Skip to main content

Metrics for Temporal Text Networks

  • Chapter
  • First Online:
Temporal Network Theory

Part of the book series: Computational Social Sciences ((CSS))

  • 1555 Accesses

Abstract

Human communication, either online or offline, is characterized by when information is shared from one actor to the other and by what specific information is exchanged. Using text as a way to represent the exchanged information, we can represent human communication systems with a temporal text network model where actors and messages coexist in a dynamic multilayer network. In this model, actors and messages are represented in separate layers, connected by inter-layer temporal edges representing the communication acts—who and when communicate what information. In this chapter we revisit somemeasures specifically developed for temporal networks, and extend them to the case of temporal text networks. In particular, we focus on defining measures relevant for the analysis of information propagation, including the concepts of walk, path, temporal precedence and path distance measures. We conclude by discussing how to use the proposed measures in practice by conducting a comparative analysis in a sample communication network based on Twitter mentions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    NLP stands for “Natural Language Processing”.

  2. 2.

    To simplify the notation, in this chapter we are assuming that i ≤ j ⇒ t i ≤ t j.

  3. 3.

    We considered only politicians who were either members of the parliament before the elections or were part of an electoral ballot.

References

  1. Cheng, J., Adamic, L.A., Kleinberg, J.M., Leskovec, J.: Do cascades recur? In: Proceedings of the 25th International Conference on World Wide Web, pp. 671–681. International WWW Conferences Steering Committee (2016)

    Google Scholar 

  2. Dickison, M., Magnani, M., Rossi, L.: Multilayer Social Networks. Cambridge University Press, Cambridge (2016)

    Book  Google Scholar 

  3. Dodds, P.S., Danforth, C.M.: Measuring the happiness of large-scale written expression: songs, blogs, and presidents. J. Happiness Stud. 11(4), 441–456 (2010). https://doi.org/10.1007/s10902-009-9150-9

    Article  Google Scholar 

  4. Gauvin, L., Panisson, A., Cattuto, C., Barrat, A.: Activity clocks: spreading dynamics on temporal networks of human contact. Sci. Rep. 3, 3099 (2013). https://doi.org/10.1038/srep03099

    Article  ADS  Google Scholar 

  5. Gomez Rodriguez, M., Leskovec, J., Krause, A.: Inferring networks of diffusion and influence. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD’10, pp. 1019–1028. ACM, New York (2010). http://doi.acm.org/10.1145/1835804.1835933

  6. Holme, P., Saramäki, J.: Temporal networks. Phys. Rep. 519(3), 97–125 (2012). https://doi.org/10.1016/j.physrep.2012.03.001

    Article  ADS  Google Scholar 

  7. Karsai, M., Kivelä, M., Pan, R.K., Kaski, K., Kertész, J., Barabâsi, A.L., Saramäi, J.: Small but slow world: how network topology and burstiness slow down spreading. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83(2), 025102(R) (2011). https://doi.org/10.1103/PhysRevE.83.025102

  8. Kim, J., Diesner, J.: Over-time measurement of triadic closure in coauthorship networks. Soc. Netw. Anal. Min. 7(1), 9 (2017). https://doi.org/10.1007/s13278-017-0428-3

    Article  Google Scholar 

  9. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.: Multilayer networks. J. Complex Netw. 2(3), 203–271 (2014)

    Article  Google Scholar 

  10. Lambiotte, R., Tabourier, L., Delvenne, J.C.: Burstiness and spreading on temporal networks. Eur. Phys. J. B 86(7), 320 (2013). https://doi.org/10.1140/epjb/e2013-40456-9

    Article  ADS  Google Scholar 

  11. Lavrenko, V., Schmill, M., Lawrie, D., Ogilvie, P., Jensen, D., Allan, J.: Mining of concurrent text and time series. In: SIGKDD Workshop on Text Mining, pp. 37–44 (2000)

    Google Scholar 

  12. Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C., VanBriesen, J., Glance, N.: Cost-effective outbreak detection in networks. In: International Conference on Knowledge Discovery and Data Mining (KDD), p. 420 (2007). https://doi.org/10.1145/1281192.1281239

  13. Luhmann, N.: Social Systems. Stanford University Press, Palo Alto (1995)

    Google Scholar 

  14. Magnani, M., Montesi, D., Rossi, L.: Conversation retrieval from microblogging sites. Inf. Retrieval J. 15(3–4) (2012)

    Google Scholar 

  15. Mucha, P.J., Porter, M.A.: Communities in multislice voting networks. Chaos: Interdisciplinary J. Nonlinear Sci. 20(4), 041108 (2010). https://doi.org/10.1063/1.3518696

    Article  Google Scholar 

  16. O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Cohen, W.W., Gosling, S. (eds.) Proceedings of the Eleventh International Conference on Web and Social Media. The AAAI Press, Palo Alto (2010)

    Google Scholar 

  17. Paranjape, A., Benson, A.R., Leskovec, J.: Motifs in temporal networks. In: Proceedings of the 10th ACM International Conference on Web Search and Data Mining, WSDM’17, pp. 601–610. ACM, New York (2017). https://doi.org/10.1145/3018661.3018731

  18. Roth, C., Cointet, J.P.: Social and semantic coevolution in knowledge networks. Soc. Netw. 32(1), 16–29 (2010). https://doi.org/10.1016/j.socnet.2009.04.005

    Article  Google Scholar 

  19. Salehi, M., Sharma, R., Marzolla, M., Magnani, M., Siyari, P., Montesi, D.: Spreading processes in multilayer networks. IEEE Trans. Netw. Sci. Eng. 2(2), 65–83 (2015). http://arxiv.org/abs/1405.4329

    Article  Google Scholar 

  20. Snijders, T.A.B.: Models for longitudinal network data. In: P.J. Carrington, J. Scott, S. Wasserman (eds.) Models and Methods in Social Network Analysis, Structural Analysis in the Social Sciences, pp. 215–247. Cambridge University Press, Cambridge (2005). https://doi.org/10.1017/CBO9780511811395.011

    Google Scholar 

  21. Snijders, T.A.B.: Siena: statistical modeling of longitudinal network data. In: Encyclopedia of Social Network Analysis and Mining, pp. 1718–1725. Springer, New York (2014)

    Google Scholar 

  22. Stehlé, J., Voirin, N., Barrat, A., Cattuto, C., Isella, L., Pinton, J.F., Vanhems, P.: High-resolution measurements of face-to-face contact patterns in a primary school. PLoS One 6(8) (2011). https://doi.org/10.1371/journal.pone.0023176

    Article  ADS  Google Scholar 

  23. Tamine, L., Soulier, L., Jabeur, L., Amblard, F., Hanachi, C., Hubert, G., Roth, C.: Social media-based collaborative information access: analysis of online crisis-related twitter conversations. In: HT 2016 - Proceedings of the 27th ACM Conference on Hypertext and Social Media, pp. 159–168 (2016). https://doi.org/10.1145/2914586.2914589

  24. Vadicamo, L., Carrara, F., Cimino, A., Cresci, S., Dell’Orletta, F., Falchi, F., Tesconi, M.: Cross-media learning for image sentiment analysis in the wild. In: 2017 IEEE International Conference on Computer Vision Workshops (ICCVW), pp. 308–317 (2017). https://doi.org/10.1109/ICCVW.2017.45

  25. Vega, D., Magnani, M.: Foundations of temporal text networks. Appl. Netw. Sci. 3(1), 26 (2018). https://doi.org/10.1007/s41109-018-0082-3

    Article  Google Scholar 

  26. Viard, T., Latapy, M., Magnien, C.: Computing maximal cliques in link streams. Theor. Comput. Sci. 609(1), 245–252 (2016). https://doi.org/10.1016/j.tcs.2015.09.030

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Prof. Christian Rohner for his comments and suggestions.

This work was partially supported by the European Community through the project “Values and ethics in Innovation for Responsible Technology in Europe” (Virt-EU) funded under Horizon 2020 ICT-35-RIA call Enabling Responsible ICT-related Research and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Magnani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vega, D., Magnani, M. (2019). Metrics for Temporal Text Networks. In: Holme, P., Saramäki, J. (eds) Temporal Network Theory. Computational Social Sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-23495-9_8

Download citation

Publish with us

Policies and ethics