Skip to main content

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

As the well known that global energy demand is on a trend of continuous growth, reducing energy demand and making good use of renewable energy are thought to be the major routes toward low carbon and sustainable future, in particular for the building sector. Compared to traditional gas-fired heating systems, heat pumps have been proved to be an energy-efficient heating technology which can save fossil fuel energy and consequently reduce CO2 emission. However, the most outstanding challenges for the application of heat pumps lie in their high demand for electrical power, and the insufficient heat transfer between the heat source and the refrigerant. To overcome these difficulties, a solar-assisted heat pump has been proposed to tackle these challenges. A solar-assisted heat pump combines a heat pump with a solar collector, enabling the use of solar energy to provide space heating and hot water for buildings. This chapter introduces heat pump technologies and their applications in solar systems. Two types of solar-assisted heat pump, direct and indirect expansion, are illustrated in details. This work has provided the fundamental research and experience for developing a solar heat pump system and contributing to a significant fossil fuel saving and carbon reduction in the global extent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. DECC U (2012) The future of heating: a strategic framework for low carbon heat in the UK

    Google Scholar 

  2. Nowak T, Jaganjacova S, Westring P (2014) European heat pump market and statistics report 2015. European Heat Pump Association, Brussels

    Google Scholar 

  3. QX Geothermal “Thirteen Five”: geothermal energy is still the main application form, in China Energy News. 14th September, 2015. http://paper.people.com.cn/zgnyb/html/2015-09/14/content_1612888.htm

  4. Li DHW, Liu Y, Lam JC (2012) Impact of climate change on energy use in the built environment in different climate zones—a review. Energy 42(1):103–112

    Article  Google Scholar 

  5. Sardarabadi M, Passandideh-Fard M, Heris SZ (2014) Experimental investigation of the effects of silica/water nanofluid onPV/T (photovoltaic thermal units). Energy 66(4):264–272

    Article  Google Scholar 

  6. Gang P et al (2012) Performance study and parametric analysis of a novel heat pipe PV/T system. Energy 37(1):384–395

    Article  Google Scholar 

  7. Saeedi F, Sarhaddi F, Behzadmehr A (2015) Optimization of a PV/T (photovoltaic/thermal) active solar still. Energy 87:142–152

    Article  Google Scholar 

  8. Herrando M, Markides CN, Hellgardt K (2014) A UK-based assessment of hybrid PV and solar-thermal systems for domestic heating and power: system performance. Appl Energy 122(122):288–309

    Article  Google Scholar 

  9. Freeman T, Mitchell J, Audit T (1979) Performance of combined solar-heat pump systems. Sol Energy 22(2):125–135

    Article  Google Scholar 

  10. Li Y et al (2007) Experimental performance analysis and optimization of a direct expansion solar-assisted heat pump water heater. Energy 32(8):1361–1374

    Article  Google Scholar 

  11. Li H, Yang H (2009) Potential application of solar thermal systems for hot water production in Hong Kong. Appl Energy 86(2):175–180

    Article  Google Scholar 

  12. Chow TT et al (2010) Modeling and application of direct-expansion solar-assisted heat pump for water heating in subtropical Hong Kong. Appl Energy 87(2):643–649

    Article  Google Scholar 

  13. Çağlar A, Yamalı C (2012) Performance analysis of a solar-assisted heat pump with an evacuated tubular collector for domestic heating. Energy Build 54:22–28

    Article  Google Scholar 

  14. Hadorn J-C (2012) IEA solar and heat pump systems Solar heating and cooling Task 44 & heat pump programme Annex 38. Energy Procedia 30:125–133

    Article  Google Scholar 

  15. Moreno-Rodríguez A et al (2012) Theoretical model and experimental validation of a direct-expansion solar assisted heat pump for domestic hot water applications. Energy 45(1):704–715

    Article  Google Scholar 

  16. Zhao X et al (2011) Theoretical study of the performance of a novel PV/e roof module for heat pump operation. Energy Convers Manag 52(1):603–614

    Article  Google Scholar 

  17. Messenger RA, Abtahi A (2017) Photovoltaic systems engineering. CRC press

    Google Scholar 

  18. Loxsom F, Durongkaveroj P (1994) Estimating the performance of a photovoltaic pumping system. Sol Energy 52(2):215–219

    Article  Google Scholar 

  19. Al-Ibrahim AM et al (1998) Design procedure for selecting an optimum photovoltaic pumping system in a solar domestic hot water system. Sol Energy 64(4):227–239

    Article  Google Scholar 

  20. Dayan M (1997) High performance in low-flow solar domestic hot water systems. Office of Scientific & Technical Information Technical Reports

    Google Scholar 

  21. Bai Y et al (2011) Experimental and numerical study of a directly PV-assisted domestic hot water system. Sol Energy 85(9):1979–1991

    Article  Google Scholar 

  22. Klein SA, Beckman WA, Al-Ibrahim AM (1996) TRNSYS, version 14.2 user manual. Solar Energy Laboratory. University of Wisconsin

    Google Scholar 

  23. Ji J et al (2014) Experimental comparison of two PV direct-coupled solar water heating systems with the traditional system. Appl Energy 136:110–118

    Article  Google Scholar 

  24. Grassie T et al (2002) Design of a PV driven low flow solar domestic hot water system and modeling of the system collector outlet temperature. Energy Convers Manag 43(8):1063–1078

    Article  Google Scholar 

  25. Swan LG, Allen PL (2010) Integrated solar pump design incorporating a brushless DC motor for use in a solar heating system. Renew Energy 35(9):2015–2026

    Article  Google Scholar 

  26. Cardinale N, Piccininni F, Stefanizzi P (2003) Economic optimization of low-flow solar domestic hot water plants. Renew Energy 28(12):1899–1914

    Article  Google Scholar 

  27. Ghoneim AA, Al-Hasan AY, Abdullah AH (2002) Economic analysis of photovoltaic-powered solar domestic hot water systems in Kuwait. Renew Energy 25(1):81–100

    Article  Google Scholar 

  28. Boutelhig A et al (2012) Performances study of different PV powered DC pump configurations for an optimum energy rating at different heads under the outdoor conditions of a desert area. Energy 39(1):33–39

    Article  Google Scholar 

  29. Badescu V (2003) Dynamic model of a complex system including PV cells, electric battery, electrical motor and water pump. Energy 28(12):1165–1181

    Article  Google Scholar 

  30. Hammad MA (1999) Characteristics of solar water pumping in Jordan. Energy 24(2):85–92

    Article  Google Scholar 

  31. Campana PE, Li H, Yan J (2013) Dynamic modelling of a PV pumping system with special consideration on water demand. Appl Energy 112(16):635–645

    Article  Google Scholar 

  32. Kou Q, Klein SA, Beckman WA (1998) A method for estimating the long-term performance of direct-coupled PV pumping systems. Sol Energy 64(1–3):33–40

    Article  Google Scholar 

  33. Benghanem M et al (2014) Effect of pumping head on solar water pumping system. Energy Convers Manag 77(1):334–339

    Article  Google Scholar 

  34. Firatoglu ZA, Yesilata B (2004) New approaches on the optimization of directly coupled PV pumping systems. Sol Energy 77(1):81–93

    Article  Google Scholar 

  35. Mokeddem A et al (2011) Performance of a directly-coupled PV water pumping system. Energy Convers Manag 52(10):3089–3095

    Article  Google Scholar 

  36. Sporn P, Ambrose ER (1955) The heat pump and solar energy. In: Proceedings of the world symposium on applied solar energy. Phoenix, Arizona

    Google Scholar 

  37. Chaturvedi SK, Chen DT, Kheireddine A (1998) Thermal performance of a variable capacity direct expansion solar-assisted heat pump. Energy Convers Manag 39(3):181–191

    Article  Google Scholar 

  38. R, E.T., M.P. Nuñez, and J.C.D. G (1998) Exergy analysis and optimization of a solar-assisted heat pump. Energy 23(4):337–344. http://paper.people.com.cn/zgnyb/html/2015-09/14/content_1612888.htm

    Article  Google Scholar 

  39. Cervantes JG, Torres-Reyes E (2002) Experiments on a solar-assisted heat pump and an exergy analysis of the system. Appl Therm Eng 22(12):1289–1297

    Article  Google Scholar 

  40. Kuang YH, Wang RZ (2006) Performance of a multi-functional direct-expansion solar assisted heat pump system. Sol Energy 80(7):795–803

    Article  Google Scholar 

  41. Huang BJ, Chyng JP (2001) Performance characteristics of integral type solar-assisted heat pump. Sol Energy 71(6):403–414

    Article  Google Scholar 

  42. Chyng JP, Lee CP, Huang BJ (2003) Performance analysis of a solar-assisted heat pump water heater. Sol Energy 74(1):33–44

    Article  Google Scholar 

  43. Kern EC Jr, Rissell MC (1978) Combined photovoltaic and thermal hybrid collector systems, pp 1153–1157

    Google Scholar 

  44. Huang BJ et al (2001) Performance evaluation of solar photovoltaic/thermal systems. Sol Energy 70(5):443–448

    Article  Google Scholar 

  45. Chow TT, He W, Ji J (2006) Hybrid photovoltaic-thermosyphon water heating system for residential application. Sol Energy 80(3):298–306

    Article  Google Scholar 

  46. Chow TT et al (2007) Performance evaluation of photovoltaic–thermosyphon system for subtropical climate application. Sol Energy 81(1):123–130

    Article  MathSciNet  Google Scholar 

  47. Ji J et al (2007) A sensitivity study of a hybrid photovoltaic/thermal water-heating system with natural circulation. Appl Energy 84(2):222–237

    Article  MathSciNet  Google Scholar 

  48. Tonui JK, Tripanagnostopoulos Y (2007) Air-cooled PV/T solar collectors with low cost performance improvements. Sol Energy 81(4):498–511

    Article  Google Scholar 

  49. Prakash J (1994) Transient analysis of a photovoltaic-thermal solar collector for co-generation of electricity and hot air/water. Energy Convers Manag 35(11):967–972

    Article  Google Scholar 

  50. MacArthur JW, Grald EW (1989) Unsteady compressible two-phase flow model for predicting cyclic heat pump performance and a comparison with experimental data. Int J Refrig 12(1):29–41

    Article  Google Scholar 

  51. Jia X et al (1999) Distributed steady and dynamic modelling of dry-expansion evaporators: Modèlisation du régime stable et du régime transitoire des évaporateurs à détente sèche. Int J Refrig 22(2):126–136

    Article  Google Scholar 

  52. Gang P, Guiqiang L, Jie J (2011) Comparative study of air-source heat pump water heater systems using the instantaneous heating and cyclic heating modes. Appl Therm Eng 31(2–3):342–347

    Article  Google Scholar 

  53. Omojaro P, Breitkopf C (2013) Direct expansion solar assisted heat pumps: a review of applications and recent research. Renew Sustain Energy Rev 22:33–45

    Article  Google Scholar 

  54. Kuang Y, Wang R (2006) Performance of a multi-functional direct-expansion solar assisted heat pump system. Sol Energy 80(7):795–803

    Article  Google Scholar 

  55. Xu G, Zhang X, Deng S (2006) A simulation study on the operating performance of a solar–air source heat pump water heater. Appl Therm Eng 26(11–12):1257–1265

    Article  Google Scholar 

  56. Scarpa F, Tagliafico L, Tagliafico G (2011) Integrated solar-assisted heat pumps for water heating coupled to gas burners; control criteria for dynamic operation. Appl Therm Eng 31(1):59–68

    Article  Google Scholar 

  57. Gang P et al (2007) Performance of photovoltaic solar assisted heat pump system in typical climate zone. Energy Environ 6:1–9

    Google Scholar 

  58. Reay D, McGlen R, Kew P (2013) Heat pipes: theory, design and applications. Butterworth-Heinemann

    Google Scholar 

  59. Faghri A (1995) Heat pipe science and technology. Global Digital Press

    Google Scholar 

  60. Ambirajan A et al (2012) Loop heat pipes: a review of fundamentals, operation, and design. Heat Transfer Eng 33(4–5):387–405

    Article  Google Scholar 

  61. Maydanik YF (2005) Loop heat pipes. Appl Therm Eng 25(5–6):635–657

    Article  Google Scholar 

  62. Dunn P, Reay D (1973) The heat pipe. Phys Technol 4(3):187

    Article  Google Scholar 

  63. Hamdan M et al (2002) Loop heat pipe (LHP) development by utilizing coherent porous silicon (CPS) wicks. In: The eighth intersociety conference on thermal and thermomechanical phenomena in electronic systems, ITHERM 2002, IEEE

    Google Scholar 

  64. Li J, Wang D, Peterson G (2010) Experimental studies on a high performance compact loop heat pipe with a square flat evaporator. Appl Therm Eng 30(6–7):741–752

    Article  Google Scholar 

  65. Lu X-Y et al (2009) Thermal analysis of loop heat pipe used for high-power LED. Thermochim Acta 493(1–2):25–29

    Article  Google Scholar 

  66. Alklaibi A (2008) Evaluating the possible configurations of incorporating the loop heat pipe into the air-conditioning systems. Int J Refrig 31(5):807–815

    Article  Google Scholar 

  67. Zhao X, Wang Z, Tang Q (2010) Theoretical investigation of the performance of a novel loop heat pipe solar water heating system for use in Beijing, China. Appl Therm Eng 30(16):2526–2536

    Article  Google Scholar 

  68. Rittidech S, Donmaung A, Kumsombut K (2009) Experimental study of the performance of a circular tube solar collector with closed-loop oscillating heat-pipe with check valve (CLOHP/CV). Renew Energy 34(10):2234–2238

    Article  Google Scholar 

  69. Deng Y et al (2013) Experimental study of the performance for a novel kind of MHPA-FPC solar water heater. Appl Energy 112:719–726

    Article  Google Scholar 

  70. Wang Z et al (2012) Dynamic performance of a facade-based solar loop heat pipe water heating system. Sol Energy 86(5):1632–1647

    Article  Google Scholar 

  71. Zhang X et al (2013) Characterization of a solar photovoltaic/loop-heat-pipe heat pump water heating system. Appl Energy 102:1229–1245

    Article  Google Scholar 

  72. Zhang X et al (2013) Design, fabrication and experimental study of a solar photovoltaic/loop-heat-pipe based heat pump system. Sol Energy 97:551–568

    Article  Google Scholar 

  73. Zhang X et al (2014) Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system. Appl Energy 114:335–352

    Article  Google Scholar 

  74. He W et al (2014) Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe façade-based heat pump water heating system. Energy Build 77:180–191

    Article  Google Scholar 

  75. He W et al (2015) Operational performance of a novel heat pump assisted solar façade loop-heat-pipe water heating system. Appl Energy 146:371–382

    Article  Google Scholar 

  76. Ribatski G (2013) A critical overview on the recent literature concerning flow boiling and two-phase flows inside micro-scale channels. Exp Heat Transf 26(2–3):198–246

    Article  Google Scholar 

  77. Saisorn S, Kuaseng P, Wongwises S (2014) Heat transfer characteristics of gas–liquid flow in horizontal rectangular micro-channels. Exp Thermal Fluid Sci 55:54–61

    Article  Google Scholar 

  78. Kim S-M, Mudawar I (2013) Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels—Part II. Two-phase heat transfer coefficient. Int J Heat Mass Transf 64:1239–1256

    Article  Google Scholar 

  79. Kim S-M, Mudawar I (2013) Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels—Part I. Dryout incipience quality. Int J Heat Mass Transf 64:1226–1238

    Article  Google Scholar 

  80. Kim S-M, Mudawar I (2013) Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling. Int J Heat Mass Transf 58(1–2):718–734

    Article  Google Scholar 

  81. Tibirica CB, Ribatski G (2013) Flow boiling in micro-scale channels—synthesized literature review. Int J Refrig 36(2):301–324

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingxing Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, X., Xiao, M., He, W., Qiu, Z., Zhao, X. (2019). Heat Pump Technologies and Their Applications in Solar Systems. In: Zhao, X., Ma, X. (eds) Advanced Energy Efficiency Technologies for Solar Heating, Cooling and Power Generation . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-030-17283-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-17283-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-17282-4

  • Online ISBN: 978-3-030-17283-1

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics