Skip to main content

Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity

  • Chapter
  • First Online:
Reviews on Biomarker Studies in Aging and Anti-Aging Research

Part of the book series: Advances in Experimental Medicine and Biology ((PMISB,volume 1178))

Abstract

The quest for increased human longevity has been a goal of mankind throughout recorded history. Recent molecular studies are now providing potentially useful insights into the aging process which may help to achieve at least some aspects of this quest. This chapter will summarize the main findings of these studies with a focus on long-lived mutant mice and worms, and the longest living natural species including Galapagos giant tortoises, bowhead whales, Greenland sharks, quahog clams and the immortal jellyfish.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 189.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitney CR (1997) Jeanne Calment, World’s Elder, Dies at 122. The New York Times (5 August 1997). New York, NY, USA. Retrieved 16 January 2019. https://www.nytimes.com/1997/08/05/world/jeanne-calment-world-s-elder-dies-at-122.html

  2. Allard M, Lèbre V, Calment J, Robine J-M, Calment J (1999) Jeanne Calment: from Van Gogh’s time to ours, 122 extraordinary years. Thorndike Press. ISBN: 0786217774

    Google Scholar 

  3. Tower J (2017) Sex-specific gene expression and life span regulation. Trends Endocrinol Metab 28(10):735–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. https://www.who.int/gho/mortality_burden_disease/life_tables/situation_trends_text/en/

  5. Bein MA, Unlucan D, Olowu G, Kalifa W (2017) Healthcare spending and health outcomes: evidence from selected East African countries. Afr Health Sci 17(1):247–254

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bilas V, Franc S, Bosnjak M (2014) Determinant factors of life expectancy at birth in the European union countries. Coll Antropol 38(1):1–9

    PubMed  Google Scholar 

  7. http://apps.who.int/medicinedocs/en/m/abstract/Js18806en/

  8. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death

  9. http://apps.who.int/medicinedocs/en/m/abstract/Js18804en/

  10. Hill TR, Mendonça N, Granic A, Siervo M, Jagger C, Seal CJ et al (2016) What do we know about the nutritional status of the very old? Insights from three cohorts of advanced age from the UK and New Zealand. Proc Nutr Soc 75(3):420–430

    Article  PubMed  Google Scholar 

  11. Evert J, Lawler E, Bogan H, Perls T (2003) Morbidity profiles of centenarians: survivors, delayers, and escapers. J Gerontol A Biol Sci Med Sci 58(3):232–237

    Article  PubMed  Google Scholar 

  12. Andersen SL, Sebastiani P, Dworkis DA, Feldman L, Perls TT (2012) Health span approximates life span among many supercentenarians: compression of morbidity at the approximate limit of life span. J Gerontol A Biol Sci Med Sci 67(4):395–405

    Article  PubMed  Google Scholar 

  13. Sebastiani P, Sun FX, Andersen SL, Lee JH, Wojczynski MK, Sanders JL et al (2013) Families enriched for exceptional longevity also have increased health-span: findings from the long life family study. Front Public Health 1:38. https://doi.org/10.3389/fpubh.2013.00038

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martin P, Kelly N, Kahana B, Kahana E, Willcox BJ, Willcox DC et al (2015) Defining successful aging: a tangible or elusive concept? Gerontologist 55(1):14–25

    Article  PubMed  Google Scholar 

  15. Ha MK, Soo Cho J, Baik OR, Lee KH, Koo HS, Chung KY (2006) Caenorhabditis elegans as a screening tool for the endothelial cell-derived putative aging-related proteins detected by proteomic analysis. Proteomics 6(11):3339–3351

    Article  CAS  PubMed  Google Scholar 

  16. Bell R, Hubbard A, Chettier R, Chen D, Miller JP, Kapahi P et al (2009) A human protein interaction network shows conservation of aging processes between human and invertebrate species. PLoS Genet 5(3):e1000414. https://doi.org/10.1371/journal.pgen.1000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Austad SN (2010) Methusaleh’s zoo: how nature provides us with clues for extending human health span. J Comp Pathol 142 Suppl 1:S10–S21. https://doi.org/10.1016/j.jcpa.2009.10.024

    Article  CAS  PubMed  Google Scholar 

  18. Semeiks J, Grishin NV (2012) A method to find longevity-selected positions in the mammalian proteome. PLoS One 7(6):e38595. https://doi.org/10.1371/journal.pone.0038595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bodnar A (2013) Proteomic profiles reveal age-related changes in coelomic fluid of sea urchin species with different life spans. Exp Gerontol 48(5):525–530

    Article  CAS  PubMed  Google Scholar 

  20. De Waal EM, Liang H, Pierce A, Hamilton RT, Buffenstein R, Chaudhuri AR (2013) Elevated protein carbonylation and oxidative stress do not affect protein structure and function in the long-living naked-mole rat: a proteomic approach. Biochem Biophys Res Commun 434(4):815–819

    Article  CAS  PubMed  Google Scholar 

  21. Seim I, Ma S, Zhou X, Gerashchenko MV, Lee SG, Suydam R et al (2014) The transcriptome of the bowhead whale Balaena mysticetus reveals adaptations of the longest-lived mammal. Aging (Albany NY) 6(10):879–899

    Article  CAS  Google Scholar 

  22. Keane M, Semeiks J, Webb AE, Li YI, Quesada V, Craig T et al (2015) Insights into the evolution of longevity from the bowhead whale genome. Cell Rep 10(1):112–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Triplett JC, Swomley A, Kirk J, Lewis K, Orr M, Rodriguez K et al (2015) Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat. J Neurochem 134(3):538–550

    Article  CAS  PubMed  Google Scholar 

  24. Ma S, Gladyshev VN (2017) Molecular signatures of longevity: insights from cross-species comparative studies. Semin Cell Dev Biol 70:190–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Willcox DC, Willcox BJ, Hsueh WC, Suzuki M (2006) Genetic determinants of exceptional human longevity: insights from the Okinawa Centenarian Study. Age 28(4):313–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Arnold J, Dai J, Nahapetyan L, Arte A, Johnson MA, Hausman D et al (2010) Predicting successful aging in a population-based sample of Georgia centenarians. Curr Gerontol Geriatr Res. pii:989315. https://doi.org/10.1155/2010/989315

    Article  Google Scholar 

  27. Cho J, Martin P, Poon LW (2012) The older they are, the less successful they become? findings from the Georgia Centenarian Study. J Aging Res 2012:695854. https://doi.org/10.1155/2012/695854

    Article  PubMed  PubMed Central  Google Scholar 

  28. Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Hum Genet 132(12):1323–1338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Newman AB, Murabito JM (2013) The epidemiology of longevity and exceptional survival. Epidemiol Rev 35:181–197

    Article  PubMed  PubMed Central  Google Scholar 

  30. Flachsbart F, Caliebe A, Kleindorp R, Blanché H, von Eller-Eberstein H, Nikolaus S et al (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci U S A 106(8):2700–2705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Jacobsen R, Martinussen T, Christiansen L, Jeune B, Andersen-Ranberg K, Vaupel JW et al (2010) Increased effect of the ApoE gene on survival at advanced age in healthy and long-lived Danes: two nationwide cohort studies. Aging Cell 9(6):1004–1009

    Article  CAS  PubMed  Google Scholar 

  32. Beekman M, Blanché H, Perola M, Hervonen A, Bezrukov V, Sikora E et al (2013) Genome-wide linkage analysis for human longevity: genetics of healthy aging study. Aging Cell 12(2):184–193

    Article  CAS  PubMed  Google Scholar 

  33. Humphreys V, Martin RM, Ratcliffe B, Duthie S, Wood S, Gunnell D et al (2007) Age-related increases in DNA repair and antioxidant protection: a comparison of the Boyd Orr cohort of elderly subjects with a younger population sample. Age Ageing 36(5):521–526

    Article  PubMed  Google Scholar 

  34. Chevanne M, Calia C, Zampieri M, Cecchinelli B, Caldini R, Monti D et al (2007) Oxidative DNA damage repair and parp 1 and parp 2 expression in Epstein-Barr virus-immortalized B lymphocyte cells from young subjects, old subjects, and centenarians. Rejuvenation Res 10(2):191–204

    Article  CAS  PubMed  Google Scholar 

  35. Franzke B, Neubauer O, Wagner KH (2015) Super DNAging—new insights into DNA integrity, genome stability and telomeres in the oldest old. Mutat Res Rev Mutat Res 766:48–57

    Article  CAS  PubMed  Google Scholar 

  36. Kim YJ, Kim HS, Seo YR (2018) Genomic approach to understand the association of DNA repair with longevity and healthy aging using genomic databases of oldest-old population. Oxidative Med Cell Longev 2018:2984730–2984712. https://doi.org/10.1155/2018/2984730

    Article  CAS  Google Scholar 

  37. Levine ME, Crimmins EM (2016) A genetic network associated with stress resistance, longevity, and cancer in humans. J Gerontol A Biol Sci Med Sci 71(6):703–712

    Article  PubMed  Google Scholar 

  38. Westermark B, Nister M, Heldin CH (1985) Growth factors and oncogenes in human malignant glioma. Neurol Clin 3(4):785–799

    Article  CAS  PubMed  Google Scholar 

  39. Haliotis T, Trimble W, Chow S, Mills G, Girard P, Kuo JF et al (1988) The cell biology of ras-induced transformation: insights from studies utilizing an inducible hybrid oncogene system. Anticancer Res 8(5A):935–945

    CAS  PubMed  Google Scholar 

  40. Hattori M, Minato N (2003) Rap1 GTPase: functions, regulation, and malignancy. J Biochem 134(4):479–484

    Article  CAS  PubMed  Google Scholar 

  41. Nagano I, Murakami T, Manabe Y, Abe K (2002) Early decrease of survival factors and DNA repair enzyme in spinal motor neurons of presymptomatic transgenic mice that express a mutant SOD1 gene. Life Sci 72(4–5):541–548

    Article  CAS  PubMed  Google Scholar 

  42. Gems D, Partridge L (2001) Insulin/IGF signalling and ageing: seeing the bigger picture. Curr Opin Genet Dev 11(3):287–292

    Article  CAS  PubMed  Google Scholar 

  43. Richardson A, Liu F, Adamo ML, Van Remmen H, Nelson JF (2004) The role of insulin and insulin-like growth factor-I in mammalian ageing. Best Pract Res Clin Endocrinol Metab 18(3):393–406

    Article  CAS  PubMed  Google Scholar 

  44. Mathew R, Pal Bhadra M, Bhadra U (2017) Insulin/insulin-like growth factor-1 signalling (IIS) based regulation of lifespan across species. Biogerontology 18(1):35–53

    Article  CAS  PubMed  Google Scholar 

  45. Morris BJ, Donlon TA, He Q, Grove JS, Masaki KH, Elliott A et al (2014) Association analyses of insulin signaling pathway gene polymorphisms with healthy aging and longevity in Americans of Japanese ancestry. J Gerontol A Biol Sci Med Sci 69(3):270–273

    Article  CAS  PubMed  Google Scholar 

  46. Kolovou V, Diakoumakou O, Papazafiropoulou AK, Katsiki N, Fragopoulou E, Vasiliadis I et al (2018) Biomarkers and gene polymorphisms in members of long- and short-lived families: a longevity study. Open Cardiovasc Med J 12:59–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ryo M, Nakamura T, Kihara S, Kumada M, Shibazaki S, Takahashi M et al (2004) Adiponectin as a biomarker of the metabolic syndrome. Circ J 68(11):975–981

    Article  CAS  PubMed  Google Scholar 

  48. Bik W, Baranowska B (2009) Adiponectin - a predictor of higher mortality in cardiovascular disease or a factor contributing to longer life? Neuro Endocrinol Lett 30(2):180–184

    CAS  PubMed  Google Scholar 

  49. Cardoso AL, Fernandes A, Aguilar-Pimentel JA, de Angelis MH, Guedes JR, Brito MA et al (2018) Towards frailty biomarkers: candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 47:214–277

    Article  CAS  PubMed  Google Scholar 

  50. Barron E, Lara J, White M, Mathers JC (2015) Blood-borne biomarkers of mortality risk: systematic review of cohort studies. PLoS One 10(6):e0127550. https://doi.org/10.1371/journal.pone.0127550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dellago H, Bobbili MR, Grillari J (2017) MicroRNA-17-5p: at the crossroads of cancer and aging - a mini-review. Gerontology 63(1):20–28

    Article  CAS  PubMed  Google Scholar 

  52. Du WW, Yang W, Fang L, Xuan J, Li H, Khorshidi A et al (2014) miR-17 extends mouse lifespan by inhibiting senescence signaling mediated by MKP7. Cell Death Dis 5:e1355. https://doi.org/10.1038/cddis.2014.305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Arai Y, Hirose N, Yamamura K, Shimizu K, Takayama M, Ebihara Y et al (2001) Serum insulin-like growth factor-1 in centenarians: implications of IGF-1 as a rapid turnover protein. J Gerontol A Biol Sci Med Sci 56(2):M79–M82

    Article  CAS  PubMed  Google Scholar 

  54. Pennington CALERIE Team, Heilbronn LK, de Jonge L, Frisard MI, JP DL, Larson-Meyer DE et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295(13):1539–1548

    Article  Google Scholar 

  55. Everitt AV, Le Couteur DG (2007) Life extension by calorie restriction in humans. Ann N Y Acad Sci 1114:428–433

    Article  PubMed  Google Scholar 

  56. Lettieri-Barbato D, Giovannetti E, Aquilano K (2016) Effects of dietary restriction on adipose mass and biomarkers of healthy aging in human. Aging (Albany NY) 8(12):3341–3355

    Article  CAS  Google Scholar 

  57. Arai Y, Takayama M, Gondo Y, Inagaki H, Yamamura K, Nakazawa S et al (2008) Adipose endocrine function, insulin-like growth factor-1 axis, and exceptional survival beyond 100 years of age. J Gerontol A Biol Sci Med Sci 63(11):1209–1218

    Article  PubMed  Google Scholar 

  58. Barbieri M, Paolisso G, Kimura M, Gardner JP, Boccardi V, Papa M et al (2009) Higher circulating levels of IGF-1 are associated with longer leukocyte telomere length in healthy subjects. Mech Ageing Dev 130(11–12):771–776

    Article  CAS  PubMed  Google Scholar 

  59. Vaziri H, Benchimol S (1996) From telomere loss to p53 induction and activation of a DNA-damage pathway at senescence: the telomere loss/DNA damage model of cell aging. Exp Gerontol 31(1–2):295–301

    Article  CAS  PubMed  Google Scholar 

  60. Djojosubroto MW, Choi YS, Lee HW, Rudolph KL (2003) Telomeres and telomerase in aging, regeneration and cancer. Mol Cells 15(2):164–175

    CAS  PubMed  Google Scholar 

  61. Lenart P, Krejci L (2016) DNA, the central molecule of aging. Mutat Res 786:1–7

    Article  CAS  PubMed  Google Scholar 

  62. Stenholm S, Metter EJ, Roth GS, Ingram DK, Mattison JA, Taub DD et al (2011) Relationship between plasma ghrelin, insulin, leptin, interleukin 6, adiponectin, testosterone and longevity in the Baltimore Longitudinal Study of Aging. Aging Clin Exp Res 23(2):153–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Gonzalez-Covarrubias V, Beekman M, Uh HW, Dane A, Troost J, Paliukhovich I et al (2013) Lipidomics of familial longevity. Aging Cell 12(3):426–434

    Article  CAS  PubMed  Google Scholar 

  64. Montoliu I, Scherer M, Beguelin F, DaSilva L, Mari D, Salvioli S et al (2014) Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY) 6(1):9–25

    Article  CAS  Google Scholar 

  65. Bookheimer SY, Renner BA, Ekstrom A, Li Z, Henning SM, Brown JA et al (2013) Pomegranate juice augments memory and FMRI activity in middle-aged and older adults with mild memory complaints. Evid Based Complement Alternat Med 2013:946298. https://doi.org/10.1155/2013/946298

    Article  PubMed  PubMed Central  Google Scholar 

  66. Semba RD, Ferrucci L, Bartali B, Urpí-Sarda M, Zamora-Ros R, Sun K et al (2014) Resveratrol levels and all-cause mortality in older community-dwelling adults. JAMA Intern Med 174(7):1077–1084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chen YF, Wu CY, Kao CH, Tsai TF (2010) Longevity and lifespan control in mammals: lessons from the mouse. Ageing Res Rev 9 Suppl 1:S28–S35

    Article  PubMed  Google Scholar 

  68. Brown-Borg HM, Bartke A (2012) GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci 67(6):652–660

    Article  CAS  PubMed  Google Scholar 

  69. Bartke A, Westbrook R, Sun L, Ratajczak M (2013) Links between growth hormone and aging. Endokrynol Pol 64(1):46–52

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Carter CS, Ramsey MM, Ingram RL, Cashion AB, Cefalu WT, Wang ZQ et al (2002) Models of growth hormone and IGF-1 deficiency: applications to studies of aging processes and life-span determination. J Gerontol A Biol Sci Med Sci 57(5):B177–B188

    Article  PubMed  Google Scholar 

  71. Parr T (1999) Insulin exposure and unifying aging. Gerontology 45(3):121–135

    Article  CAS  PubMed  Google Scholar 

  72. Katic M, Kahn CR (2005) The role of insulin and IGF-1 signaling in longevity. Cell Mol Life Sci 62(3):320–343

    Article  CAS  PubMed  Google Scholar 

  73. Amrit FR, May RC (2010) Younger for longer: insulin signalling, immunity and ageing. Curr Aging Sci 3(3):166–176

    Article  CAS  PubMed  Google Scholar 

  74. Selman C, Lingard S, Choudhury AI, Batterham RL, Claret M, Clements M et al (2008) Evidence for lifespan extension and delayed age-related biomarkers in insulin receptor substrate 1 null mice. FASEB J 22(3):807–188

    Article  CAS  PubMed  Google Scholar 

  75. Taguchi A, Wartschow LM, White MF (2007) Brain IRS2 signaling coordinates life span and nutrient homeostasis. Science 317:369–372

    Article  CAS  PubMed  Google Scholar 

  76. Selman C, Tullet JM, Wieser D, Irvine E, Lingard SJ, Choudhury AI et al (2009) Ribosomal protein S6 kinase 1 signaling regulates mammalian life span. Science 326:140–144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al (2002) mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110(2):163–175

    Article  CAS  PubMed  Google Scholar 

  78. Hayashi AA, Proud CG (2007) The rapid activation of protein synthesis by growth hormone requires signaling through mTOR. Am J Physiol Endocrinol Metab 292(6):E1647–E1655

    Article  CAS  PubMed  Google Scholar 

  79. Cheng Z, Tseng Y, White MF (2010) Insulin signaling meets mitochondria in metabolism. Trends Endocrinol Metab 21(10):589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Harman D (1956) Aging: a theory based on free radical and radiation chemistry. J Gerontol 11(3):298–300

    Article  CAS  PubMed  Google Scholar 

  81. Jang YC, Van Remmen H (2009) The mitochondrial theory of aging: insight from transgenic and knockout mouse models. Exp Gerontol 44(4):256–260

    Article  CAS  PubMed  Google Scholar 

  82. Yan LJ, Levine RL, Sohal RS (1997) Oxidative damage during aging targets mitochondrial aconitase. Proc Natl Acad Sci U S A 94(21):11168–11172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Edrey YH, Salmon AB (2014) Revisiting an age-old question regarding oxidative stress. Free Radic Biol Med 71:368–378

    Article  CAS  PubMed  Google Scholar 

  84. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR et al (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16(1):29–37

    Article  CAS  PubMed  Google Scholar 

  85. Richters L, Lange N, Renner R, Treiber N, Ghanem A, Tiemann K et al (2006) Exercise-induced adaptations of cardiac redox homeostasis and remodeling in heterozygous SOD2-knockout mice. J Appl Physiol (1985) 111(5):1431–1440

    Article  CAS  Google Scholar 

  86. Hoehn KL, Salmon AB, Hohnen-Behrens C, Turner N, Hoy AJ, Maghzal GJ et al (2009) Insulin resistance is a cellular antioxidant defense mechanism. Proc Natl Acad Sci U S A 106:17787–17792

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Yang H, Roberts LJ, Shi MJ, Zhou LC, Ballard BR, Richardson A et al (2004) Retardation of atherosclerosis by overexpression of catalase or both cu/Zn-superoxide dismutase and catalase in mice lacking apolipoprotein E. Circ Res 95(11):1075–1081

    Article  CAS  PubMed  Google Scholar 

  88. Liu Y, Qi W, Richardson A, Van Remmen H, Ikeno Y, Salmon AB (2013) Oxidative damage associated with obesity is prevented by overexpression of CuZn- or Mn-superoxide dismutase. Biochem Biophys Res Commun 438(1):78–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Borg J, Chereul E (2008) Differential MRI patterns of brain atrophy in double or single transgenic mice for APP and/or SOD. J Neurosci Res 86(15):3275–3284

    Article  CAS  PubMed  Google Scholar 

  90. Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Richfield EK, Buckley B, Mirochnitchenko O (2005) Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced parkinson disease phenotype. J Biol Chem 280(23):22530–22539

    Article  CAS  PubMed  Google Scholar 

  91. Shen X, Zheng S, Metreveli NS, Epstein PN (2006) Protection of cardiac mitochondria by overexpression of MnSOD reduces diabetic cardiomyopathy. Diabetes 55(3):798–805

    Article  CAS  PubMed  Google Scholar 

  92. Dumont M, Wille E, Stack C, Calingasan NY, Beal MF, Lin MT (2009) Reduction of oxidative stress, amyloid deposition, and memory deficit by manganese superoxide dismutase overexpression in a transgenic mouse model of Alzheimer’s disease. FASEB J 23(8):2459–2466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and implications for studies in humans. Am J Clin Nutr 78(3):361–369

    Article  CAS  PubMed  Google Scholar 

  94. Smith JV, Heilbronn LK, Ravussin E (2004) Energy restriction and aging. Curr Opin Clin Nutr Metab Care 7(6):615–622

    Article  PubMed  Google Scholar 

  95. Mahoney LB, Denny CA, Seyfried TN (2006) Caloric restriction in C57BL/6J mice mimics therapeutic fasting in humans. Lipids Health Dis 5:13. https://doi.org/10.1186/1476-511X-5-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Silberberg R (1972) Articular aging and osteoarthrosis in dwarf mice. Pathol Microbiol (Basel) 38(6):417–430

    CAS  Google Scholar 

  97. Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the aging process. Nature 384(6604):33. https://doi.org/10.1038/384033a0

    Article  CAS  PubMed  Google Scholar 

  98. Bartke A, Brown-Borg HM, Bode AM, Carlson J, Hunter WS, Bronson RT (1998) Does growth hormone prevent or accelerate aging? Exp Gerontol 33(7–8):675–687

    Article  CAS  PubMed  Google Scholar 

  99. Hauck S, Bartke A (2000) Effects of growth hormone on hypothalamic Catalase and Cu/Zn superoxide dismutase. Free Rad Biol Med 28(6):970–978

    Article  CAS  PubMed  Google Scholar 

  100. Hunter WS, Croson WB, Bartke A, Gentry MV, Meliska CJ (1999) Low body temperature in long-lived Ames dwarf mice at rest and during stress. Physiol Behav 67(3):433–437

    Article  CAS  PubMed  Google Scholar 

  101. Borg KE, Brown-Borg HM, Bartke A (1995) Assessment of the primary adrenal cortical and pancreatic hormone basal levels in relation to plasma glucose and age in the unstressed Ames dwarf mouse. Proc Soc Exp Biol Med 210(2):126–133

    Article  CAS  PubMed  Google Scholar 

  102. Holder AT, Wallis M, Biggs P, Preece MA (1980) Effects of growth hormone, prolactin and thyroxine on body weight, somatomedin-like activity and in-vivo sulphation of cartilage in hypopituitary dwarf mice. J Endocrinol 85(1):35–47

    Article  CAS  PubMed  Google Scholar 

  103. Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A et al (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6(6):759–767

    Article  CAS  PubMed  Google Scholar 

  104. Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6(4):298–305

    Article  CAS  PubMed  Google Scholar 

  105. Chen D, Steele AD, Lindquist S, Guarente L (2005) Increase in activity during calorie restriction requires Sirt1. Science 310(5754):1641

    Article  CAS  PubMed  Google Scholar 

  106. Accili D, Arden KC (2004) FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117(4):421–426

    Article  CAS  PubMed  Google Scholar 

  107. Albert PS, Riddle DL (1988) Mutants of Caenorhabditis elegans that form dauer-like larvae. Dev Biol 126(2):270–293

    Article  CAS  PubMed  Google Scholar 

  108. Gottlieb S, Ruvkun G (1994) daf-2, daf-16 and daf-23: genetically interacting genes controlling Dauer formation in Caenorhabditis elegans. Genetics 137(1):107–120

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366(6454):461–464

    Article  CAS  PubMed  Google Scholar 

  110. Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95(22):13091–13096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Panowski SH, Wolff S, Aguilaniu H, Durieux J, Dillin A (2007) PHA-4/Foxa mediates diet-restriction-induced longevity of C. elegans. Nature 447(7144):550–555

    Article  CAS  PubMed  Google Scholar 

  112. Fuchs S, Bundy JG, Davies SK, Viney JM, Swire JS, Leroi AM (2010) A metabolic signature of long life in Caenorhabditis elegans. BMC Biol 8:14. https://doi.org/10.1186/1741-7007-8-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Altintas O, Park S, Lee SJ (2016) The role of insulin/IGF-1 signaling in the longevity of model invertebrates, C. elegans and D. melanogaster. BMB Rep 49(2):81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Ewald CY, Castillo-Quan JI, Blackwell TK (2018) Untangling longevity, dauer, and healthspan in Caenorhabditis elegans insulin/IGF-1-signalling. Gerontology 64(1):96–104

    Article  CAS  PubMed  Google Scholar 

  115. Cuong VT, Chen W, Shi J, Zhang M, Yang H, Wang N et al (2019) The anti-oxidation and anti-aging effects of Ganoderma lucidum in Caenorhabditis elegans. Exp Gerontol 117:99–105. https://doi.org/10.1016/j.exger.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  116. Meng F, Li J, Rao Y, Wang W, Fu Y (2018) Gengnianchun extends the lifespan of Caenorhabditis elegans via the insulin/IGF-1 signalling pathway. Oxidative Med Cell Longev 2018:4740739. https://doi.org/10.1155/2018/4740739

    Article  CAS  Google Scholar 

  117. Kim SH, Kim BK, Park SK (2018) Selenocysteine mimics the effect of dietary restriction on lifespan via SKN-1 and retards age-associated pathophysiological changes in Caenorhabditis elegans. Mol Med Rep 18(6):5389–5398

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Wollenhaupt SG, Soares AT, Salgueiro WG, Noremberg S, Reis G, Viana C et al (2014) Seleno- and telluro-xylofuranosides attenuate Mn-induced toxicity in C. elegans via the DAF-16/FOXO pathway. Food Chem Toxicol 64:192–199

    Article  CAS  PubMed  Google Scholar 

  119. Kim JS, Kim SH, Park SK (2017) Selenocysteine modulates resistance to environmental stress and confers anti-aging effects in C. elegans. Clinics (Sao Paulo) 72:491–498

    Article  Google Scholar 

  120. Zhang Y, Zhang W, Dong M (2018) The miR-58 microRNA family is regulated by insulin signaling and contributes to lifespan regulation in Caenorhabditis elegans. Sci China Life Sci 61(9):1060–1070

    Article  CAS  PubMed  Google Scholar 

  121. Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. Cell Sci 125(Pt 1):7–17

    Article  CAS  Google Scholar 

  122. de Lencastre A, Pincus Z, Zhou K, Kato M, Lee SS, Slack FJ (2010) MicroRNAs both promote and antagonize longevity in C. elegans. Curr Biol 20(24):2159–2168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hubbard EJ (2011) Insulin and germline proliferation in Caenorhabditis elegans. Vitam Horm 87:61–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Klotz LO, Sánchez-Ramos C, Prieto-Arroyo I, Urbánek P, Steinbrenner H, Monsalve M (2015) Redox regulation of FoxO transcription factors. Redox Biol 6:51–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. http://genomics.senescence.info/species/entry.php?species=Chelonoidis_nigra

  126. https://www.smh.com.au/national/harriet-finally-withdraws-after-176-years-20060624-gdntnq.html

  127. Loire E, Chiari Y, Bernard A, Cahais V, Romiguier J, Nabholz B et al (2013) Population genomics of the endangered giant Galápagos tortoise. Genome Biol 14(12):R136. https://doi.org/10.1186/gb-2013-14-12-r136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. http://darwin-online.org.uk/content/frameset?itemID=F1925&viewtype=text&pageseq=1

  129. Quesada V, Freitas-Rodríguez S, Miller J, Pérez-Silva JG, Jiang ZF, Tapia W et al (2019) Giant tortoise genomes provide insights into longevity and age-related disease. Nat Ecol Evol 3(1):87–95

    Article  PubMed  Google Scholar 

  130. Frigerio NA, Sacher GA (1968) The determination of whale life-spans. ANL-7535. ANL Rep:116–118

    Google Scholar 

  131. Austad SN (2010) Methusaleh’s Zoo: how nature provides us with clues for extending human health span. J Comp Pathol 142(Suppl 1):S10–S21

    Article  PubMed  Google Scholar 

  132. George JC, Bada J, Zeh J, Scott L, Brown SE, O’Hara T et al (1999) Age and growth estimates of bowhead whales (Balaena mysticetus) via aspartic acid racemization. Can J Zool 77(4):571–580

    Article  Google Scholar 

  133. George JC, Bockstoce JR (2008) Two historical weapon fragments as an aid to estimating the longevity and movements of bowhead whales. Polar Biol 31:751–754

    Article  Google Scholar 

  134. https://www.medicaldaily.com/can-marine-biology-help-us-live-forever-bowhead-whale-can-live-200-years-cancer-316424

  135. Philo LM, Shotts EB, George JC (1993) Morbidity and mortality. In: Burns JJ, Montague JJ, Cowles CJ (eds) The bowhead whale. Allen Press, Lawrence, KS, pp 275–312. ISBN-10: 0935868623

    Google Scholar 

  136. Tacutu R, Craig T, Budovsky A, Wuttke D, Lehmann G, Taranukha D et al (2013) Human ageing genomic resources: integrated databases and tools for the biology and genetics of ageing. Nucleic Acids Res 41(Database issue):D1027–D1033. https://doi.org/10.1093/nar/gks1155

    Article  CAS  PubMed  Google Scholar 

  137. Speakman JR (2005) Body size, energy metabolism and lifespan. J Exp Biol 208(Pt 9):1717–1730

    Article  PubMed  Google Scholar 

  138. Blagosklonny MV (2013) Big mice die young but large animals live longer. Aging (Albany NY) 5(4):227–233

    Article  Google Scholar 

  139. Kryazhimskiy S, Plotkin JB (2008) The population genetics of dN/dS. PLoS Genet 4(12):e1000304. https://doi.org/10.1371/journal.pgen.1000304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Yim HS, Cho YS, Guang X, Kang SG, Jeong JY, Cha SS et al (2014) Minke whale genome and aquatic adaptation in cetaceans. Nat Genet 46(1):88–92

    Article  CAS  PubMed  Google Scholar 

  141. Cornu M, Albert V, Hall MN (2013) mTOR in aging, metabolism, and cancer. Curr Opin Genet Dev 23(1):53–62

    Article  CAS  PubMed  Google Scholar 

  142. Erez A, Nagamani SC, Shchelochkov OA, Premkumar MH, Campeau PM, Chen Y et al (2011) Requirement of argininosuccinate lyase for systemic nitric oxide production. Nat Med 17(12):1619–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Yano K, Stevens JD, Compagno LJV (2007) Distribution, reproduction and feeding of the Greenland shark Somniosus (Somniosus) microcephalus, with notes on two other sleeper sharks, Somniosus (Somniosus) pacificus and Somniosus (Somniosus) antarcticus. J Fish Biol 70:374–390. https://doi.org/10.1111/j.1095-8649.2007.01308.x

    Article  Google Scholar 

  144. MacNeil MA, McMeans BC, Hussey NE, Vecsei P, Svavarsson J, Kovacs KM et al (2012) Biology of the Greenland shark Somniosus microcephalus. J Fish Biol 80(5):991–1018

    Article  CAS  PubMed  Google Scholar 

  145. Nielsen J, Hedeholm RB, Heinemeier J, Bushnell PG, Christiansen JS, Olsen J et al (2016) Eye lens radiocarbon reveals centuries of longevity in the Greenland shark (Somniosus microcephalus). Science 353(6300):702–704

    Article  CAS  PubMed  Google Scholar 

  146. Costantini D, Smith S, Killen SS, Nielsen J, Steffensen JF (2017) The Greenland shark: a new challenge for the oxidative stress theory of ageing? Comp Biochem Physiol A Mol Integr Physiol 203:227–232

    Article  CAS  PubMed  Google Scholar 

  147. https://www.sciencedaily.com/releases/2016/08/160811143218.htm

  148. Strahl J, Philipp EE, Brey T, Broeg K, Abele D (2007) Physiological aging in the Icelandic population of the ocean quahog Arctica islandica. Aquat Biol 1:77–84

    Article  Google Scholar 

  149. Ridgway ID, Richardson CA (2011) Arctica islandica: the longest lived non colonial animal known to science. Rev Fish Biol Fisheries 21:297. https://doi.org/10.1007/s11160-010-9171-9

    Article  Google Scholar 

  150. Wanamaker AD, Heinemeier J, Scourse JD, Richardson CA (2008) Very long-lived molluscs confirm 17th century AD tephra-based radiocarbon reservoir ages for north Icelandic shelf waters. Radiocarbon 50:1–14

    Article  Google Scholar 

  151. Butler PG, Wanamaker ADJ, Scourse JD, Richardson CA, Reynolds DJ (2013) Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeogr Palaeoclimatol Palaeoecol 373:141–151

    Article  Google Scholar 

  152. Abele D, Strahl J, Brey T, Philipp EE (2008) Imperceptible senescence: ageing in the ocean quahog Arctica islandica. Free Radic Res 42:474–480

    Article  CAS  PubMed  Google Scholar 

  153. Ungvari Z, Ridgway I, Philipp EE, Campbell CM, McQuary P, Chow T et al (2011) Extreme longevity is associated with increased resistance to oxidative stress in Arctica islandica, the longest-living non-colonial animal. J Gerontol A Biol Sci Med Sci 66(7):741–750

    Article  CAS  PubMed  Google Scholar 

  154. Munro D, Blier PU (2012) The extreme longevity of Arctica islandica is associated with increased peroxidation resistance in mitochondrial membranes. Aging Cell 11(5):845–855

    Article  CAS  PubMed  Google Scholar 

  155. Ungvari Z, Sosnowska D, Mason JB, Gruber H, Lee SW, Schwartz TS et al (2013) Resistance to genotoxic stresses in Arctica islandica, the longest living noncolonial animal: is extreme longevity associated with a multistress resistance phenotype? J Gerontol A Biol Sci Med Sci 68(5):521–529

    Article  CAS  PubMed  Google Scholar 

  156. Sosnowska D, Richardson C, Sonntag WE, Csiszar A, Ungvari Z, Ridgway I (2014) A heart that beats for 500 years: age-related changes in cardiac proteasome activity, oxidative protein damage and expression of heat shock proteins, inflammatory factors, and mitochondrial complexes in Arctica islandica, the longest-living noncolonial animal. J Gerontol A Biol Sci Med Sci 69(12):1448–1461

    Article  CAS  PubMed  Google Scholar 

  157. https://immortal-jellyfish.com/

  158. https://thebiologist.rsb.org.uk/biologist/158-biologist/features/1510-everlasting-life-the-immortal-jellyfish

  159. Carla’ EC, Pagliara P, Piraino S, Boero F, Dini L (2003) Morphological and ultrastructural analysis of Turritopsis nutricula during life cycle reversal. Tissue Cell 35(3):213–222

    Article  PubMed  Google Scholar 

  160. Petralia RS, Mattson MP, Yao PJ (2014) Aging and longevity in the simplest animals and the quest for immortality. Ageing Res Rev 16:66–82

    Article  PubMed  Google Scholar 

  161. Tanaka EM, Reddien PW (2011) The cellular basis for animal regeneration. Dev Cell 21(1):172–185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Devarapalli P, Kumavath RN, Barh D, Azevedo V (2014) The conserved mitochondrial gene distribution in relatives of Turritopsis nutricula, an immortal jellyfish. Bioinformation 10(9):586–591

    Article  PubMed  PubMed Central  Google Scholar 

  163. Lisenkova AA, Grigorenko AP, Tyazhelova TV, Andreeva TV, Gusev FE, Manakhov AD et al (2017) Complete mitochondrial genome and evolutionary analysis of Turritopsis dohrnii, the “immortal” jellyfish with a reversible life-cycle. Mol Phylogenet Evol 107:232–238

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guest, P.C. (2019). Of Mice, Whales, Jellyfish and Men: In Pursuit of Increased Longevity. In: Guest, P. (eds) Reviews on Biomarker Studies in Aging and Anti-Aging Research. Advances in Experimental Medicine and Biology(), vol 1178. Springer, Cham. https://doi.org/10.1007/978-3-030-25650-0_1

Download citation

Publish with us

Policies and ethics