Skip to main content

Vulnerability to the Effects of Climate Change: Future Aridness and Present Governance in the Coastal Municipalities of Mexico

  • Chapter
  • First Online:
Stewardship of Future Drylands and Climate Change in the Global South

Part of the book series: Springer Climate ((SPCL))

Abstract

We estimated vulnerability to climate change in the coastal municipalities of Mexico through an interdisciplinary approach using an index model with three components: (1) Exposure to dryness and climate change (Lang’s dryness index), (2) socioeconomic sensitivity, and (3) adaptation capacity. Data input were national census data and general circulation model outputs (2045–2069 scenario). Scenarios were compared to reference climatology through Lang’s aridity index, which was found to be practical as an aridity indicator and foresee its future change in value. This methodological approach allowed to set priorities by identifying groups of more threatened and less prepared municipalities in the territories, which show more differences between the present climatological parameter values and the values predicted assuming future climatic scenarios, have less climate change related institutional instruments, present social weaknesses (poverty and inequality), or show environmental degradation. Our results showed the presence of arid zones in 43% of Mexico’s 266 coastal municipalities, comprising more than half of the total coastal population. Comparing present and future scenarios allows differentiating regions already arid that will remain in this situation (Northern Pacific) from regions that are currently humid but will shift to an arid (Caribbean Sea) or desert category (Northern Gulf of Mexico). Both used models predicted a future shift of all categories towards dryness and a worrisome number that will turn to desert and arid categories. We found regional heterogeneity and a complex contribution of each subindex to the total coastal vulnerability index. We concluded that our results can be used as an input to guide the current coastal policies to promote a development model that decreases the vulnerability of coastal municipalities and advance towards a model that includes the complexities of the Mexican coastal dryland socio-ecological systems, its challenges, and its opportunities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Climate change projections have been developed at a global scale considering different scenarios. General Circulation Models (GCM) and are used to predict climate change for different future time periods under different CO2 emission scenarios and related atmospheric heat transfer processes. In this work we choose the highest emissions pathways (Representative Concentration Pathways RCP 8.5), which assumes that greenhouse gas emissions will continue to rise throughout the current century, so that we could distinguish larger change. Two models from the world available GCM considered to represent the best climate regime for Mexico were analyzed: GFDL_CM3 (developed by the Geophysical Fluid Dynamics Laboratory), and MPI_ESM_LR (developed by the Max-Plank Institute).

References

  • Abuodha P, Woodroffe CD (2006) International assessments of the vulnerability of the coastal zone to climate change, including an Australian perspective. Australian Greenhouse Office, Department of the Environment and Heritage, Australia

    Google Scholar 

  • Abuodha P, Woodroffe CD (2010a) Vulnerability assessment. In: Green DR (ed) Coastal zone management. Thomas Telford, London, pp 262–290

    Chapter  Google Scholar 

  • Abuodha P, Woodroffe CD (2010b) Assessing vulnerability to sea-level rise using a coastal sensitivity index: a case study from Southeast Australia. J Coast Conserv 14:189–205

    Article  Google Scholar 

  • Adger WN (2006) Vulnerability. Glob Environ Chang 16:268–281

    Article  Google Scholar 

  • Adger WN, Arnell NW, Tompkins EL (2005) Successful adaptation to climate change across scales. Glob Environ Chang 12(2):77–86

    Article  Google Scholar 

  • Amador GA, López G, Mendoza ME (2011) Three approaches to the assessment of spatio-temporal distribution of the water balance: the case of the Cuitzeo basin, Michoacán, México. Investigaciones Geográficas, Instituto de Geografía, UNAM, México 76:34–55

    Google Scholar 

  • Asociación Mexicana de Institutos Municipales de Planeación (AMIMP) (2003) https://www.amimp.org.mx/. Accessed 26 Apr 2019

  • Azuz-Adeath I, Arredondo-García MC, Espejel I, Rivera-Arriaga E, Seingier G, Fermán JL (2010a) Referentes internacionales sobre indicadores e índices. Historia y estado del arte. In: Rivera-Arriaga E, Azuz-Adeath I, Alpuche GL, Villalobos-Zapata GJ (eds) Cambio climático en México un enfoque costero-marino. Universidad Autónoma de Campeche, Cetys-Universidad, Gobierno del Estado de Campeche, pp 845–858

    Google Scholar 

  • Azuz-Adeath I, Arredondo-García MC, Espejel I, Rivera-Arriaga E, Seingier G, Fermán JL (2010b) Propuesta de indicadores de la Red Mexicana de Manejo Integrado Costero-Marino. In: Rivera-Arriaga E, Azuz-Adeath I, Alpuche GL, Villalobos-Zapata GJ (eds) Cambio climático en México un enfoque costero-marino. Universidad Autónoma de Campeche, Cetys-Universidad, Gobierno del Estado de Campeche, pp 901–940

    Google Scholar 

  • Balica SF, Popescu I, Beevers L, Wright NG (2013) Parametric and physically based modelling techniques for flood risk and vulnerability assessment: a comparison. Environ Model Softw 41:84–92

    Article  Google Scholar 

  • Bormudoi A, Hazarika MK, Samarakoon L, Phosalath S, Sengtianthr V (2008) Flood hazard in Savannakhet Province, Lao PDR mapping using HEC-RAS, remote sensing and GIS. In: 29th Asian conference on remote sensing. Colombo, Sri Lanka

    Google Scholar 

  • Comisión Nacional de Áreas Naturales Protegidas (CONANP) (2017) Programas de Adaptación al Cambio Climático en Áreas Naturales Protegidas. CONANP. https://www.gob.mx/conanp/documentos/programas-de-adaptacion-al-cambio-climatico-en-areas-naturales-protegidas

  • Dang NM, Babel MS, Huynh TL (2011) Evaluation of food risk parameters in the day river flood diversion area, Red River Delta, Vietnam. Nat Hazards 56:169–194

    Article  Google Scholar 

  • Dwarakish GS, Vinay SA, Natesan U, Asano T, Kakimuna T, Venkataramana K, Jagadeesha Pai B, Babita MK (2009) Coastal vulnerability assessment of the future sea level rise in Udupi coastal zone of Karnataka state, west coast of India. Ocean Coast Manag 52:467–478

    Article  Google Scholar 

  • Eakin H, Luers AL (2006) Assessing the vulnerability of socio-environmental systems. Annu Rev Environ Resour 31:365–394

    Article  Google Scholar 

  • Füsel HM (2007) Vulnerability: a generally applicable conceptual framework for climate change research. Glob Environ Chang 17:155–167

    Article  Google Scholar 

  • Gornitz VM, Kanciruk P (1989) Assessment of global coastal hazards from sea level rise. In: Proceedings of the 6th symposium on coastal and ocean management. American Society of Civil Engineers, Charleston, SC

    Google Scholar 

  • Gornitz VM, Daniels RC, White TW, Birdwell KR (1994) The development of a coastal risk assessment database: vulnerability to sea level rise in the US southeast. J Coast Res 12:327–338

    Google Scholar 

  • Grattan SR, Zeng L, Shamnon MC, Robert SR (2002) Rice is more sensitive than previous thought. Calif Agric 56:189–195

    Article  Google Scholar 

  • Harvey N, Woodroffe CD (2008) Australian approaches to coastal vulnerability assessment. Sustain Sci 3:67–87

    Article  Google Scholar 

  • Hinkel J (2011) Indicators of vulnerability and adaptive capacity: towards a clarification of the science-policy interface. Glob Environ Chang 21:198–208

    Article  Google Scholar 

  • Hoang HN, Huynh HK, Nguyen TH (2012) Simulation of salinity intrusion in the context of the Mekong Delta Region (Viet Nam). IEEE, pp 1–4

    Google Scholar 

  • Huang Y, Li F, Bai X, Cui S (2012) Comparing vulnerability of coastal communities to land use change: analytical framework and a case study in China. Environ Sci Pol 23:133–143

    Article  Google Scholar 

  • Hubálek Z, Horáková M (1988) Evaluation of climatic similarity between areas in biogeography. J Biogeogr 15:409–418

    Article  Google Scholar 

  • IPCC (2007) Summary for policymakers. In: Palutikof J, van der Linden P, Hanson C (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 7–22

    Google Scholar 

  • Kafle TP, Hazarika MK, Samarakoon L (2007) Flood risk assessment in the flood plain of Bagmati river in Nepal

    Google Scholar 

  • Le S (2003) The restructuring of production in coastal areas in the Mekong River Delta. J Agric Rural Dev 5

    Google Scholar 

  • Le QT, Nguyen HT, Le AT (2009) Climate change impacts and vulnerabilities assessment for Can Tho City. Asian Cities Climate Change Resilience Network (ACCCRN) program. DRAGON-Mekong-CTU, Can Tho, Vietnam

    Google Scholar 

  • Liu J (1996) Macro-scale survey and dynamic study of natural resources and environment of China by remote sensing. Press of Science and Technology of China, Beijing

    Google Scholar 

  • Mackey P, Russell M (2011) Climate change scenarios, sea level rise for Ca Mau, Kien Giang- climate change impact and adaptation study in the Mekong Delta. Asian Development Bank, TA 7377 e VIE. Sinclair Knight Merz (SKM), Vietnam Institute of Meteorology, Hydrology, and Environment (IMHEN), y the Kien Giang Peoples Committee, Melbourne VIC 8009 Australia

    Google Scholar 

  • McFadden L (2007) Vulnerability analysis: a useful concept for coastal management? In: McFadden L, Nicholls RJ, Penning-Rowsell E (eds) Managing coastal vulnerability. Elsevier, Amsterdam, pp 15–28

    Google Scholar 

  • McLaughlin S, Cooper JAG (2010) A multi-scale coastal vulnerability index: a tool for coastal managers? Environ Hazards 9:233–248

    Article  Google Scholar 

  • McLeod E, Poulter B, Hinkel J, Reyes E, Salm R (2010) Sea-level rise impact models and environmental conservation: a review of models and their applications. Ocean Coast Manag 53:507–517

    Article  Google Scholar 

  • Nardo M, Saisana M, Saltelli A, Tarantola S (2005) Handbook on constructing composite indicators: methodology and user guide. Organisation for Economic Co-operation and Development, Paris, p 207

    Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholss RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding - a global assessment. PLoS One 10(3):e2371

    Article  Google Scholar 

  • Nguyen NT (2012) Assessing the vulnerability of coastal Phu Quoc Island, Kien Giang in terms of sea-level rise. Unpublished Master of environmental sciences Master degree. University of Natural Sciences, National University of Ho Chi Minh City, Ho Chi Minh, Vietnam

    Google Scholar 

  • Nguyen NT, Bonetti J, Rogers K, Woodroffe CD (2016) Indicator-based assessment of climate-change impacts on coasts: a review of concepts, methodological approaches and vulnerability indices. Ocean Coast Manag 123:18–43

    Article  Google Scholar 

  • Nicholls RJ, Wong PP, Burkett V, Woodroffe CD, Hay J (2008) Climate change and coastal vulnerability assessment: scenarios for integrated assessment. Sustain Sci 3:89–102

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2000) Frameworks to measure sustainable development. Organisation for Economic Co-operation and Development, París, p 164

    Google Scholar 

  • Organisation for Economic Co-operation and Development (OECD) (2003) OECD environmental indicators development, measurement and use. Organisation for Economic Co-operation and Development, París, p 37

    Google Scholar 

  • Özyurt G, Ergin A (2010) Improving coastal vulnerability assessments to sea-level rise: a new indicator-based methodology for decision makers. J Coast Res 26:265–273

    Article  Google Scholar 

  • Pendleton EA, Thieler ER, Williams SJ (2010) Importance of coastal change variables in determining vulnerability to sea- and lake-level change. J Coast Res 26:176–183

    Article  Google Scholar 

  • Pham HT, Nguyen VC (2005) Forecasting the erosion and sedimentation in the coastal and river mouth areas and preventive measures. State level research project. Hanoi. 407p

    Google Scholar 

  • Preston BL, Smith TF, Brooke C, Gorddard R, Measham TG, Withycombe G, Beveridge B, Morrison C, McInnes K, Abbs D (2008) Mapping climate change vulnerability in the Sydney Coastal Councils Group. Report prepared for the Sydney Coastal Councils Group. Sydney Coastal Council Groups. 117 p

    Google Scholar 

  • Sánchez-Torres G, Jospina-Noreña JE, Gay-García C, Conde C (2011) Vulnerability of water resources to climate change scenarios. Impacts on the irrigation districts in the Guayalejo–Tamesí river basin, Tamaulipas, México. Atmósfera 24(1):141–155

    Google Scholar 

  • Secretaria de Desarrollo Social (SEDESOL) (2012) Guía Municipal de Acciones frente al Cambio Climático, Con énfasis en desarrollo urbano y ordenamiento territorial. http://www.inafed.gob.mx/work/models/inafed/Resource/330/1/images/

  • Secretaria de Gobernación (SEGOB) (2018) Acuerdo mediante el cual se expide la Política Nacional de Mares y Costas de México. Diario Oficial de la Federación. https://dof.gob.mx/nota_detalle.php?codigo=5545511&fecha=30/11/2018

  • Secretaria de Gobernación (SEGOB) (2019) Cobertura de Atlas Municipales. http://www.atlasnacionalderiesgos.gob.mx/archivo/cob-atlas-municipales.html. Accessed 26 Apr 2019

  • Secretaria de Medio Ambiente y Recursos Naturales (SEMARNAT) (2006) Política Nacional de Mares y Costas. https://www.biodiversidad.gob.mx/pais/mares/pdf/A4_PNMC_actualizada_dic2015.pdf

  • Seingier G, Espejel I, Ferman JL, Montaño G, Azuz I, Aramburo G (2011a) Halfway to sustainability. Ocean Coast Manag 54(2):123–128

    Article  Google Scholar 

  • Seingier G, Espejel I, Fermán JL, Montaño G, Azuz I, Aramburo G (2011b) Design of an integrated coastal orientation index. Cross-comparison of Mexican municipalities. Ecol Indic 11(2):633–642

    Article  Google Scholar 

  • Spangenberg JH, Bonniot O (1998) Sustainability indicators. A compass on the road towards sustainability. Wuppertal papers. http://nbn-resolving.de/urn:nbn:de:bsz:wup4-opus-7218

  • Tingsanchali T, Karim MF (2005) Flood hazard and risk analysis in the southwest region of Bangladesh. Hydrol Process 19:2055–2069

    Article  Google Scholar 

  • Troyo-Diéguez E, Mercado-Mancera G, Cruz-Falcón A, Nieto AG, Valdez-Cepeda RD, García-Hernández JL, Murillo-Amador B (2014) Análisis de la sequía y desertificación mediante índices de aridez y estimación de la brecha hídrica en Baja California Sur, noroeste de México. Invest Geogr 85:66–81. https://doi.org/10.14350/rig.32404

    Article  Google Scholar 

  • Yin J, Yin Z, Wang J, Xu S (2012) National assessment of coastal vulnerability to sea-level rise for the Chinese coast. J Coast Conserv 16:123–133

    Article  Google Scholar 

Download references

Acknowledgments

The present research is part of the characterization and regionalization of the coastal zones of Mexico that includes methods of Geographic Information Systems and biophysical and socioeconomic statistics in current conditions and with climate change project of the 2013–2016 Collaborative Platform on Climate Change and Green Growth between Canada and Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Seingier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seingier, G., Jiménez-Orocio, O., Espejel, I. (2020). Vulnerability to the Effects of Climate Change: Future Aridness and Present Governance in the Coastal Municipalities of Mexico. In: Lucatello, S., Huber-Sannwald, E., Espejel, I., Martínez-Tagüeña, N. (eds) Stewardship of Future Drylands and Climate Change in the Global South. Springer Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-22464-6_17

Download citation

Publish with us

Policies and ethics