Skip to main content

More Continua with Distinct Covering and Inductive Dimensions

  • Chapter
  • First Online:
Dimension Theory

Part of the book series: Atlantis Studies in Mathematics ((ATLANTISSM,volume 7))

  • 669 Accesses

Abstract

In many constructions with the method of Fedorčuk’s resolution, beginning with the first one in by Fedorčuk (English Trans Soviet Math Dokl 9:1148–1150, 1968), the value of the covering dimension is precisely determined, while for the corresponding value of inductive dimensions one has to be content with a mere estimate. In this chapter, we present a method of resolution which allows accurate computation of inductive dimensions. For certain classes of continua \(\mathcal {K}\) and certain pairs of integers m, n with m ≤ n, this method produces continua \(X_{m,n} \in \mathcal {K}\) with \(\dim X_{m,n} = m\) and ind X m,n = ind X m,n = n.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A continuum X is an Anderson–Choquet continuum if every non-degenerate subcontinuum of X admits only one embedding into X.

  2. 2.

    A continuum X is a Cook continuum if every non-degenerate subcontinuum of X admits only one non-constant map into X.

References

  1. J.M. Aarts, P. van Emde Boas, Continua as remainders in compact extensions. Nieuw Arch. Wisk. 15, 34–37 (1967)

    MathSciNet  MATH  Google Scholar 

  2. R.H. Bing, Higher-dimensional hereditarily indecomposable continua. Trans. Amer. Math. Soc. 71, 267–273 (1951)

    Article  MathSciNet  Google Scholar 

  3. L.E.J. Brouwer, Über den natürlichen Dimensionsbegriff. J. Reine Angew. Math. 142, 146–152 (1913)

    Article  MathSciNet  Google Scholar 

  4. M.G. Charalambous, J. Krzempek, Rigid continua and transfinite inductive dimension. Topology Appl. 157, 1690–1702 (2010)

    Article  MathSciNet  Google Scholar 

  5. M.G. Charalambous, J. Krzempek, On dimensionsgrad, resolutions, and chainable continua. Fund. Math. 209, 243–265 (2010)

    Article  MathSciNet  Google Scholar 

  6. V.A. Chatyrko, Snakelike and homogeneous compacta with noncoinciding dimensions. Uspekhi Mat. Nauk 39, no. 3 (237), 247–248 (1984) (in Russian); English transl.: Russian Math. Surveys 39, no. 3, 201–202 (1984)

    Google Scholar 

  7. V.A. Chatyrko, On compact spaces with noncoinciding dimensions. Trans. Moscow Math. Soc., 199–236 (1991)

    Google Scholar 

  8. V.A. Chatyrko, V.V. Fedorčuk, On the Brouwer dimension of one-dimensional compact Hausdorff spaces. Vestnik Moskov. Univ. Ser. I Mat. Mekh. 71, no. 2, 22–27 (2005) (in Russian); English transl.: Moscow Univ. Math. Bull. 60, no. 2, 22–27 (2005)

    Google Scholar 

  9. R. Engelking, Theory of Dimensions, Finite and Infinite (Heldermann Verlag, Lemgo, 1995)

    Google Scholar 

  10. V.V. Fedorčuk, On bicompacta with noncoinciding dimensions. Dokl. Akad. Nauk SSSR 182, no. 2, 275–277 (1968) (in Russian); English transl.: Soviet Math. Dokl. 9, 1148–1150 (1968)

    Google Scholar 

  11. V.V. Fedorčuk, On the Brouwer dimension of compact Hausdorff spaces. Mat. Zametki 73, 295–304 (2003) (in Russian); English transl.: Math. Notes 73, 271–279 (2003)

    Google Scholar 

  12. V.V. Fedorčuk, An example of a compact space with different Lebesgue, Brouwer, and inductive dimensions. Mat. Sb. 195, no. 12, 109–122 (2004) (in Russian); English transl.: Sb. Math. 195, 1809–1822 (2004)

    Google Scholar 

  13. V.V. Fedorčuk, M. Levin, E.V. Ščepin, On the Brouwer definition of dimension. Uspekhi Mat. Nauk 54, no. 2, 193–194 (1999) (in Russian); English transl.: Russian Math. Surveys 54, 432–433 (1999)

    Google Scholar 

  14. V.V. Fedorčuk, J. van Mill, Dimensionsgrad for locally connected Polish spaces. Fund. Math. 163, 77–82 (2000)

    MathSciNet  MATH  Google Scholar 

  15. V.V. Filippov, On bicompacta with distinct dimensions \(\mathop {\mathrm {ind}}\nolimits \) and / \(\dim \). Dokl. Akad. Nauk SSSR 192, 516–519 (1970) (in Russian); English transl.: Soviet Math. Dokl. 11, 687–691 (1970)

    Google Scholar 

  16. W. Hurewicz, H. Wallman, Dimension Theory (van Nostrand, Princeton, 1948)

    MATH  Google Scholar 

  17. J. Krzempek, Fully closed maps and non-metrizable higher–dimensional Anderson–Choquet continua. Colloq. Math. 120, 201–222 (2010)

    Article  MathSciNet  Google Scholar 

  18. J. van Mill, The Infinite–Dimensional Topology of Function Spaces (Elsevier, Amsterdam, 2001)

    MATH  Google Scholar 

  19. A.R. Pears, Dimension Theory of General Spaces (Cambridge University Press, Cambridge, 1976)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Charalambous, M.G. (2019). More Continua with Distinct Covering and Inductive Dimensions. In: Dimension Theory. Atlantis Studies in Mathematics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-030-22232-1_31

Download citation

Publish with us

Policies and ethics