Skip to main content

Thermophilic Fungi and Their Enzymes for Biorefineries

  • Chapter
  • First Online:

Abstract

The biorefinery concept involves production of fuel and chemicals from lignocellulosic biomass and thus can be considered as an analog to chemical refineries, that produce fuels and products from petroleum. Bioconversion of lignocellulosic residues involves the use of microbial hydrolytic enzymes, namely cellulases and hemicellulases, which release fermentable sugars from the delignified (pretreated) substrate. These enzymes are secreted in higher amounts by filamentous fungi to obtain energy from the biomass in natural habitats. Therefore, cellulases and xylanases to be used in biorefineries are usually produced from fungi. However, an efficient and economical process for the development of commercial biorefineries is still not formulated. This is because most of the present-day biomass conversion processes use mesophilic hydrolytic enzymes, which get denatured at increased temperatures, resulting in consumption of large amounts of enzyme and thus, half of the process cost in biorefineries is attributed to the enzyme production process. Therefore, employment of thermostable enzymes for hydrolysis of lignocellulosic biomass at higher temperatures can help in increasing reaction rates tremendously, thereby requiring lesser enzyme, in turn reducing process cost. In addition, consolidated bioprocessing (CBP) of untreated substrate by thermophilic filamentous fungi, which co-produce ligninases as well as cellulases and hemicellulases can deconstruct lignin as well as cellulose and hemicellulose to fermentable sugars at elevated temperature, leading to the feasibility of future biorefineries. This review discusses lignocellulosic bioconversion by the application of thermostable lignocellulolytic enzyme from thermophilic fungi into biofuels and commodity chemicals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abe H, Fujita Y, Takaoka Y, Kurita E, Yano S, Tanaka N, Nakayama K-i (2009) Ethanol-tolerant Saccharomyces cerevisiae strains isolated under selective conditions by over-expression of a proofreading-deficient DNA polymerase delta. J Biosci Bioeng 108:199–204

    Article  CAS  PubMed  Google Scholar 

  • Acharya S, Chaudhary A (2012) Bioprospecting thermophiles for cellulase production: a review. Braz J Microbiol 43:844–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ali SS, Nugent B, Mullins E, Doohan FM (2016) Fungal-mediated consolidated bioprocessing: the potential of Fusarium oxysporum for the lignocellulosic ethanol industry. AMB Express 6:13

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • An H, Xiao T, Fan H, Wei D (2015) Molecular characterization of a novel thermostable laccase PPLCC2 from the brown rot fungus Postia placenta MAD-698-R. Electron J Biotechnol 18:451–458

    Article  CAS  Google Scholar 

  • Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I (2004) Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem 39:1843–1848

    Article  CAS  Google Scholar 

  • Batista-García RA et al (2017) Characterization of lignocellulolytic activities from fungi isolated from the deep-sea sponge Stelletta normani. PLoS One 12:e0173750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Berka RM, Sutton T, Jackson SA, Tovar-Herrera OE, Balcázar-López E, Sánchez-Carbente MD, Sánchez-Reyes A, Dobson AD, Folch-Mallol JL (2011) Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. Nat Biotechnol 29:922–927

    Article  CAS  PubMed  Google Scholar 

  • Bhat KM, Maheshwari R (1987) Sporotrichum thermophile growth, cellulose degradation, and cellulase activity. Appl Environ Microbiol 53:2175–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bomtempo J-V, Alves FC, Oroski FA (2017) Developing new platform chemicals: what is required for a new bio-based molecule to become a platform chemical in the bioeconomy? Faraday Discuss 202:213–225

    Article  CAS  PubMed  Google Scholar 

  • Bugg TDH, Ahmad M, Hardiman EM, Rahmanpour R (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28:1883–1896

    Article  CAS  PubMed  Google Scholar 

  • Busk P, Lange L (2013) Cellulolytic potential of thermophilic species from four fungal orders. AMB Exp 3:47

    Article  CAS  Google Scholar 

  • Campos PA, Levin LN, Wirth SA (2016) Heterologous production, characterization and dye decolorization ability of a novel thermostable laccase isoenzyme from Trametes trogii BAFC 463. Process Biochem 51:895–903

    Article  CAS  Google Scholar 

  • Carpita NC, Gibeaut DM (1993) Structural models of primary cell walls in flowering plants: consistency of molecular structure with the physical properties of the walls during growth. Plant J 3:1–30

    Article  CAS  PubMed  Google Scholar 

  • Ceballos SJ, Yu C, Claypool CT, Singer SW, Simmons BA, Thelen MP, Simmons CW, Vandergheynst J (2017) Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochem 63:193–203

    Article  CAS  Google Scholar 

  • Chen Y, Bao J, Kim I-K, Siewers V, Nielsen J (2014) Coupled incremental precursor and co-factor supply improves 3-hydroxypropionic acid production in Saccharomyces cerevisiae. Metab Eng 22:104–109

    Article  PubMed  CAS  Google Scholar 

  • Chernykh A, Myasoedova N, Kolomytseva M, Ferraroni M, Briganti F, Scozzafava A, Golovleva L (2008) Laccase isoforms with unusual properties from the basidiomycete Steccherinum ochraceum strain 1833. J Appl Microbiol 105:2065–2075

    Article  CAS  PubMed  Google Scholar 

  • Chopin A (1993) Organization and regulation of genes for amino acid biosynthesis in lactic acid bacteria. FEMS Microbiol Rev 12:21–37

    Article  CAS  PubMed  Google Scholar 

  • Choudhary J, Singh S, Nain L (2016) Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electron J Biotechnol 21:82–92

    Article  CAS  Google Scholar 

  • Choudhary J, Singh S, Nain L (2017) Bioprospecting thermotolerant ethanologenic yeasts for simultaneous saccharification and fermentation from diverse environments. J Biosci Bioeng 123:342–346

    Article  CAS  PubMed  Google Scholar 

  • Chu BC, Lee H (2007) Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv 25:425–441

    Article  CAS  PubMed  Google Scholar 

  • Conesa A, Punt PJ, van den Hondel CAMJJ (2002) Fungal peroxidases: molecular aspects and applications. J Biotechnol 93:143–158

    Article  CAS  PubMed  Google Scholar 

  • Couturier M, Feliu J, Haon M, Navarro D, Lesage-Meessen L, Coutinho PM, Berrin J-G (2011) A thermostable GH45 endoglucanase from yeast: impact of its atypical multimodularity on activity. Microb Cell Fact 10:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dashtban M, Schraft H, Qin W (2009) Fungal bioconversion of lignocellulosic residues; opportunities and perspectives. Int J Biol Sci 5:578–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Vries RP, Visser J (2001) Aspergillus enzymes involved in degradation of plant cell wall polysaccharides. Microbiol Mol Biol Rev 65:497–522

    Article  PubMed  PubMed Central  Google Scholar 

  • Deswal D, Gupta R, Nandal P, Kuhad R (2014) Fungal pretreatment improves amenability of lignocellulosic material for its saccharification to sugars. Carbohydr Polym 99:264–269

    Article  CAS  PubMed  Google Scholar 

  • Diederichs S, Linn K, Lückgen J, Klement T, Grosch JH, Honda K, Ohtake H, Büchs J (2015) High-level production of (5S)-hydroxyhexane-2-one by two thermostable oxidoreductases in a whole-cell catalytic approach. J Mol Catal B: Enzym 121:37–44

    Article  CAS  Google Scholar 

  • Driss D, Bhiri F, ghorbel R, Chaabouni SE (2012) Cloning and constitutive expression of His-tagged xylanase GH 11 from Penicillium occitanis Pol6 in Pichia pastoris X33: Purification and characterization. Protein Expr Purif 83:8–14

    Article  CAS  PubMed  Google Scholar 

  • Falade AO, Nwodo UU, Iweriebor BC, Green E, Mabinya LV, Okoh AI (2016) Lignin peroxidase functionalities and prospective applications. MicrobiologyOpen 6:e00394

    Article  PubMed Central  CAS  Google Scholar 

  • Fernandes S, Tuohy MG, Murray PG (2010) Cloning, heterologous expression, and characterization of the xylitol and L-arabitol dehydrogenase genes, Texdh and Telad, from the thermophilic fungus Talaromyces emersonii. Biochem Genet 48:480–495

    Article  CAS  PubMed  Google Scholar 

  • Fernando S, Adhikari S, Chandrapal C, Murali N (2006) Biorefineries: current status, challenges, and future direction. Energy Fuel 20:1727–1737

    Article  CAS  Google Scholar 

  • Fisher AB, Fong SS (2014) Lignin biodegradation and industrial implications. Bioengineering 1:92–112

    Article  Google Scholar 

  • Gao J, Weng H, Zhu D, Yuan M, Guan F, Xi Y (2008) Production and characterization of cellulolytic enzymes from the thermoacidophilic fungal Aspergillus terreus M11 under solid-state cultivation of corn stover. Bioresour Technol 99:7623–7629

    Article  CAS  PubMed  Google Scholar 

  • García-Huante Y et al (2017) The thermophilic biomass-degrading fungus Thielavia terrestris Co3Bag1 produces a hyperthermophilic and thermostable β-1,4-xylanase with exo- and endo-activity. Extremophiles 21:175–186

    Article  PubMed  CAS  Google Scholar 

  • Gomes I, Gomes J, Gomes DJ, Steiner W (2000) Simultaneous production of high activities of thermostable endoglucanase and beta-glucosidase by the wild thermophilic fungus Thermoascus aurantiacus. Appl Microbiol Biotechnol 53:461–468

    Article  CAS  PubMed  Google Scholar 

  • Gou C, Wang Y, Zhang X, Lou Y, Gao Y (2017) Inoculation with a psychrotrophic-thermophilic complex microbial agent accelerates onset and promotes maturity of dairy manure-rice straw composting under cold climate conditions. Bioresour Technol 243:339–346

    Article  CAS  PubMed  Google Scholar 

  • Grayson ACR, Voskerician G, Lynn A, Anderson JM, Cima MJ, Langer R (2004) Differential degradation rates in vivo and in vitro of biocompatible poly(lactic acid) and poly(glycolic acid) homo- and co-polymers for a polymeric drug-delivery microchip. J Biomater Sci Polym Ed 15:1281–1304

    Article  CAS  PubMed  Google Scholar 

  • Gupta R, Mehta G, Khasa YP, Kuhad RC (2011) Fungal delignification of lignocellulosic biomass improves the saccharification of cellulosics. Biodegradation 22:797–804

    Article  CAS  PubMed  Google Scholar 

  • Hahn-Hägerdal B, Karhumaa K, Fonseca C, Spencer-Martins I, Gorwa-Grauslund MF (2007) Towards industrial pentose-fermenting yeast strains. Appl Microbiol Biotechnol 74:937–953

    Article  PubMed  CAS  Google Scholar 

  • Haki GD, Rakshit SK (2003) Developments in industrially important thermostable enzymes: a review. Bioresour Technol 89:17–34

    Article  CAS  PubMed  Google Scholar 

  • Halaburgi VM, Sharma S, Sinha M, Singh TP, Karegoudar TB (2011) Purification and characterization of a thermostable laccase from the ascomycetes Cladosporium cladosporioides and its applications. Process Biochem 46:1146–1152

    Article  CAS  Google Scholar 

  • Han N, Miao H, Ding J, Li J, Mu Y, Zhou J, Huang Z (2017) Improving the thermostability of a fungal GH11 xylanase via site-directed mutagenesis guided by sequence and structural analysis. Biotechnol Biofuels 10:133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hari Krishna S, Janardhan Reddy T, Chowdary GV (2001) Simultaneous saccharification and fermentation of lignocellulosic wastes to ethanol using a thermotolerant yeast. Bioresour Technol 77:193–196

    Article  CAS  PubMed  Google Scholar 

  • Hasunuma T, Kondo A (2012) Consolidated bioprocessing and simultaneous saccharification and fermentation of lignocellulose to ethanol with thermotolerant yeast strains. Process Biochem 47:1287–1294

    Article  CAS  Google Scholar 

  • Hatakka A, Hammel KE (2011) Fungal Biodegradation of Lignocelluloses. In: Industrial Applications. The Mycota. Springer, Berlin, Heidelberg, pp 319–340

    Chapter  Google Scholar 

  • Heinzelman P, Snow CD, Wu I, Nguyen C, Villalobos A, Govindarajan S, Minshull J, Arnold FH (2009) A family of thermostable fungal cellulases created by structure-guided recombination. PNAS 106:5610–5615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higuchi T (1993) Biodegradation mechanism of lignin by white-rot basidiomycetes. J Biotechnol 30:1–8

    Article  CAS  Google Scholar 

  • Huang TT, D’Andrea AD (2006) Regulation of DNA repair by ubiquitylation. Nat Rev Mol Cell Biol 7:323–334

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-C, Chen Y-F, Chen C-Y, Chen W-L, Ciou Y-P, Liu W-H, Yang C-H (2011) Production of ferulic acid from lignocellulolytic agricultural biomass by Thermobifida fusca thermostable esterase produced in Yarrowia lipolytica transformant. Bioresour Technol 102:8117–8122

    Article  CAS  PubMed  Google Scholar 

  • Isikgor F, Becer CR (2016) Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polym Chem 6:4497–4559

    Article  CAS  Google Scholar 

  • Jain A, Pelle HS, Baughman WH, Henson JM (2017a) Conversion of ammonia-pretreated switchgrass to biofuel precursors by bacterial–fungal consortia under solid-state and submerged-state cultivation. J Appl Microbiol 122:953–963

    Article  CAS  PubMed  Google Scholar 

  • Jain KK, Kumar S, Deswal D, Kuhad RC (2017b) Improved production of thermostable cellulase from Thermoascus aurantiacus RCKK by fermentation bioprocessing and its application in the hydrolysis of office waste paper, algal pulp, and biologically treated wheat straw. Appl Biochem Biotechnol 181:784–800

    Article  CAS  PubMed  Google Scholar 

  • Jeon J-R, Chang Y-S (2013) Laccase-mediated oxidation of small organics: bifunctional roles for versatile applications. Trends Biotechnol 31:335–341

    Article  CAS  PubMed  Google Scholar 

  • Jiménez-Quero A, Pollet E, Zhao M, Marchioni E, Averous L, Phalip V (2016) Fungal fermentation of lignocellulosic biomass for itaconic and fumaric acid production. J Microbiol Biotechnol 28:1–8

    Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  PubMed  Google Scholar 

  • Karnaouri A, Muraleedharan MN, Dimarogona M, Topakas E, Rova U, Sandgren M, Christakopoulos P (2017) Recombinant expression of thermostable processive MtEG5 endoglucanase and its synergism with MtLPMO from Myceliophthora thermophila during the hydrolysis of lignocellulosic substrates. Biotechnol Biofuels 10:126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khelil O, Cheba B (2014) Thermophilic cellulolytic microorganisms from Western Algerian sources: promising isolates for cellulosic biomass recycling. Procedia Technol 12:519–528

    Article  Google Scholar 

  • Kildegaard KR, Wang Z, Chen Y, Nielsen J, Borodina I (2015) Production of 3-hydroxypropionic acid from glucose and xylose by metabolically engineered Saccharomyces cerevisiae. Metab Eng Commun 2:132–136

    Article  PubMed  PubMed Central  Google Scholar 

  • Kitagawa T et al (2010) Construction of a beta-glucosidase expression system using the multistress-tolerant yeast Issatchenkia orientalis. Appl Microbiol Biotechnol 87:1841–1853

    Article  CAS  PubMed  Google Scholar 

  • Klement T, Milker S, Jäger G, Grande PM, Domínguez de María P, Büchs J (2012) Biomass pretreatment affects Ustilago maydis in producing itaconic acid. Microb Cell Fact 11:43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koivistoinen OM, Kuivanen J, Barth D, Turkia H, Pitkänen J-P, Penttilä M, Richard P (2013) Glycolic acid production in the engineered yeasts Saccharomyces cerevisiae and Kluyveromyces lactis. Microb Cell Fact 12:82

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuhad RC, Mehta G, Gupta R, Sharma KK (2010) Fed batch enzymatic saccharification of newspaper cellulosics improves the sugar content in the hydrolysates and eventually the ethanol fermentation by Saccharomyces cerevisiae. Biomass Bioenergy 34:1189–1194

    Article  CAS  Google Scholar 

  • Kumar A, Gaind S, Nain L (2008) Evaluation of thermophilic fungal consortium for paddy straw composting. Biodegradation 19:395–402

    Article  PubMed  Google Scholar 

  • Kumar M, Brar A, Vivekanand V, Pareek N (2017) Production of chitinase from thermophilic Humicola grisea and its application in production of bioactive chitooligosaccharides. Int J Biol Macromol 104:1641–1647

    Article  CAS  PubMed  Google Scholar 

  • Kusumaningtyas E, Widiastuti R, Maryam R (2006) Reduction of aflatoxin B1 in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus and their combination. Mycopathologia 162:307–311

    Article  CAS  PubMed  Google Scholar 

  • Kwon Y-J, Ma A-Z, Li Q, Wang F, Zhuang G-Q, Liu C-Z (2011) Effect of lignocellulosic inhibitory compounds on growth and ethanol fermentation of newly-isolated thermotolerant Issatchenkia orientalis. Bioresour Technol 102:8099–8104

    Article  CAS  PubMed  Google Scholar 

  • Latif F, Rajoka MI (2001) Production of ethanol and xylitol from corn cobs by yeasts. Bioresour Technol 77:57–63

    Article  CAS  PubMed  Google Scholar 

  • Li YL, Li H, Li AN, Li DC (2009) Cloning of a gene encoding thermostable cellobiohydrolase from the thermophilic fungus Chaetomium thermophilum and its expression in Pichia pastoris. J Appl Microbiol 106:1867–1875

    Article  CAS  PubMed  Google Scholar 

  • Liao W, Liu Y, Frear C, Chen S (2008) Co-production of fumaric acid and chitin from a nitrogen-rich lignocellulosic material—dairy manure—using a pelletized filamentous fungus Rhizopus oryzae ATCC 20344. Bioresour Technol 99:5859–5866

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Ndlovu LM, Singh S, Pillay B (1999) Purification and biochemical characteristics of β-D-xylanase from a thermophilic fungus, Thermomyces lanuginosus-SSBP. Biotechnol Appl Biochem 30:73–79

    CAS  PubMed  Google Scholar 

  • Liu D, Zhang R, Yang X, Xu Y, Tang Z, Tian W, Shen Q (2011) Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein Expr Purif 79:176–186

    Article  CAS  PubMed  Google Scholar 

  • Long L, Tian D, Zhai R, Li X, Zhang Y, Hu J, Wang F, Saddler J (2018) Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. Bioresour Technol 257:334–338

    Article  CAS  PubMed  Google Scholar 

  • Ma R, Bai Y, Huang H, Luo H, Chen S, Fan Y, Cai L, Yao B (2017) Utility of Thermostable xylanases of Mycothermus thermophilus in generating prebiotic xylooligosaccharides. J Agric Food Chem 65:1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Maas RHW, Bakker RR, Eggink G, Weusthuis RA (2006) Lactic acid production from xylose by the fungus Rhizopus oryzae. Appl Microbiol Biotechnol 72:861–868

    Article  CAS  PubMed  Google Scholar 

  • Madadi M et al (2017) Recent status on enzymatic saccharification of lignocellulosic biomass for bioethanol production. Electron J Biol 13:135–143

    Google Scholar 

  • Masui DC, Zimbardi ALRL, Souza FHM, Guimarães LHS, Furriel RPM, Jorge JA (2012) Production of a xylose-stimulated β-glucosidase and a cellulase-free thermostable xylanase by the thermophilic fungus Humicola brevis var. thermoidea under solid state fermentation. World J Microbiol Biotechnol 28:2689–2701

    Article  CAS  PubMed  Google Scholar 

  • Matsakas L, Christakopoulos P (2015) Ethanol production from enzymatically treated dried food waste using enzymes produced on-site. Sustainability (Switzerland) 7:1446–1458

    Article  CAS  Google Scholar 

  • Miura S, Dwiarti L, Arimura T, Hoshino M, Tiejun L, Okabe M (2004) Enhanced production of L-lactic acid by ammonia-tolerant mutant strain Rhizopus sp. MK-96-1196. J Biosci Bioeng 97:19–23

    Article  CAS  PubMed  Google Scholar 

  • Narra M, James JP, Balasubramanian V (2015) Simultaneous saccharification and fermentation of delignified lignocellulosic biomass at high solid loadings by a newly isolated thermotolerant Kluyveromyces sp. for ethanol production. Bioresour Technol 179:331–338

    Article  CAS  PubMed  Google Scholar 

  • Nguyen S, Ala F, Cardwell C, Cai D, McKindles KM, Lotvola A, Hodges S, Deng Y, Tiquia-Arashiro SM (2013) Isolation and screening of carboxydotrophs isolated from composts and their potential for butanol synthesis. Environ Technol 34:1995–2007

    Article  CAS  PubMed  Google Scholar 

  • Orlikowska M, Rostro-Alanis MDJ, Bujacz A, Hernández-Luna C, Rubio R, Parra R, Bujacz G (2018) Structural studies of two thermostable laccases from the white-rot fungus Pycnoporus sanguineus. Int J Biol Macromol 107:1629–1640

    Article  CAS  PubMed  Google Scholar 

  • Palmieri G, Giardina P, Bianco C, Scaloni A, Capasso A, Sannia G (1997) A novel white laccase from Pleurotus ostreatus. J Biol Chem 272:31301–31307

    Article  CAS  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification. Bioresour Technol 74:17–24

    Article  CAS  Google Scholar 

  • Pan K, Zhao N, Yin Q, Zhang T, Xu X, Fang W, Hong Y, Fang Z, Xiao Y (2014) Induction of a laccase Lcc9 from Coprinopsis cinerea by fungal coculture and its application on indigo dye decolorization. Bioresour Technol 162:45–52

    Article  CAS  PubMed  Google Scholar 

  • Penjumras P, Rahman RBA, Talib RA, Abdan K (2014) Extraction and characterization of cellulose from durian rind. Agric Agric Sci Procedia 2:237–243

    Google Scholar 

  • Pérez-Boada M, Ruiz-Dueñas FJ, Pogni R, Basosi R, Choinowski T, Martínez MJ, Piontek K, Martínez AT (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385–402

    Article  PubMed  CAS  Google Scholar 

  • Ping L, Wang M, Yuan X, Cui F, Huang D, Sun W, Zou B, Huo S, Wang H (2018) Production and characterization of a novel acidophilic and thermostable xylanase from Thermoascus aurantiacus. Int J Biol Macromol 109:1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Plecha S, Hall D, Tiquia-Arashiro SM (2013) Screening and characterization of soil microbes capable of degrading cellulose from switchgrass (Panicum virgatum L.). Environ Technol 34:1895–1904

    CAS  PubMed  Google Scholar 

  • Pogni R, Baratto MC, Sinicropi A, Basosi R (2015) Spectroscopic and computational characterization of laccases and their substrate radical intermediates. Cell Mol Life Sci 72:885–896

    Article  CAS  PubMed  Google Scholar 

  • Pomaranski E, Tiquia-Arashiro SM (2016) Butanol tolerance of carboxydotrophic bacteria isolated from manure composts. Environ Technol 37(15):1970–1982

    Article  CAS  PubMed  Google Scholar 

  • Ramírez-Cavazos LI, Junghanns C, Nair R, Cárdenas-Chávez DL, Hernández-Luna C, Agathos SN, Parra R (2014) Enhanced production of thermostable laccases from a native strain of Pycnoporus sanguineus using central composite design. J Zhejiang Univ Sci B 15:343–352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ribeiro LFC, De Lucas RC, Vitcosque GL, Ribeiro LF, Ward RJ, Rubio MV, Damásio AR, Squina FM, Gregory RC, Walton PH, Jorge JA, Prade RA, Buckeridge MS, Polizeli M de L (2014) A novel thermostable xylanase GH10 from Malbranchea pulchella expressed in Aspergillus nidulans with potential applications in biotechnology. Biotechnol Biofuels 7:115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Roa Engel CA, Straathof AJJ, Zijlmans TW, van Gulik WM, van der Wielen LAM (2008) Fumaric acid production by fermentation. Appl Microbiol Biotechnol 78:379–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robledo A, Aguilar CN, Belmares-Cerda RE, Flores-Gallegos AC, Contreras-Esquivel JC, Montañez JC, Mussatto SI (2016) Production of thermostable xylanase by thermophilic fungal strains isolated from maize silage. CyTA—J Food 14:302–308

    Article  CAS  Google Scholar 

  • Rubin EM (2008) Genomics of cellulosic biofuels. Nature 454:841–845

    Article  CAS  PubMed  Google Scholar 

  • Ruengruglikit C, Hang DY (2003) L(+)-Lactic acid production from corncobs by Rhizopus oryzae NRRL-395. Lwt—Food Sci Technol 36:573–575

    Article  CAS  Google Scholar 

  • Sanchez S, Demain AL (2011) Enzymes and bioconversions of industrial, pharmaceutical, and biotechnological significance. Org Process Res Dev 15:224–230

    Article  CAS  Google Scholar 

  • Scheller HV, Ulvskov P (2010) Hemicelluloses. Annu Rev Plant Biol 61:263–289

    Article  CAS  PubMed  Google Scholar 

  • Schwarz M, Köpcke B, Weber RWS, Sterner O, Anke H (2004) 3-Hydroxypropionic acid as a nematicidal principle in endophytic fungi. Phytochemistry 65:2239–2245

    Article  CAS  PubMed  Google Scholar 

  • Shi DJ, Wang CL, Wang KM (2009) Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 36:139–147

    Article  CAS  PubMed  Google Scholar 

  • Sikandar S, Ujord VC, Ezeji TC, Rossington JL, Michel FC Jr, .McMahan, CM, Ali N, Cornish C (2017) Thermomyces lanuginosus STm: a source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (Rubber dandelion). Ind Crop Prod 103:161-168.

    Article  CAS  Google Scholar 

  • Silva RD, Lago ES, Merheb CW, Macchione MM, Park YK, Gomes E (2005) Production of xylanase and CMCase on solid state fermentation in different residues by Thermoascus aurantiacus miehe. Braz J Microbiol 36:235–241

    Google Scholar 

  • Singh N, Mathur AS, Tuli DK, Gupta RP, Barrow CJ, Puri M (2017) Cellulosic ethanol production via consolidated bioprocessing by a novel thermophilic anaerobic bacterium isolated from a Himalayan hot spring. Biotechnol Biofuels 10:73

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skovgaard PA, Jørgensen H (2013) Influence of high temperature and ethanol on thermostable lignocellulolytic enzymes. J Ind Microbiol Biotechnol 40:447–456

    Article  CAS  PubMed  Google Scholar 

  • Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

    Article  CAS  PubMed  Google Scholar 

  • Srivastava N, Srivastava M, Mishra PK, Ramteke PW (2016) Application of ZnO nanoparticles for improving the thermal and pH stability of crude cellulase obtained from Aspergillus fumigatus AA001. Front Microbiol 7:514

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenberg K, Bollók M, Réczey K, Galbe M, Zacchi G (2000) Effect of substrate and cellulase concentration on simultaneous saccharification and fermentation of steam-pretreated softwood for ethanol production. Biotechnol Bioeng 68:204–210

    Article  CAS  PubMed  Google Scholar 

  • Svetlitchnyi VA, Kensch O, Falkenhan DA, Korseska SG, Lippert N, Prinz M, Sassi J, Schickor A, Curvers S (2013) Single-step ethanol production from lignocellulose using novel extremely thermophilic bacteria. Biotechnol Biofuels 6:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taarning E, Osmundsen CM, Yang X, Voss B, Andersen SI, Christensen CH (2011) Zeolite-catalyzed biomass conversion to fuels and chemicals. Energ Environ Sci 4:793–804

    Article  CAS  Google Scholar 

  • Techaparin A, Thanonkeo P, Klanrit P (2017) High-temperature ethanol production using thermotolerant yeast newly isolated from Greater Mekong Subregion. Braz J Microbiol 48:461–475

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiquia-Arashiro SM (2014a) Thermophilic carboxydotrophs and their biotechnological applications. In: Springerbriefs in microbiology: extremophilic microorganisms. Springer International Publishing, p. 131

    Google Scholar 

  • Tiquia-Arashiro SM (2014b) Biotechnological applications of thermophilic carboxydotrophs. In: Thermophilic carboxydotrophs and their applications in biotechnology. Chapter 4. Springer International Publishing, pp. 29–101

    Google Scholar 

  • Tiquia-Arashiro SM, Mormile M (2013) Sustainable technologies: bioenergy and biofuel from biowaste and biomass. Environ Technol 34(13):1637–1805

    Article  CAS  PubMed  Google Scholar 

  • Tiquia-Arashiro SM, Rodrigues D (2016) Thermophiles and psychrophiles in nanotechnology. In: Extremophiles: applications in nanotechnology. Springer International Publishing, pp. 89–127

    Google Scholar 

  • Trudeau DL, Lee TM, Arnold FH (2014) Engineered thermostable fungal cellulases exhibit efficient synergistic cellulose hydrolysis at elevated temperatures. Biotechnol Bioeng 111(12):2390–2397

    Article  CAS  PubMed  Google Scholar 

  • Turner P, Mamo G, Karlsson EN (2007) Potential and utilization of thermophiles and thermostable enzymes in biorefining. Microb Cell Fact 6:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van den Brink J, van Muiswinkel GCJ, Theelen B, Hinz SWA, de Vries RP (2013) Efficient plant biomass degradation by thermophilic fungus Myceliophthora heterothallica. Appl Environ Microbiol 79:1316–1324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walia A, Guleria S, Mehta P, Chauhan A, Parkash J (2017) Microbial xylanases and their industrial application in pulp and paper biobleaching: a review. 3 Biotech 7:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe I, Nakamura T, Shima J (2009) Characterization of a spontaneous flocculation mutant derived from Candida glabrata: a useful strain for bioethanol production. J Biosci Bioeng 107:379–382

    Article  CAS  PubMed  Google Scholar 

  • Woiciechowski AL, Soccol CR, Ramos LP, Pandey A (1999) Experimental design to enhance the production of l-(+)-lactic acid from steam-exploded wood hydrolysate using Rhizopus oryzae in a mixed-acid fermentation. Process Biochem 34:949–955

    Article  CAS  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new directions for the production of bioethanol using consolidated bioprocessing of lignocellulose. Curr Opin Biotechnol 20:364–371

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Lin M, Zang Q, Shi S (2018) Solid state bioconversion of lignocellulosic residues by Inonotus obliquus for production of cellulolytic enzymes and saccharification. Bioresour Technol 247:88–95

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Li W, Ng TB, Deng X, Lin J, Ye X (2017) Laccases: production, expression regulation, and applications in pharmaceutical biodegradation. Front Microbiol 8:832

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang J, Gao R, Zhou Y, Anankanbil S, Li J, Xie G, Guo Z (2018) β-Glucosidase from Thermotoga naphthophila RKU-10 for exclusive synthesis of galactotrisaccharides: Kinetics and thermodynamics insight into reaction mechanism. Food Chem 240:422–429

    Article  CAS  PubMed  Google Scholar 

  • Yennamalli RM, Rader AJ, Kenny AJ, Wolt JD, Sen TZ (2013) Endoglucanases: insights into thermostability for biofuel applications. Biotechnol Biofuels 6:136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeoman CJ, Han Y, Dodd D, Schroeder CM, Mackie RI, Cann IKO (2010) Thermostable enzymes as biocatalysts in the biofuel industry. Adv Appl Microbiol 70:1–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshihara K, Shinohara Y, Hirotsu T, Izumori K (2003) Chitosan productivity enhancement in Rhizopus oryzae YPF-61A by D-psicose. J Biosci Bioeng 95:293–297

    Article  CAS  PubMed  Google Scholar 

  • Zeldes BM, Keller MW, Loder AJ, Straub CT, Adams MWW, Kelly RM (2015) Extremely thermophilic microorganisms as metabolic engineering platforms for production of fuels and industrial chemicals. Front Microbiol 6:1209

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang ZY, Jin B, Kelly JM (2007) Production of lactic acid from renewable materials by Rhizopus fungi. Biochem Eng J 35:251–263

    Article  CAS  Google Scholar 

  • Zhang Z, Wang M, Gao R, Yu X, Chen G (2017) Synergistic effect of thermostable β-glucosidase TN0602 and cellulase on cellulose hydrolysis. 3 Biotech 7:54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou X, Wu Q, Cai Z, Zhang J (2000) Studies on the correlation between production of L-malic acid and some cytosolic enzymes in the L-malic acid producing strain Aspergillus sp. N1-14. Wei Sheng Wu Xue Bao 40:500–506

    CAS  PubMed  Google Scholar 

  • Zhu Y, Zhang H, Cao M, Wei Z, Huang F, Gao P (2011) Production of a thermostable metal-tolerant laccase from Trametes versicolor and its application in dye decolorization. Biotechnol Bioproc E 16:1027

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, A., Sharma, A., Singh, S., Kuhad, R.C., Nain, L. (2019). Thermophilic Fungi and Their Enzymes for Biorefineries. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_24

Download citation

Publish with us

Policies and ethics