Skip to main content

The Formation of Stars and Planets at the Bottom of the Main Sequence

  • Chapter
  • First Online:
Red Dwarfs
  • 513 Accesses

Abstract

You cannot consider life on other worlds before first considering their host star. This determines their orbital period, the intensity of the radiation the planet receives and the distribution of wavelengths over which meaningful intensities of radiation are emitted. This chapter is dedicated to the two most abundant classes of stars in the universe: the M- and K-class dwarfs. Although the focus of the chapter is on the former, the latter receive some well-deserved and long overdue discussion and includes a detailed (yet necessarily speculative) account of the lives of K-dwarf stars, certainly an interesting niche for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

Planetary Formation and Migration

Star Formation

  • Bate, M. R., Bonnell, I. A., & Bromm, V. (2003a). The formation of a star cluster: predicting the properties of stars and brown dwarfs. Monthly Notices of the Royal Astronomical Society, 339, 577–599.

    Article  ADS  Google Scholar 

  • Batygin, K., & Adams, F. C. (2013). Magnetic and gravitational disk–star interactions: an interdependence of pms stellar rotation rates and spin–orbit misalignments. The Astrophysical Journal, 778, 169. https://doi.org/10.1088/0004-637X/778/2/169.

    Article  ADS  Google Scholar 

  • Larson, R. B. (2009). Angular momentum and the formation of stars and black holes. Reports on Progress in Physics, 73(2010), 014901 (14pp. https://doi.org/10.1088/0034-4885/73/1/014901.

    Article  MathSciNet  Google Scholar 

  • Malmberg, D., De Angeli, F., Davies, M. B., Church, R. P., Mackey, D., & Wilkinson, M. I. (2007). Close encounters in young stellar clusters: Implications for planetary systems in the solar neighborhood. https://arxiv.org/pdf/astro-ph/0702524.pdf.

  • Mascareño, S., Rebolo, A. R., González Hernández, J. I., & Esposito, M. (2015). Rotation periods of late-type dwarf stars from time-series high-resolution spectroscopy of chromospheric indicators. http://arXiv.org/pdf/arXiv:1506.08039v1.pdf.

  • Olczak, C., Pfalzner, S., & Eckart, A. (2009). Stellar interactions in dense and sparse star clusters. http://arXiv.org/pdf/arXiv:0911.0293.pdf.

  • Portegies Zwart, S. F., Hut, P., McMillan, S. L. W., & Verbunt, F. (1997) Star Cluster Ecology II: Binary evolution with single-star encounters. http://arXiv.org/pdf/astro-ph/9706090.pdf.

  • Portegies Zwart, S. F., Makino, J., McMillan, S. L. W., & Hut, P. (1999). Star cluster ecology III: Runaway collisions in young compact star clusters. http://arXiv.org/pdf/astro-ph/9812006.pdf.

  • Stauffer, J. R., Jones, B. F., Backman, D., Hartmann, L. W., Barrado y Navascués, D., Pinsonneault, M. H., Terndrup, D. M., & Muench, A. A. (2003). Why are the K dwarfs in the Pleiades so blue? The Astronomical Journal, 126, 833–847.

    Article  ADS  Google Scholar 

Brown Dwarfs

Stellar Evolution

  • Adams, F. C., Bodenheimer, P., & Laughlin, G. (2005). M dwarfs: planet formation and long-term evolution. Astronomische Nachrichten, 326(10), 913–919. https://doi.org/10.1002/asna.200510440.

    Article  ADS  MATH  Google Scholar 

  • Adams, F. C., Laughlin, G., & Graves, G. J. M. (2004). Red dwarfs and the end of the main sequence. Rev Mex AA (Serie de Conferencias), 22, 46–49. From Gravitational Collapse: from massive stars to planets, G. García-Segura, G. Tenorio-Tagle, J. Franco, & H. W. Yorke (Eds.).

    ADS  Google Scholar 

  • Boyajian, T. S., von Braun, K., van Belle, G., Farrington, C., Schaefer, G., Jones, J., White, R., McAlister, H. A., ten Brummelaar, T. A., Ridgway, S., Gies, D., Sturmann, L., Sturmann, J., Turner, N. H., Goldfinger, P. J., & Vargas, N. (2013). Stellar diameters and temperatures. III main-sequence A, F, G, and K stars: additional high-precision measurements and empirical relations. The Astrophysical Journal, 771, 40. https://doi.org/10.1088/0004-637X/771/1/40.

    Article  ADS  Google Scholar 

  • Brown, T. M., Lanz, T., Sweigart, A. V., Cracraft, H. M. I., & Landsman, W. B. (2012a). Flash mixing on the white dwarf cooling curve: spectroscopic confirmation in NGC 2808. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.761.4364&rep=rep1&type=pdf.

  • Brown, T. M., Sweigart, A. V., Lanz, T., Landsman, W. B., & Hubeny, I. (2012b). Flash mixing on the white dwarf cooling curve: understanding hot horizontal branch anomalies in NGC 2808. http://arXiv:astro-ph/0108040.pdf.

    Google Scholar 

  • Cassisi, S. (2008). Very low-mass stars: Structural and evolutionary properties. http://arXiv.org/pdf/arXiv:1111.6464.pdf.

  • Dormanm, B., Rood, R. T., & O’Connell, R. W. (1993). Ultraviolet radiation from evolved stellar populations i. models. Astrophysical Journal, 419. https://arxiv.org/pdf/astro-ph/9311022.pdf.

  • Eisloffel, J., Mohanty, S., & Scholz, A. (2004). Formation and evolution of very low mass stars and brown dwarfs. https://arxiv.org/pdf/astro-ph/0410046.pdf.

  • Fagotto, F., Bressan, F. A., Bertelli, G., & Choisi, C. (1994). Evolutionary sequences of stellar models with new radiative opacities IV. Z=0.004 and z=0.008. Astronomy and Astrophysics Supplementary Series, 105, 29–38.

    ADS  Google Scholar 

  • Gizis, J. E., Dettman, K. G., Burgasser, A. J., Camnasio, S., Alam, M., & Joseph, C. (2015). Kepler monitoring of an L dwarf II. clouds with multiyear lifetimes. https://arxiv.org/pdf/1509.07186v1.pdf.

  • Gratton, R. G., D’Orazi, V., Bragaglia, A., Carretta, E., & Lucatello, S. (2010). The connection between missing AGB stars and extended horizontal branches (Research Note). http://arxiv.org/pdf/1010.5913v1.pdf.

  • Li, C., de Grijs, R., Deng, L., & Liu, X. (2013). Blue straggler evolution caught in the act in the Large Magellanic Cloud globular cluster Hodge 11. https://arxiv.org/pdf/1304.4312v1.pdf.

  • Luhman, K. L. (2012). The formation and early evolution of low-mass stars and brown dwarfs. https://arxiv.org/pdf/1208.5800.pdf.

  • Rich, M., Sosin, C., Djorgovski, G., Piotto, G., King, I. R., Renzini, A., Phinney, A. E. S., Dorman, B., Liebert, J., & Meylan, G. (1997). Discovery of extended blue horizontal branches in two metal-rich globular clusters. The Astrophysical Journal, 484, L25–L28.

    Article  ADS  Google Scholar 

  • van Dokkum, P. G. & Conroy, C. (2010). A substantial population of low mass stars in luminous elliptical galaxies. https://arxiv.org/pdf/1009.5992v1.pdf.

  • Webbink, R. F. (1975). The evolution of helium white dwarfs in close binaries. MNRAS, 171, 555–568.

    Article  ADS  Google Scholar 

  • Wood, B. E., Linsky, J. L., & Güdel, M. (2015). Stellar winds in time. In H. Lammer & M. Khodachenko (Eds.), Characterizing stellar and exoplanetary environments, astrophysics and space science library (Vol. 411). Switzerland: Springer International Publishing. https://doi.org/10.1007/978-3-319-09749-72.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stevenson, D.S. (2019). The Formation of Stars and Planets at the Bottom of the Main Sequence. In: Red Dwarfs. Springer, Cham. https://doi.org/10.1007/978-3-030-25550-3_1

Download citation

Publish with us

Policies and ethics