Skip to main content

A Novel Multi-scale Invariant Descriptor Based on Contour and Texture for Shape Recognition

  • Conference paper
  • First Online:
  • 1799 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11364))

Abstract

This paper proposes a novel multi-scale descriptor for shape recognition. The contour of shape is represented by a sequence of sample points with uniform spacing. Straight lines connected between two moving contour points are used to cut the shape. The lengths of the contour segments between the two sampled contour points determine the levels of scales. Then the geometric features of the cut contour and the interior texture features around the straight lines are extracted at each scale. This method not only has the powerful discriminability to describe a shape from coarse to fine, but also is invariant to scale, rotation, translation and mirror transformations. Experiments conducted on five image datasets (COIL-20, Flavia, Swedish, Leaf100 and ETH-80) demonstrate that the proposed method significantly outperforms the state-of-the-art methods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Adamek, T., O’Connor, N.E.: A multiscale representation method for nonrigid shapes with a single closed contour. IEEE Trans. Circ. Syst. Video Technol. 14(5), 742–753 (2004)

    Article  Google Scholar 

  2. Alajlan, N., El Rube, I., Kamel, M.S., Freeman, G.: Shape retrieval using triangle-area representation and dynamic space warping. Pattern Recogn. 40(7), 1911–1920 (2007)

    Article  Google Scholar 

  3. Bai, X., Wang, B., Yao, C., Liu, W., Tu, Z.: Co-transduction for shape retrieval. IEEE Trans. Image Process. 21(5), 2747–2757 (2012)

    Article  MathSciNet  Google Scholar 

  4. Belongie, S.J., Malik, J., Puzicha, J.: Shape matching and object recognition using shape contexts. IEEE Trans. Pattern Anal. Mach. Intell. 24(4), 509–522 (2002)

    Article  Google Scholar 

  5. Chen, Y.W., Chen, Y.Q.: Invariant description and retrieval of planar shapes using radon composite features. IEEE Trans. Sig. Process. 56(10), 4762–4771 (2008)

    Article  MathSciNet  Google Scholar 

  6. Felzenszwalb, P.F., Schwartz, J.D.: Hierarchical matching of deformable shapes. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2007, pp. 1–8. IEEE (2007)

    Google Scholar 

  7. Hu, R.X., Jia, W., Ling, H., Huang, D.: Multiscale distance matrix for fast plant leaf recognition. IEEE Trans. Image Process. 21(11), 4667–4672 (2012)

    Article  MathSciNet  Google Scholar 

  8. Kim, H.K., Kim, J.D.: Region-based shape descriptor invariant to rotation, scale and translation. Sig. Process. Image Commun. 16(1), 87–93 (2000)

    Article  Google Scholar 

  9. Korn, P., Sidiropoulos, N., Faloutsos, C., Siegel, E., Protopapas, Z.: Fast and effective retrieval of medical tumor shapes. IEEE Trans. Knowl. Data Eng. 10(6), 889–904 (1998)

    Article  Google Scholar 

  10. Leibe, B., Schiele, B.: Analyzing appearance and contour based methods for object categorization. In: Proceedings of the 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, p. II-409. IEEE (2003)

    Google Scholar 

  11. Ling, H., Jacobs, D.W.: Shape classification using the inner-distance. IEEE Trans. Pattern Anal. Mach Intell. 29(2), 286–299 (2007)

    Article  Google Scholar 

  12. Loncaric, S.: A survey of shape analysis techniques. Pattern Recogn. 31(8), 983–1001 (1998)

    Article  Google Scholar 

  13. Mouine, S., Yahiaoui, I., Verroust-Blondet, A.: A shape-based approach for leaf classification using multiscaletriangular representation. In: Proceedings of the 3rd ACM Conference on International Conference on Multimedia Retrieval, pp. 127–134. ACM (2013)

    Google Scholar 

  14. Nene, S.A., Nayar, S.K., Murase, H., et al.: Columbia object image library (coil-20) (1996)

    Google Scholar 

  15. Neumann, J., Samet, H., Soffer, A.: Integration of local and global shape analysis for logo classification. Pattern Recogn. Lett. 23(12), 1449–1457 (2002)

    Article  Google Scholar 

  16. Ojala, T., Pietikäinen, M., Harwood, D.: A comparative study of texture measures with classification based on featured distributions. Pattern Recogn. 29(1), 51–59 (1996)

    Article  Google Scholar 

  17. Ojala, T., Pietikäinen, M., Mäenpää, T.: Gray scale and rotation invariant texture classification with local binary patterns. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 404–420. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45054-8_27

    Chapter  Google Scholar 

  18. Ojala, T., Pietikainen, M., Maenpaa, T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)

    Article  Google Scholar 

  19. Söderkvist, O.: Computer vision classification of leaves from Swedish trees (2001)

    Google Scholar 

  20. Wang, B., Gao, Y.: Hierarchical string cuts: a translation, rotation, scale, and mirror invariant descriptor for fast shape retrieval. IEEE Trans. Image Process. 23(9), 4101–4111 (2014)

    Article  MathSciNet  Google Scholar 

  21. Wang, B., Gao, Y.: Structure integral transform versus radon transform: a 2D mathematical tool for invariant shape recognition. IEEE Trans. Image Process. 25(12), 5635–5648 (2016)

    Article  MathSciNet  Google Scholar 

  22. Wang, B., Gao, Y., Sun, C., Blumenstein, M., La Salle, J.: Can walking and measuring along chord bunches better describe leaf shapes? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6119–6128 (2017)

    Google Scholar 

  23. Wang, X., Feng, B., Bai, X., Liu, W., Latecki, L.J.: Bag of contour fragments for robust shape classification. Pattern Recogn. 47(6), 2116–2125 (2014)

    Article  Google Scholar 

  24. Wu, S.G., Bao, F.S., Xu, E.Y., Wang, Y.X., Chang, Y.F., Xiang, Q.L.: A leaf recognition algorithm for plant classification using probabilistic neural network. In: IEEE International Symposium on Signal Processing and Information Technology, pp. 11–16. IEEE (2007)

    Google Scholar 

  25. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recogn. 37(1), 1–19 (2004)

    Article  Google Scholar 

  26. Zhang, H., Gao, W., Chen, X., Zhao, D.: Learning informative features for spatial histogram-based object detection. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, IJCNN 2005, vol. 3, pp. 1806–1811. IEEE (2005)

    Google Scholar 

Download references

Acknowledgement

This work is partially supported by National Key R&D Program of China (No. 2016YFD0101903), National Natural Science Foundation of China (No. 61702386, 61672398), Major Technical Innovation Program of Hubei Province (No. 2017AAA122), Key Natural Science Foundation of Hubei Province of China (No. 2017CFA012), the Fundamental Research Funds for the Central Universities (No. 185210006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengwu Xiong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, J., Rong, Y., Gao, Y., Liu, Y., Xiong, S. (2019). A Novel Multi-scale Invariant Descriptor Based on Contour and Texture for Shape Recognition. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11364. Springer, Cham. https://doi.org/10.1007/978-3-030-20870-7_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20870-7_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20869-1

  • Online ISBN: 978-3-030-20870-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics