Skip to main content

Cytochrome P450 Eicosanoid Signaling Pathway in Colorectal Tumorigenesis

  • Chapter
  • First Online:
The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1161))

Abstract

Colorectal cancer (CRC) is the third most common cancer and the second leading cause of cancer-related death in the United States. It is important to discover novel cellular targets which are crucial in the pathogenesis of CRC, which could facilitate development of mechanism-based strategies to reduce the risks of CRC. Emerging studies support that the cytochrome P450 (CYP) monooxygenase/soluble epoxide hydrolase (sEH) pathway and their eicosanoid metabolites play critical roles in colonic inflammation and CRC, and could be therapeutically explored for treating or preventing CRC. Here in this review, we discuss recent studies about the roles of the CYP/sEH eicosanoid pathway in the pathogenesis of colonic inflammation and CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A (2018) Cancer statistics, 2018. CA Cancer J Clin 68:7–30

    Article  Google Scholar 

  2. Terzic J, Grivennikov S, Karin E, Karin M (2010) Inflammation and colon cancer. Gastroenterology 138:2101–2114. e2105

    Article  CAS  Google Scholar 

  3. Greene ER, Huang S, Serhan CN, Panigrahy D (2011) Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat 96:27–36

    Article  CAS  Google Scholar 

  4. Wang D, Dubois RN (2010) Eicosanoids and cancer. Nat Rev Cancer 10:181–193

    Article  CAS  Google Scholar 

  5. Chulada PC et al (2000) Genetic disruption of Ptgs-1, as well as Ptgs-2, reduces intestinal tumorigenesis in min mice. Cancer Res 60:4705–4708

    CAS  PubMed  Google Scholar 

  6. Ishikawa TO, Herschman HR (2010) Tumor formation in a mouse model of colitis-associated colon cancer does not require COX-1 or COX-2 expression. Carcinogenesis 31:729–736

    Article  CAS  Google Scholar 

  7. Grosser T, Fries S, FitzGerald GA (2006) Biological basis for the cardiovascular consequences of COX-2 inhibition: therapeutic challenges and opportunities. J Clin Invest 116:4–15

    Article  CAS  Google Scholar 

  8. Wang Y et al (2018) Eicosanoid signaling in carcinogenesis of colorectal cancer. Cancer Metastasis Rev 37:257–267

    Article  CAS  Google Scholar 

  9. Zeldin DC (2001) Epoxygenase pathways of arachidonic acid metabolism. J Biol Chem 276:36059–36062

    Article  CAS  Google Scholar 

  10. Zhang G, Kodani S, Hammock BD (2014) Stabilized epoxygenated fatty acids regulate inflammation, pain, angiogenesis and cancer. Prog Lipid Res 53:108–123

    Article  CAS  Google Scholar 

  11. Lazaar AL et al (2016) Pharmacokinetics, pharmacodynamics and adverse event profile of GSK2256294, a novel soluble epoxide hydrolase inhibitor. Br J Clin Pharmacol 81:971–979

    Article  CAS  Google Scholar 

  12. McReynolds C, Schmidt WK, Wagner K, Hammock BD (2016) Advancing soluble epoxide hydrolase inhibitors through the valley of death into phase 1 clinical trials for treating painful diabetic neuropathy by utilizing university partnerships, collaborations, and NIH support. FASEB J 30:1272–1276

    Google Scholar 

  13. Veith H et al (2009) Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nat Biotechnol 27:1050

    Article  CAS  Google Scholar 

  14. Yanai R et al (2014) Cytochrome P450-generated metabolites derived from omega-3 fatty acids attenuate neovascularization. Proc Natl Acad Sci U S A 111:9603–9608

    Article  CAS  Google Scholar 

  15. Panigrahy D et al (2012) Epoxyeicosanoids stimulate multiorgan metastasis and tumor dormancy escape in mice. J Clin Invest 122:178–191

    Article  CAS  Google Scholar 

  16. Jiang JG et al (2005) Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res 65:4707–4715

    Article  CAS  Google Scholar 

  17. Pozzi A et al (2010) The anti-tumorigenic properties of peroxisomal proliferator-activated receptor alpha are arachidonic acid epoxygenase-mediated. J Biol Chem 285:12840–12850

    Article  CAS  Google Scholar 

  18. Zhang W et al (2013) Soluble epoxide hydrolase deficiency inhibits dextran sulfate sodium-induced colitis and carcinogenesis in mice. Anticancer Res 33:5261–5271

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang W et al (2012) Soluble epoxide hydrolase gene deficiency or inhibition attenuates chronic active inflammatory bowel disease in IL-10(−/−) mice. Dig Dis Sci 57:2580–2591

    Article  CAS  Google Scholar 

  20. Zhang W et al (2013) Reduction of inflammatory bowel disease-induced tumor development in IL-10 knockout mice with soluble epoxide hydrolase gene deficiency. Mol Carcinog 52:726–738

    Article  CAS  Google Scholar 

  21. Wang W et al (2019) Targeted metabolomics identifies cytochrome P450 monooxygenase eicosanoid pathway as novel therapeutic target of colon tumorigenesis. Cancer Res 79(8):1822–1830

    Article  CAS  Google Scholar 

  22. Aguiar M, Masse R, Gibbs BF (2005) Regulation of cytochrome P450 by posttranslational modification. Drug Metab Rev 37:379–404

    Article  CAS  Google Scholar 

  23. Enayetallah AE, French RA, Grant DF (2006) Distribution of soluble epoxide hydrolase, cytochrome P450 2C8, 2C9 and 2J2 in human malignant neoplasms. J Mol Histol 37:133–141

    Article  CAS  Google Scholar 

  24. Vaupel P, Mayer A (2007) Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metastasis Rev 26:225–239

    Article  CAS  Google Scholar 

  25. Liu Y et al (2012) Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS One 7:e39165

    Article  CAS  Google Scholar 

  26. Lopez-Vicario C et al (2015) Inhibition of soluble epoxide hydrolase modulates inflammation and autophagy in obese adipose tissue and liver: role for omega-3 epoxides. Proc Natl Acad Sci U S A 112:536–541

    Article  CAS  Google Scholar 

  27. Wu CH et al (2017) Genetic deletion or pharmacological inhibition of soluble epoxide hydrolase reduces brain damage and attenuates neuroinflammation after intracerebral hemorrhage. J Neuroinflammation 14:230

    Article  Google Scholar 

  28. Hanaki Y et al (1991) Leukotoxin, 9, 10-epoxy-12-octadecenoate: a possible responsible factor in circulatory shock and disseminated intravascular coagulation. Jpn J Med 30:224–228

    Article  CAS  Google Scholar 

  29. Hayakawa M et al (1990) Proposal of leukotoxin, 9,10-epoxy-12-octadecenoate, as a burn toxin. Biochem Int 21:573–579

    CAS  PubMed  Google Scholar 

  30. Hu JN et al (1988) Neutrophil-derived epoxide, 9,10-epoxy-12-octadecenoate, induces pulmonary edema. Lung 166:327–337

    Article  CAS  Google Scholar 

  31. Kosaka K, Suzuki K, Hayakawa M, Sugiyama S, Ozawa T (1994) Leukotoxin, a linoleate epoxide: its implication in the late death of patients with extensive burns. Mol Cell Biochem 139:141–148

    Article  CAS  Google Scholar 

  32. Ozawa T et al (1988) Cytotoxic activity of leukotoxin, a neutrophil-derived fatty acid epoxide, on cultured human cells. Biochem Int 16:369–373

    CAS  PubMed  Google Scholar 

  33. Totani Y et al (2000) Leukotoxin and its diol induce neutrophil chemotaxis through signal transduction different from that of fMLP. Eur Respir J 15:75–79

    Article  CAS  Google Scholar 

  34. Zheng J, Plopper CG, Lakritz J, Storms DH, Hammock BD (2001) Leukotoxin-diol: a putative toxic mediator involved in acute respiratory distress syndrome. Am J Respir Cell Mol Biol 25:434–438

    Article  CAS  Google Scholar 

  35. Moghaddam MF et al (1997) Bioactivation of leukotoxins to their toxic diols by epoxide hydrolase. Nat Med 3:562–566

    Article  CAS  Google Scholar 

  36. Node K et al (1999) Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 285:1276–1279

    Article  CAS  Google Scholar 

  37. Morin C, Sirois M, Echave V, Gomes MM, Rousseau E (2008) EET displays anti-inflammatory effects in TNF-alpha stimulated human bronchi: putative role of CPI-17. Am J Respir Cell Mol Biol 38:192–201

    Article  CAS  Google Scholar 

  38. Zhang G et al (2013) Epoxy metabolites of docosahexaenoic acid (DHA) inhibit angiogenesis, tumor growth, and metastasis. Proc Natl Acad Sci U S A 110:6530–6535

    Article  CAS  Google Scholar 

  39. Wang W et al (2017) Omega-3 polyunsaturated fatty acids and their cytochrome P450-derived metabolites suppress colorectal tumor development in mice. J Nutr Biochem 48:29–35

    Article  CAS  Google Scholar 

  40. Funk CD (2001) Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294:1871–1875

    Article  CAS  Google Scholar 

  41. Yang W et al (2008) Characterization of epoxyeicosatrienoic acid binding site in U937 membranes using a novel radiolabeled agonist, 20-125i-14,15-epoxyeicosa-8(Z)-enoic acid. J Pharmacol Exp Ther 324:1019–1027

    Article  CAS  Google Scholar 

  42. Chen Y, Falck JR, Manthati VL, Jat JL, Campbell WB (2011) 20-Iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide: photoaffinity labeling of a 14,15-epoxyeicosatrienoic acid receptor. Biochemistry 50:3840–3848

    Article  CAS  Google Scholar 

  43. Park SK et al (2018) GPR40 is a low-affinity epoxyeicosatrienoic acid receptor in vascular cells. J Biol Chem 293:10675–10691

    Article  CAS  Google Scholar 

  44. Liu X et al (2017) Functional screening for G protein-coupled receptor targets of 14,15-epoxyeicosatrienoic acid. Prostaglandins Other Lipid Mediat 132:31–40

    Article  CAS  Google Scholar 

  45. Li P et al (2015) Epoxyeicosatrienoic acids enhance embryonic haematopoiesis and adult marrow engraftment. Nature 523:468–471

    Article  Google Scholar 

  46. Ding Y et al (2014) The biological actions of 11,12-epoxyeicosatrienoic acid in endothelial cells are specific to the R/S-enantiomer and require the G(s) protein. J Pharmacol Exp Ther 350:14–21

    Article  Google Scholar 

  47. Kundu S et al (2013) Metabolic products of soluble epoxide hydrolase are essential for monocyte chemotaxis to MCP-1 in vitro and in vivo. J Lipid Res 54:436–447

    Article  CAS  Google Scholar 

  48. Hu J et al (2014) Muller glia cells regulate notch signaling and retinal angiogenesis via the generation of 19,20-dihydroxydocosapentaenoic acid. J Exp Med 211:281–295

    Article  CAS  Google Scholar 

  49. Hu J et al (2017) Inhibition of soluble epoxide hydrolase prevents diabetic retinopathy. Nature 552:248–252

    Article  CAS  Google Scholar 

  50. Enos RT et al (2016) High-fat diets rich in saturated fat protect against azoxymethane/dextran sulfate sodium-induced colon cancer. Am J Physiol Gastrointest Liver Physiol 310:G906–G919

    Article  Google Scholar 

  51. Wu B et al (2004) Dietary corn oil promotes colon cancer by inhibiting mitochondria-dependent apoptosis in azoxymethane-treated rats. Exp Biol Med (Maywood) 229:1017–1025

    Article  CAS  Google Scholar 

  52. Fujise T et al (2007) Long-term feeding of various fat diets modulates azoxymethane-induced colon carcinogenesis through Wnt/beta-catenin signaling in rats. Am J Physiol Gastrointest Liver Physiol 292:G1150–G1156

    Article  CAS  Google Scholar 

  53. Reddy BS, Tanaka T, Simi B (1985) Effect of different levels of dietary trans fat or corn oil on azoxymethane-induced colon carcinogenesis in F344 rats. J Natl Cancer Inst 75:791–798

    CAS  PubMed  Google Scholar 

  54. Pot GK et al (2008) Opposing associations of serum n-3 and n-6 polyunsaturated fatty acids with colorectal adenoma risk: an endoscopy-based case-control study. Int J Cancer 123:1974–1977

    Article  CAS  Google Scholar 

  55. Ogden CL, Carroll MD, Fryar CD, Flegal KM (2015) Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief:1–8

    Google Scholar 

  56. Moghaddam AA, Woodward M, Huxley R (2007) Obesity and risk of colorectal cancer: a meta-analysis of 31 studies with 70,000 events. Cancer Epidemiol Biomark Prev 16:2533–2547

    Article  Google Scholar 

  57. Ma Y et al (2013) Obesity and risk of colorectal cancer: a systematic review of prospective studies. PLoS One 8:e53916

    Article  CAS  Google Scholar 

  58. Roberts DL, Dive C, Renehan AG (2010) Biological mechanisms linking obesity and cancer risk: new perspectives. Annu Rev Med 61:301–316

    Article  CAS  Google Scholar 

  59. Wang W et al (2018) Lipidomic profiling reveals soluble epoxide hydrolase as a therapeutic target of obesity-induced colonic inflammation. Proc Natl Acad Sci U S A 115:5283–5288

    Article  CAS  Google Scholar 

  60. Bettaieb A et al (2013) Soluble epoxide hydrolase deficiency or inhibition attenuates diet-induced endoplasmic reticulum stress in liver and adipose tissue. J Biol Chem 288:14189–14199

    Article  CAS  Google Scholar 

  61. De Taeye BM et al (2010) Expression and regulation of soluble epoxide hydrolase in adipose tissue. Obesity (Silver Spring) 18:489–498

    Article  Google Scholar 

  62. do Carmo JM et al (2012) Inhibition of soluble epoxide hydrolase reduces food intake and increases metabolic rate in obese mice. Nutr Metab Cardiovasc Dis 22:598–604

    Article  Google Scholar 

  63. Imig JD et al (2012) Soluble epoxide hydrolase inhibition and peroxisome proliferator activated receptor gamma agonist improve vascular function and decrease renal injury in hypertensive obese rats. Exp Biol Med (Maywood) 237:1402–1412

    Article  CAS  Google Scholar 

  64. Iyer A et al (2012) Pharmacological inhibition of soluble epoxide hydrolase ameliorates diet-induced metabolic syndrome in rats. Exp Diabetes Res 2012:758614

    Article  Google Scholar 

  65. Roche C et al (2015) Soluble epoxide hydrolase inhibition improves coronary endothelial function and prevents the development of cardiac alterations in obese insulin-resistant mice. Am J Physiol Heart Circ Physiol 308:H1020–H1029

    Article  CAS  Google Scholar 

  66. Zha W et al (2014) Functional characterization of cytochrome P450-derived epoxyeicosatrienoic acids in adipogenesis and obesity. J Lipid Res 55:2124–2136

    Article  CAS  Google Scholar 

  67. Zhang LN et al (2011) Inhibition of soluble epoxide hydrolase attenuates endothelial dysfunction in animal models of diabetes, obesity and hypertension. Eur J Pharmacol 654:68–74

    Article  CAS  Google Scholar 

  68. Luria A et al (2011) Soluble epoxide hydrolase deficiency alters pancreatic islet size and improves glucose homeostasis in a model of insulin resistance. Proc Natl Acad Sci U S A 108:9038–9043

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This research is supported by USDA NIFA grant 2016-67017-24423, USDA/Hatch grant MAS00492, and NIH/NCI R03CA218520 (to G.Z.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guodong Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, W., Sanidad, K.Z., Zhang, G. (2019). Cytochrome P450 Eicosanoid Signaling Pathway in Colorectal Tumorigenesis. In: Honn, K., Zeldin, D. (eds) The Role of Bioactive Lipids in Cancer, Inflammation and Related Diseases. Advances in Experimental Medicine and Biology, vol 1161. Springer, Cham. https://doi.org/10.1007/978-3-030-21735-8_11

Download citation

Publish with us

Policies and ethics