Skip to main content

A Random Field Computational Adaptive Optics Framework for Optical Coherence Microscopy

  • Conference paper
  • First Online:
  • 1492 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11663))

Abstract

A novel random field computational adaptive optics (R-CAO) framework is proposed to jointly correct for optical aberrations and speckle noise issues in optical coherence microscopy (OCM) and thus overcome the depth-of-field limitation in OCM imaging. The performance of the R-CAO approach is validated using OCM tomograms acquired from a standard USAF target and a phantom comprised of 1 \({\upmu }\)m diameter microspheres embedded in agar gel. The R-CAO reconstructed OCM tomograms show reduced optical aberrations and speckle noise over the entire depth of imaging compared to the existing state-of-the-art computational adaptive optics algorithms such as the regularized maximum likelihood computational adaptive optics (RML-CAO) method. The reconstructed images using the proposed R-CAO framework show the usefulness of this method for the quality enhancement of OCM imaging over different imaging depths.

The authors would like to thank Natural Science and Engineering Research Counsel of Canada, Canadian Institutes of Health Research, and the Canada Research Chairs program.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adie, S.G., Graf, B.W., Ahmad, A., Carney, P.S., Boppart, S.A.: Computational adaptive optics for broadband optical interferometric tomography of biological tissue. Proc. Nat. Acad. Sci. 109(19), 7175–7180 (2012)

    Article  Google Scholar 

  2. Hojjatoleslami, S., Avanaki, M., Podoleanu, A.G.: Image quality improvement in optical coherence tomography using lucy-richardson deconvolution algorithm. Appl. Opt. 52(23), 5663–5670 (2013)

    Article  Google Scholar 

  3. Izatt, J.A., Hee, M.R., Owen, G.M., Swanson, E.A., Fujimoto, J.G.: Optical coherence microscopy in scattering media. Opt. Lett. 19(8), 590–592 (1994)

    Article  Google Scholar 

  4. Kumar, A., Drexler, W., Leitgeb, R.A.: Subaperture correlation based digital adaptive optics for full field optical coherence tomography. Opt. Express 21(9), 10850–10866 (2013)

    Article  Google Scholar 

  5. Kumar, A., Kamali, T., Platzer, R., Unterhuber, A., Drexler, W., Leitgeb, R.A.: Anisotropic aberration correction using region of interest based digital adaptive optics in fourier domain OCT. Biomed. Opt. express 6(4), 1124–1134 (2015)

    Article  Google Scholar 

  6. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: probabilistic models for segmenting and labeling sequence data. In: Proceedings of the Eighteenth International Conference on Machine Learning, ICML, vol. 1, pp. 282–289 (2001)

    Google Scholar 

  7. Liu, Y., Liang, Y., Mu, G., Zhu, X.: Deconvolution methods for image deblurring in optical coherence tomography. JOSA A 26(1), 72–77 (2009)

    Article  Google Scholar 

  8. Liu, Y.Z., et al.: Computed optical interferometric tomography for high-speed volumetric cellular imaging. Biomed. Opt. Express 5(9), 2988–3000 (2014)

    Article  Google Scholar 

  9. Merino, D., Dainty, C., Bradu, A., Podoleanu, A.G.: Adaptive optics enhanced simultaneous en-face optical coherence tomography and scanning laser ophthalmoscopy. Opt. Express 14(8), 3345–3353 (2006)

    Article  Google Scholar 

  10. Miller, D., Kocaoglu, O., Wang, Q., Lee, S.: Adaptive optics and the eye (super resolution OCT). Eye 25(3), 321–330 (2011)

    Article  Google Scholar 

  11. Ralston, T.S., Adie, S.G., Marks, D.L., Boppart, S.A., Carney, P.S.: Cross-validation of interferometric synthetic aperture microscopy and optical coherence tomography. Opt. Lett. 35(10), 1683–1685 (2010)

    Article  Google Scholar 

  12. Ralston, T.S., Marks, D.L., Carney, P.S., Boppart, S.A.: Interferometric synthetic aperture microscopy. Nat. Phys. 3(2), 129–134 (2007)

    Article  Google Scholar 

  13. Ralston, T.S., Marks, D.L., Kamalabadi, F., Boppart, S.A.: Deconvolution methods for mitigation of transverse blurring in optical coherence tomography. IEEE Trans. Image Process. 14(9), 1254–1264 (2005)

    Article  Google Scholar 

  14. Shafiee, M., Wong, A., Siva, P., Fieguth, P.: Efficient bayesian inference using fully connected conditional random fields with stochastic cliques. In: 2014 IEEE International Conference on Image Processing (ICIP), pp. 4289–4293. IEEE (2014)

    Google Scholar 

  15. Shemonski, N.D., Adie, S.G., Liu, Y.Z., South, F.A., Carney, P.S., Boppart, S.A.: Stability in computed optical interferometric tomography (part i): stability requirements. Opt. Express 22(16), 19183–19197 (2014)

    Article  Google Scholar 

  16. Shi, G., Dai, Y., Wang, L., Ding, Z., Rao, X., Zhang, Y.: Adaptive optics optical coherence tomography for retina imaging. Chin. Opt. Lett. 6(6), 424–425 (2008)

    Article  Google Scholar 

  17. Tikhonov, A.N., Arsenin, V.Y.: Solutions of Ill-Posed Problems (1977)

    Google Scholar 

  18. Wainwright, M.J., Jordan, M.I.: Graphical Models, Exponential Families, and Variational Inference. Foundations and Trends® in Machine Learning, vol. 1, no. 1–2, pp. 1–305 (2008)

    Article  Google Scholar 

  19. Woolliams, P.D., Ferguson, R.A., Hart, C., Grimwood, A., Tomlins, P.H.: Spatially deconvolved optical coherence tomography. Appl. Opt. 49(11), 2014–2021 (2010)

    Article  Google Scholar 

  20. Yildiz, A., Akgul, Y.S.: A gradient descent approximation for graph cuts. In: Denzler, J., Notni, G., Süße, H. (eds.) DAGM 2009. LNCS, vol. 5748, pp. 312–321. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03798-6_32

    Chapter  Google Scholar 

  21. Yu, L., et al.: Improved lateral resolution in optical coherence tomography by digital focusing using two-dimensional numerical diffraction method. Opt. Express 15(12), 7634–7641 (2007)

    Article  Google Scholar 

  22. Zawadzki, R.J., et al.: Integrated adaptive optics optical coherence tomography and adaptive optics scanning laser ophthalmoscope system for simultaneous cellular resolution in vivo retinal imaging. Biomed. Opt. Express 2(6), 1674–1686 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Wong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Boroomand, A., Tan, B., Shafiee, M.J., Bizheva, K., Wong, A. (2019). A Random Field Computational Adaptive Optics Framework for Optical Coherence Microscopy. In: Karray, F., Campilho, A., Yu, A. (eds) Image Analysis and Recognition. ICIAR 2019. Lecture Notes in Computer Science(), vol 11663. Springer, Cham. https://doi.org/10.1007/978-3-030-27272-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-27272-2_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-27271-5

  • Online ISBN: 978-3-030-27272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics