end{aligned} $$

After swapping x ↔ y this is equivalent to,

$$\displaystyle \begin{aligned} \hat{\mathsf{P}}_t {\mathbf{1}}_{[l,y]}(x)=\mathsf{P}_t {\mathbf{1}}_{[x,r]}(y). \end{aligned} $$

So we have a bijection that swaps boundary conditions with their duals \((\mathsf {b.c.}(l),\mathsf {b.c.}(r))\leftrightarrow (\widehat {\mathsf {b.c.}(l)},\widehat {\mathsf {b.c.}(r)})\). Moreover, if \(\mathfrak {h}:(l,r)\to (l,r)\) is any homeomorphism such that \(\mathfrak {h}(l)=r,\mathfrak {h}(r)=l\) and writing Ht for the semigroup associated with the \(\mathfrak {h}(X)(t)\)-diffusion and similarly \(\hat {\mathsf {H}}_t\) for the semigroup associated with the \(\mathfrak {h}(\hat {X})(t)\)-diffusion we see that,

$$\displaystyle \begin{aligned} \mathsf{P}_t {\mathbf{1}}_{[l,y]}(x)=\hat{\mathsf{P}}_t {\mathbf{1}}_{[x,r]}(y) \ \ \forall x,y \in I^\circ \iff \mathsf{H}_t {\mathbf{1}}_{[l,y]}(x)=\hat{\mathsf{H}}_t {\mathbf{1}}_{[x,r]}(y) \ \ \forall x,y \in I^{\circ}. \end{aligned} $$

And we furthermore observe that, the boundary behaviour of the \(\mathfrak {h}(X)(t)\)-diffusion at l is the boundary behaviour of the L-diffusion at r and its boundary behaviour at r is that of the L-diffusion at l and similarly for \(\mathfrak {h}(\hat {X})(t)\). We thus obtain an equivalent problem where now (b.c.(l), b.c.(r)) ↔ (b.c.(r), b.c.(l)). Putting it all together, we reduce to the following 4 cases since all others can be obtained from the transformations above,

$$\displaystyle \begin{aligned} (nat,nat),(ref,nat),(ref,ref),(ref,abs). \end{aligned} $$

The first case is easy since there are no boundary conditions to keep track of and is omitted. The second case is the one originally considered by Siegmund and studied extensively in the literature (see e.g. [21] for a proof). We give the proof for the last two cases.

First, assume l and r are regular reflecting for X and so absorbing for \(\hat {X}\). Let \(\mathcal {R}_{\lambda }\) and \(\hat {\mathcal {R}}_{\lambda }\) be the resolvent operators associated with Pt and \(\hat {\mathsf {P}}_t\) then with f being a continuous function with compact support in I the function \(u=\mathcal {R}_{\lambda }f\) solves Poisson’s equation \(\mathcal {D}_m\mathcal {D}_su-\lambda u=-f\) with \(\mathcal {D}_su(l^+)=0, \mathcal {D}_su(r^-)=0\). Apply \(\mathcal {D}_m^{-1}\) defined by \(\mathcal {D}_m^{-1}f(y)=\int _{l}^{y}m(z)f(z)dz\) for y ∈ I to obtain \(\mathcal {D}_su-\lambda \mathcal {D}_m^{-1} u=-\mathcal {D}_m^{-1}f\) which can be written as,

$$\displaystyle \begin{aligned} \mathcal{D}_{\hat{m}}\mathcal{D}_{\hat{s}}\mathcal{D}_m^{-1}u-\lambda\mathcal{D}_m^{-1} u=-\mathcal{D}_m^{-1}f. \end{aligned} $$

So \(v=\mathcal {D}_m^{-1}u\) solves Poisson’s equation with \(g=\mathcal {D}_m^{-1}f\),

$$\displaystyle \begin{aligned} \mathcal{D}_{\hat{m}}\mathcal{D}_{\hat{s}}v-\lambda v=-g, \end{aligned} $$

with the boundary conditions \(\mathcal {D}_{\hat {m}}\mathcal {D}_{\hat {s}}v(l^+)=\mathcal {D}_{s}\mathcal {D}_{m}\mathcal {D}_{m}^{-1}u(l^+)=\mathcal {D}_s u(l^+)=0\) and \(\mathcal {D}_{\hat {m}}\mathcal {D}_{\hat {s}}v(r^-)=0\). Now in the second case when l is reflecting and r absorbing we would like to check the reflecting boundary condition for \(v=\mathcal {D}_m^{-1}u\) at r. Namely, that \((\mathcal {D}_{\hat {s}})v(r^-)=0\) and note that this is equivalent to \((\mathcal {D}_{m})v(r^-)=u(r^-)=0\). This then follows from the fact that (since r is now absorbing for the L-diffusion) \((\mathcal {D}_m\mathcal {D}_s)u(r^-)=0\) and that f is of compact support. The proof proceeds in the same way for both cases, by uniqueness of solutions to Poisson’s equation (see e.g. Section 3.7 of [39]) this implies \(v= \hat {\mathcal {R}}_{\lambda }g\) and thus we may rewrite the relationship as,

$$\displaystyle \begin{aligned} \mathcal{D}_m^{-1}\mathcal{R}_{\lambda}f= \hat{\mathcal{R}}_{\lambda}\mathcal{D}_m^{-1}f. \end{aligned} $$

Let now f approximate δx with x ∈ I to obtain with rλ(x, z) the resolvent density of \(\mathcal {R}_{\lambda }\) with respect to the speed measure in I× I,

$$\displaystyle \begin{aligned} \int_{l}^{y}r_{\lambda}(z,x)m(z)dz=m(x)\hat{\mathcal{R}}_{\lambda}{\mathbf{1}}_{[x,r]}(y). \end{aligned} $$

Since rλ(z, x)m(z) = m(x)rλ(x, z) we obtain,

$$\displaystyle \begin{aligned} \mathcal{R}_{\lambda}{\mathbf{1}}_{[l,y]}(x)=\hat{\mathcal{R}}_{\lambda}{\mathbf{1}}_{[x,r]}(y), \end{aligned} $$

and the result follows by uniqueness of Laplace transforms.

It is certainly clear to the reader that the proof only works for x, y in the interior I. In fact the lemma is not always true if we allow x, y to take the values l, r. To wit, first assume x = l so that we would like,

$$\displaystyle \begin{aligned} \mathsf{P}_t {\mathbf{1}}_{[l,y]}(l)\overset{?}{=}\hat{\mathsf{P}}_t {\mathbf{1}}_{[l,r]}(y)=1 \ \forall y. \end{aligned} $$

This is true if and only if l is either absorbing, exit or natural for the L-diffusion (where in the case of a natural boundary we understand Pt1[l,y](l) as limxlPt1[l,y](x)). Analogous considerations give the following: The statement of Lemma 13.1 remains true with x = r if r is either a natural, reflecting or entrance boundary point for the L-diffusion. Enforcing the exact same boundary conditions gives that the statement remains true with y taking values on the boundary of I.

Remark 13.15

For the reader who is familiar with the close relationship between duality and intertwining first note that with the L-diffusion satisfying the boundary conditions in the paragraph above and denoting as in Sect. 13.2 by Pt the semigroup associated with an L-diffusion killed (not absorbed) at l our duality relation becomes,

$$\displaystyle \begin{aligned} P_t {\mathbf{1}}_{[x,r]}(y)=\hat{\mathsf{P}}_t {\mathbf{1}}_{[l,y]}(x) . \end{aligned} $$

It is then a simple exercise, see Proposition 5.1 of [16] for the general recipe of how to do this, that this is equivalent to the intertwining relation,

$$\displaystyle \begin{aligned} P_t\Lambda=\Lambda\hat{\mathsf{P}}_t, \end{aligned} $$

where Λ is the unnormalized kernel given by \((\Lambda f)(x)=\int _{l}^{x}\hat {m}(z)f(z)dz\). This is exactly the intertwining relation obtained in (13.26) with n1 = n2 = 1.

Entrance Laws

For x ∈ I and \(\mathfrak {h}_n\) a positive eigenfunction of \(P_t^n\) we would like to compute the following limit that defines our entrance law \(\mu _t^x\left (\mathbf {y}\right )\) (with respect to Lebesgue measure) and corresponds to starting the Markov process \(P^{n,\mathfrak {h}_n}_t\) from (x, ⋯ , x),

$$\displaystyle \begin{aligned} \mu_t^x\left(\mathbf{y}\right):=\lim_{(x_1,\cdots,x_n)\to x \mathbf{1}}e^{-\lambda t}\frac{\mathfrak{h}_n(y_1,\cdots,y_n)}{\mathfrak{h}_n(x_1,\cdots,x_n)}\det\left(p_t(x_i,y_j)\right)^n_{i,j=1} . \end{aligned} $$

Note that, since as proven in Sect. 13.3.10 all eigenfunctions built from the intertwining kernels are of the form \(\det \left (h_i(x_j)\right )^n_{i,j=1}\) we will restrict to computing,

$$\displaystyle \begin{aligned} \mu_t^x\left(\mathbf{y}\right):= e^{-\lambda t}\det\left(h_i(y_j)\right)^n_{i,j=1}\lim_{(x_1,\cdots,x_n)\to x\mathbf{1}}\frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\det\left(h_i(x_j)\right)^n_{i,j=1}}. \end{aligned} $$

If we now assume that pt(⋅, y) ∈ Cn−1t > 0, y ∈ I and similarly hi(⋅) ∈ Cn−1 (in fact we only need to require this in a neighbourhood of x) we have,

$$\displaystyle \begin{aligned} \lim_{(x_1,\cdots,x_n)\to x\mathbf{1}}\frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\det\left(h_i(x_j)\right)^n_{i,j=1}}&=\lim_{(x_1,\cdots,x_n)\to x\mathbf{1}}\frac{\det\left(x_j^{i-1}\right)^n_{i,j=1}}{\det\left(h_i(x_j)\right)^n_{i,j=1}}\\ & \quad \times \frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\det\left(x_j^{i-1}\right)^n_{i,j=1}}\\ &=\frac{1}{\det\left(\partial^{i-1}_xh_j(x)\right)^n_{i,j=1}}\\ & \quad \times \det\left(\partial^{i-1}_xp_t(x,y_j)\right)^n_{i,j=1}. \end{aligned} $$

For the fact that the Wronskian, \(\det \left (\partial ^{i-1}_xh_j(x)\right )^n_{i,j=1}>0\) and in particular does not vanish see Sect. 13.3.10. Thus,

$$\displaystyle \begin{aligned} \mu_t^x\left(\mathbf{y}\right)=const_{x,t}\times \det\left(h_i(y_j)\right)^n_{i,j=1}\det\left(\partial^{i-1}_xp_t(x,y_j)\right)^n_{i,j=1}, \end{aligned} $$

is given by a biorthogonal ensemble as in (13.29). The following lemma, which is an adaptation of Lemma 3.2 of [47] to our general setting, gives some more explicit information.

Lemma 13.4

Assume that for x′ in a neighbourhood of x there is a convergent Taylor expansiont > 0, y  I,

$$\displaystyle \begin{aligned} \frac{p_t(x',y)}{p_t(x,y)}=f(t,x')\sum_{i=0}^{\infty}\left(x'-x\right)^i\phi_i(t,y), \end{aligned} $$

for some functions f, {ϕi}i≥0 that in particular satisfy f(t, x)ϕ0(t, y) ≡ 1. Then \(\mu _t^x\left (\mathbf {y}\right )\) is given by the biorthogonal ensemble,

$$\displaystyle \begin{aligned} const_{x,t}\times \det\left(h_i(y_j)\right)^n_{i,j=1} \det\left(\phi_{i-1}(t,y_j)\right)^n_{i,j=1} \prod_{i=1}^{n}p_t(x,y_i). \end{aligned} $$

If moreover we assume that we have a factorization ϕi(t, y) = yigi(t) then \(\mu _t^x\left (\mathbf {y}\right )\) is given by the polynomial ensemble,

$$\displaystyle \begin{aligned} const^{\prime}_{x,t} \times \det\left(h_i(y_j)\right)^n_{i,j=1}\det\left(y^{i-1}_j\right)^n_{i,j=1} \prod_{i=1}^{n}p_t(x,y_i). \end{aligned} $$

Proof

By expanding the Karlin–McGregor determinant and plugging in the Taylor expansion above we obtain,

$$\displaystyle \begin{aligned} \frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\prod_{i=1}^{n}p_t(x,y_i)}&=\prod_{i=1}^{n}f(t,x_i)\sum_{k_1,\cdots,k_n \ge 0}^{}\prod_{i=1}^{n}\left(x_i-x\right)^{k_i}\\ & \quad \times \sum_{\sigma \in \mathfrak{S}_n}^{} sign(\sigma)\prod_{i=1}^{n}\phi_{k_i}(t,y_{\sigma(i)})\\ &=\prod_{i=1}^{n}f(t,x_i)\sum_{k_1,\cdots,k_n \ge 0}^{}\prod_{i=1}^{n}\left(x_i-x\right)^{k_i}\det\left(\phi_{k_i}(t,y_j)\right)^n_{i,j=1}. \end{aligned} $$

First, note that we can restrict to k1, ⋯kn distinct otherwise the determinant vanishes. Moreover, we can in fact restrict the sum over k1, ⋯ , kn ≥ 0 to k1, ⋯ , kn ordered by replacing k1, ⋯ , kn by kτ(1), ⋯ , kτ(n) and summing over \(\tau \in \mathfrak {S}_n\) to arrive at the following expansion,

$$\displaystyle \begin{aligned} \frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\prod_{i=1}^{n}p_t(x,y_i)}&=\prod_{i=1}^{n}f(t,x_i)\\ & \quad \sum_{0\le k_1<k_2<\cdots<k_n }^{}\det\left(\left(x_j-x\right)^{k_i}\right)^n_{i,j=1}\det\left(\phi_{k_i}(t,y_j)\right)^n_{i,j=1}. \end{aligned} $$

Now, write with k = (0 ≤ k1 < ⋯ < kn) ,

$$\displaystyle \begin{aligned} \chi_{\mathbf{k}}(z_1,\cdots,z_n)=\frac{\det\left(z^{k_i}_j\right)^n_{i,j=1}}{\det\left(z^{i-1}_j\right)^n_{i,j=1}}, \end{aligned} $$

for the Schur function and note that \(\lim _{(z_1,\cdots ,z_n)\to 0}\chi _{\mathbf {k}}(z_1,\cdots ,z_n)=0\) unless k = (0, ⋯ , n − 1) in which case we have χk ≡ 1. We can now finally compute,

$$\displaystyle \begin{aligned} &\lim_{(x_1,\cdots,x_n)\to x\mathbf{1}} \frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\det\left(x_j^{i-1}\right)^n_{i,j=1}}\\ & \quad =\lim_{(x_1,\cdots,x_n)\to x\mathbf{1}} \frac{\det\left(p_t(x_i,y_j)\right)^n_{i,j=1}}{\det\left((x_j-x)^{i-1}\right)^n_{i,j=1}}=\prod_{i=1}^{n}p_t(x,y_i)\\ & \qquad \times \lim_{(x_1,\cdots,x_n)\to x\mathbf{1}} \prod_{i=1}^{n}f(t,x_i)\\ & \qquad \times \sum_{0\le k_1<k_2<\cdots<k_n }^{}\chi_{\mathbf{k}}(x_1-x,\cdots,x_n-x)\det\left(\phi_{k_i}(t,y_j)\right)^n_{i,j=1}\\ & \quad =f^n(t,x)\times \prod_{i=1}^{n}p_t(x,y_i)\det\left(\phi_{i-1}(t,y_j)\right)^n_{i,j=1}. \end{aligned} $$

The first statement of the lemma now follows with,

$$\displaystyle \begin{aligned} const_{x,t}=e^{-\lambda t} f^n(t,x)\frac{1}{\det\left(\partial^{i-1}_xh_j(x)\right)^n_{i,j=1}}. \end{aligned} $$

The fact that when ϕi(t, y) = yigi(t) we obtain a polynomial ensemble is then immediate.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Assiotis, T., O’Connell, N., Warren, J. (2019). Interlacing Diffusions. In: Donati-Martin, C., Lejay, A., Rouault, A. (eds) Séminaire de Probabilités L. Lecture Notes in Mathematics(), vol 2252. Springer, Cham. https://doi.org/10.1007/978-3-030-28535-7_13

Download citation

Publish with us

Policies and ethics