Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 566 Accesses

Abstract

Atom interferometry inside an optical cavity was demonstrated in  Hamilton et al. (Phys Rev Lett 114:100405, 2015 [1]), where they show a \(\pi /2-\pi -\pi /2\) interferometer with caesium atoms loaded horizontally into a vertical 40 cm cavity (Fig. 6.1). In this proof of principle experiment, the small cavity mode volume placed a tight constraint on the total measurement time, which was just 20 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that the indices n and m used here refer to the order of the optical transverse mode, and not the electronic or momentum states of the atom n and m or the Bragg diffraction order m. It is assumed that the reader can infer the meaning of n and m from the context.

References

  1. Hamilton P, Jaffe M, Brown JM, Maisenbacher L, Estey B, Müller H (2015) Atom interferometry in an optical cavity. Phys Rev Lett 114(10):100405

    Google Scholar 

  2. Hamilton P, Jaffe M, Haslinger P, Simmons Q, Müller H, Khoury J (2015) Atom-interferometry constraints on dark energy. Science 349:849–851

    Article  ADS  Google Scholar 

  3. Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B, Khoury J, Müller H (2017) Testing sub-gravitational forces on atoms from a miniature, in-vacuum source mass. Nat Phys 13:938

    Article  Google Scholar 

  4. Haslinger P, Jaffe M, Xu V, Schwartz O, Sonnleitner M, Ritsch-Marte M, Ritsch H, Müller H (2018) Attractive force on atoms due to blackbody radiation. Nat Phys 1–5

    Google Scholar 

  5. Riou I, Mielec N, Lefèvre G, Prevedelli M, Landragin A, Bouyer P, Bertoldi A, Geiger R, Canuel B (2017) A marginally stable optical resonator for enhanced atom interferometry. J Phys B 50:155002

    Article  ADS  Google Scholar 

  6. Canuel B, Pelisson S, Amand L, Bertoldi A, Cormier E, Fang B, Gaffet S, Geiger R, Harms J, Holleville D, Landragin A, Lefèvre G, Lhermite J, Mielec N, Prevedelli M, Riou I, Bouyer P (2016) Miga: combining laser and matter wave interferometry for mass distribution monitoring and advanced geodesy. In: Proceedings of SPIE 9900, Quantum Optics, p 990008

    Google Scholar 

  7. Canuel B, Bertoldi A, Amand L, di Borgo EP, Chantrait T, Danquigny C, Dovale Álvarez M, Fang B, Freise A, Geiger R, Gillot J, Henry S, Hinderer J, Holleville D, Junca J, Lefèvre G, Merzougui M, Mielec N, Monfret T, Pelisson S, Prevedelli M, Reynaud S, Riou I, Rogister Y, Rosat S, Cormier E, Landragin A, Chaibi W, Gaffet S, Bouyer P (2018) Exploring gravity with the MIGA large scale atom interferometer. Sci Rep 8:1–23

    Google Scholar 

  8. Wang H, Dovale Álvarez M, Collins C, Brown DD, Wang M, Mow-Lowry CM, Han S, Freise A (2018) Feasibility of near-unstable cavities for future gravitational wave detectors. Phys Rev D 97:022001

    Google Scholar 

  9. Araya A, Mio N, Tsubono K, Suehiro K, Telada S, Ohashi M, Fujimoto M (1997) Optical mode cleaner with suspended mirrors. Appl Opt 36(7):1446–1453

    Article  ADS  Google Scholar 

  10. Wang H, Dovale Álvarez M, Brown DD, Cooper S, Green A, Töyrä D, Miao H, Mow-Lowry C, Freise A (2017) Near-unstable fabry-perot cavities for future gravitational wave detectors. (Manuscript in preparation)

    Google Scholar 

  11. Wang H (2017) Beware of warped surfaces: near-unstable cavities for future gravitational wave detectors. PhD thesis, University of Birmingham

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Dovale Álvarez .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Álvarez, M.D. (2019). Fundamental Limitations of Cavity-Assisted Atom Interferometry. In: Optical Cavities for Optical Atomic Clocks, Atom Interferometry and Gravitational-Wave Detection. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-20863-9_6

Download citation

Publish with us

Policies and ethics