Skip to main content

Heterogeneity of Stem Cells in the Hippocampus

  • Chapter
  • First Online:
Stem Cells Heterogeneity in Different Organs

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1169))

Abstract

The discovery of neural stem cells in the adult mammalian hippocampus has attracted attention and controversy, which both continue to this day. Hippocampal neural stem cells and their immediate progeny, amplifying neuroprogenitor cells, give rise to neurons and astrocytes in the region. Envisioned as possible key for tissue regeneration, whether mobilized endogenously or transplanted exogenously, neural stem cells have been in the eye of both public and science over the course of the past 20 years. These cells are a heterogeneous population, and here, we review different aspects of their heterogeneity from morphology to metabolism and response to different stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344

    Article  CAS  PubMed  Google Scholar 

  2. Christian KM, Song H, Ming GL (2014) Functions and dysfunctions of adult hippocampal neurogenesis. Annu Rev Neurosci 37:243–262. https://doi.org/10.1146/annurev-neuro-071013-014134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sierra A, Encinas JM, Maletic-Savatic M (2011) Adult human neurogenesis: from microscopy to magnetic resonance imaging. Front Neurosci 5:47. https://doi.org/10.3389/fnins.2011.00047

    Article  PubMed  PubMed Central  Google Scholar 

  4. Deng W, Aimone JB, Gage FH (2010) New neurons and new memories: how does adult hippocampal neurogenesis affect learning and memory? Nat Rev Neurosci 11:339–350. https://doi.org/10.1038/nrn2822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. David DJ et al (2009) Neurogenesis-dependent and -independent effects of fluoxetine in an animal model of anxiety/depression. Neuron 62:479–493. https://doi.org/10.1016/j.neuron.2009.04.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klomp A, Vaclavu L, Meerhoff GF, Reneman L, Lucassen PJ (2014) Effects of chronic fluoxetine treatment on neurogenesis and tryptophan hydroxylase expression in adolescent and adult rats. PLoS One 9:e97603. https://doi.org/10.1371/journal.pone.0097603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kodama M, Fujioka T, Duman RS (2004) Chronic olanzapine or fluoxetine administration increases cell proliferation in hippocampus and prefrontal cortex of adult rat. Biol Psychiatry 56:570–580. https://doi.org/10.1016/j.biopsych.2004.07.008

    Article  CAS  PubMed  Google Scholar 

  8. Santarelli L et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301:805–809. https://doi.org/10.1126/science.1083328

    Article  CAS  PubMed  Google Scholar 

  9. Lucassen PJ et al (2015) Regulation of adult neurogenesis and plasticity by (early) stress, glucocorticoids, and inflammation. Cold Spring Harb Perspect Biol 7:a021303. https://doi.org/10.1101/cshperspect.a021303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gandy K et al (2017) Pattern separation: a potential marker of impaired hippocampal adult neurogenesis in major depressive disorder. Front Neurosci 11:571. https://doi.org/10.3389/fnins.2017.00571

    Article  PubMed  PubMed Central  Google Scholar 

  11. Duan X et al (2007) Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158. https://doi.org/10.1016/j.cell.2007.07.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Duman RS, Malberg J, Nakagawa S (2001) Regulation of adult neurogenesis by psychotropic drugs and stress. J Pharmacol Exp Ther 299:401–407

    CAS  PubMed  Google Scholar 

  13. Eisch AJ (2002) Adult neurogenesis: implications for psychiatry. Prog Brain Res 138:315–342. https://doi.org/10.1016/S0079-6123(02)38085-3

    Article  PubMed  Google Scholar 

  14. Eisch AJ, Barrot M, Schad CA, Self DW, Nestler EJ (2000) Opiates inhibit neurogenesis in the adult rat hippocampus. Proc Natl Acad Sci U S A 97:7579–7584. https://doi.org/10.1073/pnas.120552597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Noonan MA, Choi KH, Self DW, Eisch AJ (2008) Withdrawal from cocaine self-administration normalizes deficits in proliferation and enhances maturity of adult-generated hippocampal neurons. J Neurosci 28:2516–2526. https://doi.org/10.1523/JNEUROSCI.4661-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kheirbek MA, Klemenhagen KC, Sahay A, Hen R (2012) Neurogenesis and generalization: a new approach to stratify and treat anxiety disorders. Nat Neurosci 15:1613–1620. https://doi.org/10.1038/nn.3262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Samuels BA, Hen R (2011) Neurogenesis and affective disorders. Eur J Neurosci 33:1152–1159. https://doi.org/10.1111/j.1460-9568.2011.07614.x

    Article  PubMed  Google Scholar 

  18. Fontana L, Kennedy BK, Longo VD, Seals D, Melov S (2014) Medical research: treat ageing. Nature 511:405–407. https://doi.org/10.1038/511405a

    Article  CAS  PubMed  Google Scholar 

  19. Collins FS, Varmus H (2015) A new initiative on precision medicine. N Engl J Med 372:793–795. https://doi.org/10.1056/NEJMp1500523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Goodell MA, Rando TA (2015) Stem cells and healthy aging. Science 350:1199–1204. https://doi.org/10.1126/science.aab3388

    Article  CAS  PubMed  Google Scholar 

  21. Aimone JB et al (2014) Regulation and function of adult neurogenesis: from genes to cognition. Physiol Rev 94:991–1026. https://doi.org/10.1152/physrev.00004.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McAvoy KM, Sahay A (2017) Targeting adult neurogenesis to optimize hippocampal circuits in aging. Neurotherapeutics 14:630–645. https://doi.org/10.1007/s13311-017-0539-6

    Article  PubMed  PubMed Central  Google Scholar 

  23. Andreotti JP et al (2019) Neural stem cell niche heterogeneity. Semin Cell Dev Biol. https://doi.org/10.1016/j.semcdb.2019.01.005

  24. Bond AM, Ming GL, Song H (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17:385–395. https://doi.org/10.1016/j.stem.2015.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. David DJ et al (2010) Implications of the functional integration of adult-born hippocampal neurons in anxiety-depression disorders. Neuroscientist 16:578–591. https://doi.org/10.1177/1073858409360281

    Article  PubMed  Google Scholar 

  26. Manganas LN, Maletic-Savatic M (2005) Stem cell therapy for central nervous system demyelinating disease. Curr Neurol Neurosci Rep 5:225–231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Botas A, Campbell HM, Han X, Maletic-Savatic M (2015) Metabolomics of neurodegenerative diseases. Int Rev Neurobiol 122:53–80. https://doi.org/10.1016/bs.irn.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  28. Sahin E, Depinho RA (2010) Linking functional decline of telomeres, mitochondria and stem cells during ageing. Nature 464:520–528. https://doi.org/10.1038/nature08982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Artegiani B, Calegari F (2012) Age-related cognitive decline: can neural stem cells help us? Aging 4:176–186. https://doi.org/10.18632/aging.100446

    Article  PubMed  PubMed Central  Google Scholar 

  30. Dranovsky A et al (2011) Experience dictates stem cell fate in the adult hippocampus. Neuron 70:908–923. https://doi.org/10.1016/j.neuron.2011.05.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. van Praag H, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2:266–270. https://doi.org/10.1038/6368

    Article  PubMed  Google Scholar 

  32. Sierra A et al (2015) Neuronal hyperactivity accelerates depletion of neural stem cells and impairs hippocampal neurogenesis. Cell Stem Cell 16:488–503. https://doi.org/10.1016/j.stem.2015.04.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Encinas JM et al (2011) Division-coupled astrocytic differentiation and age-related depletion of neural stem cells in the adult hippocampus. Cell Stem Cell 8:566–579. https://doi.org/10.1016/j.stem.2011.03.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonaguidi MA et al (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145:1142–1155. https://doi.org/10.1016/j.cell.2011.05.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuhn HG, Dickinson-Anson H, Gage FH (1996) Neurogenesis in the dentate gyrus of the adult rat: age-related decrease of neuronal progenitor proliferation. J Neurosci 16:2027–2033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kuhn HG, Toda T, Gage FH (2018) Adult hippocampal neurogenesis: a coming-of-age story. J Neurosci 38:10401–10410. https://doi.org/10.1523/JNEUROSCI.2144-18.2018

    Article  PubMed  PubMed Central  Google Scholar 

  37. Heine VM, Maslam S, Joels M, Lucassen PJ (2004) Prominent decline of newborn cell proliferation, differentiation, and apoptosis in the aging dentate gyrus, in absence of an age-related hypothalamus-pituitary-adrenal axis activation. Neurobiol Aging 25:361–375. https://doi.org/10.1016/S0197-4580(03)00090-3

    Article  CAS  PubMed  Google Scholar 

  38. Knoth R et al (2010) Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One 5:e8809

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ramón y Cajal S (1913) Contribucion al conocimiento de la neuroglia del cerebro humano. Trab Lab Invest Biol XI:225–315

    Google Scholar 

  40. Altman J (1962) Are new neurons formed in the brains of adult mammals? Science 135:1127–1128

    Article  CAS  PubMed  Google Scholar 

  41. Palmer TD, Takahashi J, Gage FH (1997) The adult rat hippocampus contains primordial neural stem cells. Mol Cell Neurosci 8:389–404

    Article  CAS  PubMed  Google Scholar 

  42. Eriksson PS et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317. https://doi.org/10.1038/3305

    Article  CAS  PubMed  Google Scholar 

  43. Miller JA et al (2013) Conserved molecular signatures of neurogenesis in the hippocampal subgranular zone of rodents and primates. Development 140:4633–4644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Morshead CM et al (1994) Neural stem cells in the adult mammalian forebrain: a relatively quiescent subpopulation of subependymal cells. Neuron 13:1071–1082

    Article  CAS  PubMed  Google Scholar 

  45. Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A (1997) Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J Neurosci 17:5046–5061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Quiñones-Hinojosa A et al (2006) Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J Comp Neurol 494:415–434

    Article  PubMed  Google Scholar 

  47. Curtis MA, Low VF, Faull RL (2012) Neurogenesis and progenitor cells in the adult human brain: a comparison between hippocampal and subventricular progenitor proliferation. Dev Neurobiol 72:990–1005. https://doi.org/10.1002/dneu.22028

    Article  PubMed  Google Scholar 

  48. Bergmann O et al (2012) The age of olfactory bulb neurons in humans. Neuron 74:634–639

    Article  CAS  PubMed  Google Scholar 

  49. Snyder JS, Cameron HA (2012) Could adult hippocampal neurogenesis be relevant for human behavior? Behav Brain Res 227:384–390

    Article  PubMed  Google Scholar 

  50. Spalding KL et al (2013) Dynamics of hippocampal neurogenesis in adult humans. Cell 153:1219–1227. https://doi.org/10.1016/j.cell.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Boldrini M et al (2018) Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell 22:589–599 e585. https://doi.org/10.1016/j.stem.2018.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cameron HA, Schoenfeld TJ (2018) Behavioral and structural adaptations to stress. Front Neuroendocrinol 49:106–113. https://doi.org/10.1016/j.yfrne.2018.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sorrells SF et al (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555:377–381. https://doi.org/10.1038/nature25975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ramirez-Amaya V, Marrone DF, Gage FH, Worley PF, Barnes CA (2006) Integration of new neurons into functional neural networks. J Neurosci 26:12237–12241. https://doi.org/10.1523/JNEUROSCI.2195-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Toni N et al (2008) Neurons born in the adult dentate gyrus form functional synapses with target cells. Nat Neurosci 11:901–907. https://doi.org/10.1038/nn.2156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Toni N et al (2007) Synapse formation on neurons born in the adult hippocampus. Nat Neurosci 10:727–734. https://doi.org/10.1038/nn1908

    Article  CAS  PubMed  Google Scholar 

  57. van Praag H et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415:1030–1034. https://doi.org/10.1038/4151030a

    Article  CAS  PubMed  Google Scholar 

  58. Vivar C et al (2012) Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 3:1107

    Article  PubMed  Google Scholar 

  59. Vivar C, Van Praag H (2013) Functional circuits of new neurons in the dentate gyrus. Front Neural Circuits 7:15

    Article  PubMed  PubMed Central  Google Scholar 

  60. Baker S et al (2016) The human dentate gyrus plays a necessary role in discriminating new memories. Curr Biol 26:2629–2634. https://doi.org/10.1016/j.cub.2016.07.081

    Article  CAS  PubMed  Google Scholar 

  61. Akers KG et al (2014) Hippocampal neurogenesis regulates forgetting during adulthood and infancy. Science 344:598–602. https://doi.org/10.1126/science.1248903

    Article  CAS  PubMed  Google Scholar 

  62. Leutgeb JK, Leutgeb S, Moser MB, Moser EI (2007) Pattern separation in the dentate gyrus and CA3 of the hippocampus. Science 315:961–966. https://doi.org/10.1126/science.1135801

    Article  CAS  PubMed  Google Scholar 

  63. Clelland CD et al (2009) A functional role for adult hippocampal neurogenesis in spatial pattern separation. Science 325:210–213. https://doi.org/10.1126/science.1173215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dupret D et al (2008) Spatial relational memory requires hippocampal adult neurogenesis. PLoS One 3:e1959. https://doi.org/10.1371/journal.pone.0001959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Snyder JS, Hong NS, McDonald RJ, Wojtowicz JM (2005) A role for adult neurogenesis in spatial long-term memory. Neuroscience 130:843–852. https://doi.org/10.1016/j.neuroscience.2004.10.009

    Article  CAS  PubMed  Google Scholar 

  66. Femenia T, Gomez-Galan M, Lindskog M, Magara S (2012) Dysfunctional hippocampal activity affects emotion and cognition in mood disorders. Brain Res 1476:58–70. https://doi.org/10.1016/j.brainres.2012.03.053

    Article  CAS  PubMed  Google Scholar 

  67. Hill AS, Sahay A, Hen R (2015) Increasing adult hippocampal neurogenesis is sufficient to reduce anxiety and depression-like behaviors. Neuropsychopharmacology 40:2368–2378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Bonaguidi MA et al (2016) Diversity of neural precursors in the adult mammalian brain. Cold Spring Harb Perspect Biol 8:a018838. https://doi.org/10.1101/cshperspect.a018838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Merkle FT, Tramontin AD, Garcia-Verdugo JM, Alvarez-Buylla A (2004) Radial glia give rise to adult neural stem cells in the subventricular zone. Proc Natl Acad Sci U S A 101:17528–17532. https://doi.org/10.1073/pnas.0407893101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Biol 7:a018812. https://doi.org/10.1101/cshperspect.a018812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li G, Fang L, Fernandez G, Pleasure SJ (2013) The ventral hippocampus is the embryonic origin for adult neural stem cells in the dentate gyrus. Neuron 78:658–672. https://doi.org/10.1016/j.neuron.2013.03.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ahn S, Joyner AL (2005) In vivo analysis of quiescent adult neural stem cells responding to sonic hedgehog. Nature 437:894–897. https://doi.org/10.1038/nature03994

    Article  CAS  PubMed  Google Scholar 

  73. Faigle R, Song H (2013) Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta 1830:2435–2448. https://doi.org/10.1016/j.bbagen.2012.09.002

    Article  CAS  PubMed  Google Scholar 

  74. Shapiro LA, Korn MJ, Ribak CE (2005) Newly generated dentate granule cells from epileptic rats exhibit elongated hilar basal dendrites that align along GFAP-immunolabeled processes. Neuroscience 136:823–831. https://doi.org/10.1016/j.neuroscience.2005.03.059

    Article  CAS  PubMed  Google Scholar 

  75. Plumpe T et al (2006) Variability of doublecortin-associated dendrite maturation in adult hippocampal neurogenesis is independent of the regulation of precursor cell proliferation. BMC Neurosci 7:77. https://doi.org/10.1186/1471-2202-7-77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wurmser AE et al (2004) Cell fusion-independent differentiation of neural stem cells to the endothelial lineage. Nature 430:350–356. https://doi.org/10.1038/nature02604

    Article  CAS  PubMed  Google Scholar 

  77. Sierra A et al (2010) Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell 7:483–495. https://doi.org/10.1016/j.stem.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sun XC et al (2013) Effect of limb ischemic preconditioning on the expression of p38 MAPK and HSP 70 in CA3 and DG regions of the hippocampus of rats. Zhongguo Ying Yong Sheng Li Xue Za Zhi 29:30–34

    PubMed  Google Scholar 

  79. Ziebell F, Martin-Villalba A, Marciniak-Czochra A (2014) Mathematical modelling of adult hippocampal neurogenesis: effects of altered stem cell dynamics on cell counts and bromodeoxyuridine-labelled cells. J R Soc Interface 11:20140144. https://doi.org/10.1098/rsif.2014.0144

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li B et al (2017) Multitype Bellman-Harris branching model provides biological predictors of early stages of adult hippocampal neurogenesis. BMC Syst Biol 11:90. https://doi.org/10.1186/s12918-017-0468-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suh H et al (2007) In vivo fate analysis reveals the multipotent and self-renewal capacities of Sox2+ neural stem cells in the adult hippocampus. Cell Stem Cell 1:515–528. https://doi.org/10.1016/j.stem.2007.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jessberger S, Toni N, Clemenson GD Jr, Ray J, Gage FH (2008) Directed differentiation of hippocampal stem/progenitor cells in the adult brain. Nat Neurosci 11:888–893. https://doi.org/10.1038/nn.2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Rolando C et al (2016) Multipotency of adult hippocampal NSCs in vivo is restricted by Drosha/NFIB. Cell Stem Cell 19:653–662. https://doi.org/10.1016/j.stem.2016.07.003

    Article  CAS  PubMed  Google Scholar 

  84. Maletic-Savatic M (2017) A question of fate. PLoS Biol 15:e2002329. https://doi.org/10.1371/journal.pbio.2002329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  CAS  PubMed  Google Scholar 

  86. Ma DK, Kim WR, Ming GL, Song H (2009) Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci 1170:664–673. https://doi.org/10.1111/j.1749-6632.2009.04373.x

    Article  PubMed  PubMed Central  Google Scholar 

  87. Goncalves JT, Schafer ST, Gage FH (2016) Adult neurogenesis in the hippocampus: from stem cells to behavior. Cell 167:897–914. https://doi.org/10.1016/j.cell.2016.10.021

    Article  CAS  PubMed  Google Scholar 

  88. Gebara E et al (2016) Heterogeneity of radial glia-like cells in the adult hippocampus. Stem Cells 34:997–1010. https://doi.org/10.1002/stem.2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Semerci F, Maletic-Savatic M (2016) Transgenic mouse models for studying adult neurogenesis. Front Biol 11:151–167. https://doi.org/10.1007/s11515-016-1405-3

    Article  CAS  Google Scholar 

  90. Semerci F et al (2017) Lunatic fringe-mediated notch signaling regulates adult hippocampal neural stem cell maintenance. elife 6. https://doi.org/10.7554/eLife.24660

  91. Grun D, van Oudenaarden A (2015) Design and analysis of single-cell sequencing experiments. Cell 163:799–810. https://doi.org/10.1016/j.cell.2015.10.039

    Article  CAS  PubMed  Google Scholar 

  92. Trapnell C (2015) Defining cell types and states with single-cell genomics. Genome Res 25:1491–1498. https://doi.org/10.1101/gr.190595.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lake BB et al (2016) Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 352:1586–1590. https://doi.org/10.1126/science.aaf1204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Marques S et al (2016) Oligodendrocyte heterogeneity in the mouse juvenile and adult central nervous system. Science 352:1326–1329. https://doi.org/10.1126/science.aaf6463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tasic B et al (2016) Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat Neurosci 19:335–346. https://doi.org/10.1038/nn.4216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Zeisel A et al (2015) Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–1142. https://doi.org/10.1126/science.aaa1934

    Article  CAS  PubMed  Google Scholar 

  97. Artegiani B et al (2017) A single-cell RNA sequencing study reveals cellular and molecular dynamics of the hippocampal neurogenic niche. Cell Rep 21:3271–3284. https://doi.org/10.1016/j.celrep.2017.11.050

    Article  CAS  PubMed  Google Scholar 

  98. La Manno G et al (2016) Molecular diversity of midbrain development in mouse, human, and stem cells. Cell 167:566–580 e519. https://doi.org/10.1016/j.cell.2016.09.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Liu XS et al (2017) Identification of miRNomes associated with adult neurogenesis after stroke using Argonaute 2-based RNA sequencing. RNA Biol 14:488–499. https://doi.org/10.1080/15476286.2016.1196320

    Article  PubMed  Google Scholar 

  100. Pollen AA et al (2015) Molecular identity of human outer radial glia during cortical development. Cell 163:55–67. https://doi.org/10.1016/j.cell.2015.09.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Calzolari F et al (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18:490–492. https://doi.org/10.1038/nn.3963

    Article  CAS  PubMed  Google Scholar 

  102. Encinas JM, Enikolopov G (2008) Identifying and quantitating neural stem and progenitor cells in the adult brain. Methods Cell Biol 85:243–272. https://doi.org/10.1016/S0091-679X(08)85011-X

    Article  CAS  PubMed  Google Scholar 

  103. Filippov V et al (2003) Subpopulation of nestin-expressing progenitor cells in the adult murine hippocampus shows electrophysiological and morphological characteristics of astrocytes. Mol Cell Neurosci 23:373–382

    Article  CAS  PubMed  Google Scholar 

  104. DeCarolis NA et al (2013) In vivo contribution of nestin- and GLAST-lineage cells to adult hippocampal neurogenesis. Hippocampus 23:708–719. https://doi.org/10.1002/hipo.22130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Steiner B et al (2006) Type-2 cells as link between glial and neuronal lineage in adult hippocampal neurogenesis. Glia 54:805–814. https://doi.org/10.1002/glia.20407

    Article  PubMed  Google Scholar 

  106. Hodge RD et al (2012) Tbr2 is essential for hippocampal lineage progression from neural stem cells to intermediate progenitors and neurons. J Neurosci 32:6275–6287. https://doi.org/10.1523/JNEUROSCI.0532-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Liu M et al (2000) Loss of BETA2/NeuroD leads to malformation of the dentate gyrus and epilepsy. Proc Natl Acad Sci U S A 97:865–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Gao Z et al (2009) Neurod1 is essential for the survival and maturation of adult-born neurons. Nat Neurosci 12:1090–1092. https://doi.org/10.1038/nn.2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Karalay O, Jessberger S (2011) Translating niche-derived signals into neurogenesis: the function of Prox1 in the adult hippocampus. Cell Cycle 10:2239–2240. https://doi.org/10.4161/cc.10.14.15850

    Article  CAS  PubMed  Google Scholar 

  110. Mu L et al (2012) SoxC transcription factors are required for neuronal differentiation in adult hippocampal neurogenesis. J Neurosci 32:3067–3080. https://doi.org/10.1523/JNEUROSCI.4679-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science 327:542–545. https://doi.org/10.1126/science.1180794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Roccio M et al (2013) Predicting stem cell fate changes by differential cell cycle progression patterns. Development 140:459–470. https://doi.org/10.1242/dev.086215

    Article  CAS  PubMed  Google Scholar 

  113. Lugert S et al (2010) Quiescent and active hippocampal neural stem cells with distinct morphologies respond selectively to physiological and pathological stimuli and aging. Cell Stem Cell 6:445–456. https://doi.org/10.1016/j.stem.2010.03.017

    Article  CAS  PubMed  Google Scholar 

  114. Kippin TE, Martens DJ, van der Kooy D (2005) p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev 19:756–767. https://doi.org/10.1101/gad.1272305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y (2013) p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J 32:970–981. https://doi.org/10.1038/emboj.2013.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Porlan E et al (2013) Transcriptional repression of Bmp2 by p21(Waf1/Cip1) links quiescence to neural stem cell maintenance. Nat Neurosci 16:1567–1575. https://doi.org/10.1038/nn.3545

    Article  CAS  PubMed  Google Scholar 

  117. Marques-Torrejon MA et al (2013) Cyclin-dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell 12:88–100. https://doi.org/10.1016/j.stem.2012.12.001

    Article  CAS  PubMed  Google Scholar 

  118. Furutachi S et al (2015) Slowly dividing neural progenitors are an embryonic origin of adult neural stem cells. Nat Neurosci 18:657–665. https://doi.org/10.1038/nn.3989

    Article  CAS  PubMed  Google Scholar 

  119. Jones AJ et al (2015) Evidence for bystander signalling between human trophoblast cells and human embryonic stem cells. Sci Rep 5:11694. https://doi.org/10.1038/srep11694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Codega P et al (2014) Prospective identification and purification of quiescent adult neural stem cells from their in vivo niche. Neuron 82:545–559. https://doi.org/10.1016/j.neuron.2014.02.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Gao Z et al (2011) The master negative regulator REST/NRSF controls adult neurogenesis by restraining the neurogenic program in quiescent stem cells. J Neurosci 31:9772–9786. https://doi.org/10.1523/JNEUROSCI.1604-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim HJ et al (2015) REST regulates non-cell-autonomous neuronal differentiation and maturation of neural progenitor cells via secretogranin II. J Neurosci 35:14872–14884. https://doi.org/10.1523/JNEUROSCI.4286-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Aguirre A, Rubio ME, Gallo V (2010) Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature 467:323–327. https://doi.org/10.1038/nature09347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Breunig JJ, Silbereis J, Vaccarino FM, Sestan N, Rakic P (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci U S A 104:20558–20563. https://doi.org/10.1073/pnas.0710156104

    Article  PubMed  PubMed Central  Google Scholar 

  125. Androutsellis-Theotokis A et al (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826. https://doi.org/10.1038/nature04940

    Article  CAS  PubMed  Google Scholar 

  126. Ehm O et al (2010) RBPJkappa-dependent signaling is essential for long-term maintenance of neural stem cells in the adult hippocampus. J Neurosci 30:13794–13807. https://doi.org/10.1523/JNEUROSCI.1567-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ables JL et al (2010) Notch1 is required for maintenance of the reservoir of adult hippocampal stem cells. J Neurosci 30:10484–10492. https://doi.org/10.1523/JNEUROSCI.4721-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Piccin D, Morshead CM (2011) Wnt signaling regulates symmetry of division of neural stem cells in the adult brain and in response to injury. Stem Cells 29:528–538. https://doi.org/10.1002/stem.589

    Article  CAS  PubMed  Google Scholar 

  129. Jang MH et al (2013) Secreted frizzled-related protein 3 (sFRP3) regulates antidepressant responses in mice and humans. Mol Psychiatry 18:957–958. https://doi.org/10.1038/mp.2012.158

    Article  CAS  PubMed  Google Scholar 

  130. Seib DR et al (2013) Loss of Dickkopf-1 restores neurogenesis in old age and counteracts cognitive decline. Cell Stem Cell 12:204–214. https://doi.org/10.1016/j.stem.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  131. Bonaguidi MA, Song J, Ming GL, Song H (2012) A unifying hypothesis on mammalian neural stem cell properties in the adult hippocampus. Curr Opin Neurobiol 22:754–761. https://doi.org/10.1016/j.conb.2012.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Shin J et al (2015) Single-cell RNA-seq with waterfall reveals molecular cascades underlying adult neurogenesis. Cell Stem Cell 17:360–372. https://doi.org/10.1016/j.stem.2015.07.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Urban N et al (2016) Return to quiescence of mouse neural stem cells by degradation of a proactivation protein. Science 353:292–295. https://doi.org/10.1126/science.aaf4802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Barbosa JS et al (2015) Neurodevelopment. Live imaging of adult neural stem cell behavior in the intact and injured zebrafish brain. Science 348:789–793. https://doi.org/10.1126/science.aaa2729

    Article  CAS  PubMed  Google Scholar 

  135. Kim HJ, Sugimori M, Nakafuku M, Svendsen CN (2007) Control of neurogenesis and tyrosine hydroxylase expression in neural progenitor cells through bHLH proteins and Nurr1. Exp Neurol 203:394–405. https://doi.org/10.1016/j.expneurol.2006.08.029

    Article  CAS  PubMed  Google Scholar 

  136. Andersen J et al (2014) A transcriptional mechanism integrating inputs from extracellular signals to activate hippocampal stem cells. Neuron 83:1085–1097. https://doi.org/10.1016/j.neuron.2014.08.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Kim EJ, Ables JL, Dickel LK, Eisch AJ, Johnson JE (2011) Ascl1 (Mash1) defines cells with long-term neurogenic potential in subgranular and subventricular zones in adult mouse brain. PLoS One 6:e18472. https://doi.org/10.1371/journal.pone.0018472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Imayoshi I et al (2013) Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342:1203–1208. https://doi.org/10.1126/science.1242366

    Article  CAS  PubMed  Google Scholar 

  139. Pimeisl IM et al (2013) Generation and characterization of a tamoxifen-inducible Eomes(CreER) mouse line. Genesis 51:725–733. https://doi.org/10.1002/dvg.22417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hodge RD et al (2008) Intermediate progenitors in adult hippocampal neurogenesis: Tbr2 expression and coordinate regulation of neuronal output. J Neurosci 28:3707–3717. https://doi.org/10.1523/JNEUROSCI.4280-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Berg J et al (2015) Human adipose-derived mesenchymal stem cells improve motor functions and are neuroprotective in the 6-hydroxydopamine-rat model for Parkinson's disease when cultured in monolayer cultures but suppress hippocampal neurogenesis and hippocampal memory function when cultured in spheroids. Stem Cell Rev 11:133–149. https://doi.org/10.1007/s12015-014-9551-y

    Article  CAS  Google Scholar 

  142. Lugert S et al (2012) Homeostatic neurogenesis in the adult hippocampus does not involve amplification of Ascl1(high) intermediate progenitors. Nat Commun 3:670. https://doi.org/10.1038/ncomms1670

    Article  CAS  PubMed  Google Scholar 

  143. Beccari S, Valero J, Maletic-Savatic M, Sierra A (2017) A simulation model of neuroprogenitor proliferation dynamics predicts age-related loss of hippocampal neurogenesis but not astrogenesis. Sci Rep 7:16528. https://doi.org/10.1038/s41598-017-16466-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Ma DK et al (2010) Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 13:1338–1344. https://doi.org/10.1038/nn.2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Sandstrom RS et al (2014) Epigenetic regulation by chromatin activation mark H3K4me3 in primate progenitor cells within adult neurogenic niche. Sci Rep 4:5371. https://doi.org/10.1038/srep05371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Zhou H, Wang B, Sun H, Xu X, Wang Y (2018) Epigenetic regulations in neural stem cells and neurological diseases. Stem Cells Int 2018:6087143. https://doi.org/10.1155/2018/6087143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Zhang RR et al (2013) Tet1 regulates adult hippocampal neurogenesis and cognition. Cell Stem Cell 13:237–245. https://doi.org/10.1016/j.stem.2013.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Liu C et al (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6:433–444. https://doi.org/10.1016/j.stem.2010.02.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Szulwach KE et al (2010) Cross talk between microRNA and epigenetic regulation in adult neurogenesis. J Cell Biol 189:127–141. https://doi.org/10.1083/jcb.200908151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Abraham AB et al (2013) Aberrant neural stem cell proliferation and increased adult neurogenesis in mice lacking chromatin protein HMGB2. PLoS One 8:e84838. https://doi.org/10.1371/journal.pone.0084838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Abraham AB et al (2013) Members of the high mobility group B protein family are dynamically expressed in embryonic neural stem cells. Proteome Sci 11:18. https://doi.org/10.1186/1477-5956-11-18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Berg DA, Belnoue L, Song H, Simon A (2013) Neurotransmitter-mediated control of neurogenesis in the adult vertebrate brain. Development 140:2548–2561. https://doi.org/10.1242/dev.088005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fernando RN et al (2011) Cell cycle restriction by histone H2AX limits proliferation of adult neural stem cells. Proc Natl Acad Sci U S A 108:5837–5842. https://doi.org/10.1073/pnas.1014993108

    Article  PubMed  PubMed Central  Google Scholar 

  154. Song J et al (2012) Neuronal circuitry mechanism regulating adult quiescent neural stem-cell fate decision. Nature 489:150–154. https://doi.org/10.1038/nature11306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Kunze A et al (2009) Connexin expression by radial glia-like cells is required for neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 106:11336–11341. https://doi.org/10.1073/pnas.0813160106

    Article  PubMed  PubMed Central  Google Scholar 

  156. Tang C et al (2018) Analytical platforms and techniques to study stem cell metabolism. Methods Mol Biol 1842:265–281. https://doi.org/10.1007/978-1-4939-8697-2_20

    Article  PubMed  Google Scholar 

  157. Arnold JM, Choi WT, Sreekumar A, Maletic-Savatic M (2015) Analytical strategies for studying stem cell metabolism. Front Biol 10:141–153. https://doi.org/10.1007/s11515-015-1357-z

    Article  CAS  Google Scholar 

  158. Folmes CD et al (2011) Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab 14:264–271. https://doi.org/10.1016/j.cmet.2011.06.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Varum S et al (2011) Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One 6:e20914. https://doi.org/10.1371/journal.pone.0020914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Katajisto P et al (2015) Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348:340–343. https://doi.org/10.1126/science.1260384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Cho YM et al (2006) Dynamic changes in mitochondrial biogenesis and antioxidant enzymes during the spontaneous differentiation of human embryonic stem cells. Biochem Biophys Res Commun 348:1472–1478. https://doi.org/10.1016/j.bbrc.2006.08.020

    Article  CAS  PubMed  Google Scholar 

  162. Armstrong L et al (2010) Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells 28:661–673. https://doi.org/10.1002/stem.307

    Article  CAS  PubMed  Google Scholar 

  163. Zhang DY et al (2013) Wnt/beta-catenin signaling induces the aging of mesenchymal stem cells through promoting the ROS production. Mol Cell Biochem 374:13–20. https://doi.org/10.1007/s11010-012-1498-1

    Article  CAS  PubMed  Google Scholar 

  164. Urao N, Ushio-Fukai M (2013) Redox regulation of stem/progenitor cells and bone marrow niche. Free Radic Biol Med 54:26–39. https://doi.org/10.1016/j.freeradbiomed.2012.10.532

    Article  CAS  PubMed  Google Scholar 

  165. Yanes O et al (2010) Metabolic oxidation regulates embryonic stem cell differentiation. Nat Chem Biol 6:411–417. https://doi.org/10.1038/nchembio.364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Lee J, Duan W, Long JM, Ingram DK, Mattson MP (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus of rats. J Mol Neurosci 15:99–108. https://doi.org/10.1385/JMN:15:2:99

    Article  CAS  PubMed  Google Scholar 

  167. Pani G (2015) Neuroprotective effects of dietary restriction: evidence and mechanisms. Semin Cell Dev Biol 40:106–114. https://doi.org/10.1016/j.semcdb.2015.03.004

    Article  CAS  PubMed  Google Scholar 

  168. Ochocki JD, Simon MC (2013) Nutrient-sensing pathways and metabolic regulation in stem cells. J Cell Biol 203:23–33. https://doi.org/10.1083/jcb.201303110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Majmundar AJ, Wong WJ, Simon MC (2010) Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 40:294–309. https://doi.org/10.1016/j.molcel.2010.09.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Renault VM et al (2009) FoxO3 regulates neural stem cell homeostasis. Cell Stem Cell 5:527–539. https://doi.org/10.1016/j.stem.2009.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Knobloch M et al (2013) Metabolic control of adult neural stem cell activity by Fasn-dependent lipogenesis. Nature 493:226–230. https://doi.org/10.1038/nature11689

    Article  CAS  PubMed  Google Scholar 

  172. Knobloch M et al (2017) A fatty acid oxidation-dependent metabolic shift regulates adult neural stem cell activity. Cell Rep 20:2144–2155. https://doi.org/10.1016/j.celrep.2017.08.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Ma LH, Li Y, Djuric PM, Maletic-Savatic M (2011) Systems biology approach to imaging of neural stem cells. Methods Mol Biol 711:421–434. https://doi.org/10.1007/978-1-61737-992-5_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Allen GI, Maletic-Savatic M (2011) Sparse non-negative generalized PCA with applications to metabolomics. Bioinformatics 27:3029–3035. https://doi.org/10.1093/bioinformatics/btr522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Allen GI, Peterson C, Vannucci M, Maletic-Savatic M (2013) Regularized partial least squares with an application to NMR spectroscopy. Stat Anal Data Min 6:302–314. https://doi.org/10.1002/sam.11169

    Article  PubMed  Google Scholar 

  176. Manganas LN et al (2007) Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain. Science 318:980–985. https://doi.org/10.1126/science.1147851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Maletic-Savatic M et al (2008) Metabolomics of neural progenitor cells: a novel approach to biomarker discovery. Cold Spring Harb Symp Quant Biol 73:389–401. https://doi.org/10.1101/sqb.2008.73.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Djuric PM et al (2008) Response to comments on “Magnetic resonance spectroscopy identifies neural progenitor cells in the live human brain”. Science 321:640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Llorens-Bobadilla E et al (2015) Single-cell transcriptomics reveals a population of dormant neural stem cells that become activated upon brain injury. Cell Stem Cell 17:329–340. https://doi.org/10.1016/j.stem.2015.07.002

    Article  CAS  PubMed  Google Scholar 

  180. Ming GL, Song H (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70:687–702. https://doi.org/10.1016/j.neuron.2011.05.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495. https://doi.org/10.1038/386493a0

    Article  CAS  PubMed  Google Scholar 

  182. Encinas JM et al (2008) Quiescent adult neural stem cells are exceptionally sensitive to cosmic radiation. Exp Neurol 210:274–279. https://doi.org/10.1016/j.expneurol.2007.10.021

    Article  PubMed  Google Scholar 

  183. Kronenberg G et al (2003) Subpopulations of proliferating cells of the adult hippocampus respond differently to physiologic neurogenic stimuli. J Comp Neurol 467:455–463. https://doi.org/10.1002/cne.10945

    Article  PubMed  Google Scholar 

  184. Brandt MD, Maass A, Kempermann G, Storch A (2010) Physical exercise increases notch activity, proliferation and cell cycle exit of type-3 progenitor cells in adult hippocampal neurogenesis. Eur J Neurosci 32:1256–1264. https://doi.org/10.1111/j.1460-9568.2010.07410.x

    Article  PubMed  Google Scholar 

  185. Farioli-Vecchioli S et al (2014) Running rescues defective adult neurogenesis by shortening the length of the cell cycle of neural stem and progenitor cells. Stem Cells 32:1968–1982. https://doi.org/10.1002/stem.1679

    Article  CAS  PubMed  Google Scholar 

  186. Wu CW et al (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol (1985) 105:1585–1594. https://doi.org/10.1152/japplphysiol.90775.2008

    Article  Google Scholar 

  187. van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25:8680–8685. https://doi.org/10.1523/JNEUROSCI.1731-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Overall RW, Walker TL, Fischer TJ, Brandt MD, Kempermann G (2016) Different mechanisms must be considered to explain the increase in hippocampal neural precursor cell proliferation by physical activity. Front Neurosci 10:362. https://doi.org/10.3389/fnins.2016.00362

    Article  PubMed  PubMed Central  Google Scholar 

  189. Tropepe V, Craig CG, Morshead CM, van der Kooy D (1997) Transforming growth factor-alpha null and senescent mice show decreased neural progenitor cell proliferation in the forebrain subependyma. J Neurosci 17:7850–7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sommer L, Rao M (2002) Neural stem cells and regulation of cell number. Prog Neurobiol 66:1–18

    Article  CAS  PubMed  Google Scholar 

  191. Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20:233–243. https://doi.org/10.1016/j.tcb.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  192. Pilz GA et al (2018) Live imaging of neurogenesis in the adult mouse hippocampus. Science 359:658–662. https://doi.org/10.1126/science.aao5056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Hattiangady B, Shetty AK (2008) Aging does not alter the number or phenotype of putative stem/progenitor cells in the neurogenic region of the hippocampus. Neurobiol Aging 29:129–147. https://doi.org/10.1016/j.neurobiolaging.2006.09.015

    Article  CAS  PubMed  Google Scholar 

  194. Kempermann G, Gast D, Gage FH (2002) Neuroplasticity in old age: sustained fivefold induction of hippocampal neurogenesis by long-term environmental enrichment. Ann Neurol 52:135–143. https://doi.org/10.1002/ana.10262

    Article  PubMed  Google Scholar 

  195. Licht T et al (2016) VEGF preconditioning leads to stem cell remodeling and attenuates age-related decay of adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 113:E7828–E7836. https://doi.org/10.1073/pnas.1609592113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Gotz M (2018) Revising concepts about adult stem cells. Science 359:639–640. https://doi.org/10.1126/science.aar7732

    Article  CAS  PubMed  Google Scholar 

  197. Giachino C et al (2014) Molecular diversity subdivides the adult forebrain neural stem cell population. Stem Cells 32:70–84. https://doi.org/10.1002/stem.1520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Jinno S (2011) Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. J Comp Neurol 519:451–466. https://doi.org/10.1002/cne.22527

    Article  PubMed  Google Scholar 

  199. Piccin D, Morshead CM (2010) Potential and pitfalls of stem cell therapy in old age. Dis Model Mech 3:421–425. https://doi.org/10.1242/dmm.003137

    Article  PubMed  Google Scholar 

  200. Sharpless NE, DePinho RA (2004) Telomeres, stem cells, senescence, and cancer. J Clin Invest 113:160–168. https://doi.org/10.1172/JCI20761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. He S et al (2009) Bmi-1 over-expression in neural stem/progenitor cells increases proliferation and neurogenesis in culture but has little effect on these functions in vivo. Dev Biol 328:257–272. https://doi.org/10.1016/j.ydbio.2009.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Wei C, Ren L, Li K, Lu Z (2018) The regulation of survival and differentiation of neural stem cells by miR-124 via modulating PAX3. Neurosci Lett 683:19–26. https://doi.org/10.1016/j.neulet.2018.05.051

    Article  CAS  PubMed  Google Scholar 

  203. Luo Y et al (2015) Single-cell transcriptome analyses reveal signals to activate dormant neural stem cells. Cell 161:1175–1186. https://doi.org/10.1016/j.cell.2015.04.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Delgado AC et al (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83:572–585. https://doi.org/10.1016/j.neuron.2014.06.015

    Article  CAS  PubMed  Google Scholar 

  205. Bozoyan L, Khlghatyan J, Saghatelyan A (2012) Astrocytes control the development of the migration-promoting vasculature scaffold in the postnatal brain via VEGF signaling. J Neurosci 32:1687–1704. https://doi.org/10.1523/JNEUROSCI.5531-11.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Sapolsky RM (1992) Do glucocorticoid concentrations rise with age in the rat? Neurobiol Aging 13:171–174

    Article  CAS  PubMed  Google Scholar 

  207. Cameron HA, McKay RD (1999) Restoring production of hippocampal neurons in old age. Nat Neurosci 2:894–897. https://doi.org/10.1038/13197

    Article  CAS  PubMed  Google Scholar 

  208. Montaron MF et al (1999) Adrenalectomy increases neurogenesis but not PSA-NCAM expression in aged dentate gyrus. Eur J Neurosci 11:1479–1485

    Article  CAS  PubMed  Google Scholar 

  209. Montaron MF et al (2006) Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiol Aging 27:645–654. https://doi.org/10.1016/j.neurobiolaging.2005.02.014

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mirjana Maletic-Savatic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tosun, M., Semerci, F., Maletic-Savatic, M. (2019). Heterogeneity of Stem Cells in the Hippocampus. In: Birbrair, A. (eds) Stem Cells Heterogeneity in Different Organs. Advances in Experimental Medicine and Biology, vol 1169. Springer, Cham. https://doi.org/10.1007/978-3-030-24108-7_2

Download citation

Publish with us

Policies and ethics