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Abstract. This work investigates three notions of program equivalence
for a higher-order functional language with recursion and general alge-
braic effects, in which programs are written in continuation-passing style.
Our main contribution is the following: we define a logic whose formu-
las express program properties and show that, under certain conditions
which we identify, the induced program equivalence coincides with a
contextual equivalence. Moreover, we show that this logical equivalence
also coincides with an applicative bisimilarity. We exemplify our general
results with the nondeterminism, probabilistic choice, global store and
I/O effects.

1 Introduction

Logic is a fundamental tool for specifying the behaviour of programs. A general
approach is to consider that a logical formula φ encodes a program property, and
the satisfaction relation of the logic, t |= φ, asserts that program t enjoys prop-
erty φ. An example is Hennessy-Milner logic [12] used to model concurrency and
nondeterminism. Other program logics include Hoare logic [13], which describes
imperative programs with state, and more recently separation logic [28]. Both
state and nondeterminism are examples of computational effects [25], which rep-
resent impure behaviour in a functional programming language. The logics men-
tioned so far concern languages with first-order functions, so as a natural exten-
sion, we are interested in finding a logic which describes higher-order programs
with general effects.

The particular flavour of effects we consider is that of algebraic effects devel-
oped by Plotkin and Power [32–34]. This is a unified framework in which effectful
computation is triggered by a set of operations whose behaviour is axiomatized
by a set of equations. For example, nondeterminism is given by a binary choice
operation or(−,−) that satisfies the equations of a semilattice. Thus, general
effectful programs have multiple possible execution paths, which can be visual-
ized as an (effect) tree, with effect operations labelling the nodes. Consider the
following function or suc which has three possible return values, and the effect
tree of (or suc 2):
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or suc = λx:nat.
or(x, or(x + 1, x + 2))

or
2 or

3 4

(or suc 2)

Apart from state and nondeterminism, examples of algebraic effects include prob-
abilistic choice and input and output operations.

Apart from providing a specification language for programs, a logic can also
be used to compare two different programs. This leads to a notion of program
equivalence: two programs are equivalent when they satisfy exactly the same
formulas in the logic.

Many other definitions of program equivalence for higher-order languages
exist. An early notion is contextual equivalence [26], which asserts that two pro-
grams are equivalent if they have the same observable behaviour in all program
contexts. However, this is hard to establish in practice due to the quantification
over all contexts. Another approach, which relies on the existence of a suitable
denotational model of the language, is checking equality of denotations. Yet
another notion, meant to address the shortcomings of the previous two, is that
of applicative bisimilarity [1].

Given the wide range of definitions of program equivalence, comparing them
is an interesting question. For example, the equivalence induced by Hennessy-
Milner logic is known to coincide with bisimilarity for CCS. Thus, we not only
aim to find a logic describing general algebraic effects, but also to compare it to
existing notions of program equivalence.

Program equivalence for general algebraic effects has been studied by Johann,
Simpson and Voigtländer [17] who define a notion of contextual equivalence and
a corresponding logical relation. Dal Lago, Gavazzo and Levy [7] provide an
abstract treatment of applicative bisimilarity in the presence of algebraic effects.
Working in a typed, call-by-value setting, Simpson and Voorneveld [38] propose a
modal logic for effectful programs whose induced program equivalence coincides
with applicative bisimilarity, but not with contextual equivalence (see counter-
example in Sect. 5). Dal Lago, Gavazzo and Tanaka [8] propose a notion of
applicative similarity that coincides with contextual equivalence for an untyped,
call-by-name effectful calculus.

These papers provide the main starting point for our work. Our goal is to
find a logic of program properties which characterizes contextual equivalence for
a higher-order language with algebraic effects. We study a typed call-by-value
language in which programs are written in continuation-passing style (CPS).
CPS is known to simplify contextual equivalence, through the addition of control
operators (e.g. [5]), but it also implies that all notions of program equivalence we
define can only use continuations to test return values. Contextual equivalence
and bisimilarity for lambda-calculi with control, but without general effects, have
been studied extensively (e.g. [4,15,23,41]).

In CPS, functions receive as argument the continuation (which is itself a
function) to which they pass their return value. Consider the function that adds
two natural numbers. This usually has type nat → nat → nat, but its CPS
version is defined as: addk = λ(n:nat,m:nat, k:nat→R). k (n + m) for some
fixed return type R. The function or suc becomes in CPS:
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or succ = λ(x:nat, k:nat→R). or(k x, or(addk (x, 1, k), addk (x, 2, k))).

A general translation of direct-style functions into CPS can be found in Sect. 5.
We fix a calculus named ECPS (Sect. 2), in which programs are not expected

to return, except through a call to the continuation. Contextual equivalence
is defined using a custom set of observations P, where the elements of P are
sets of effect trees. We consider a logic F whose formulas express properties of
ECPS programs (Sect. 3). For example, or succ satisfies the following formula:
φ = ({2}, ({3} ∨ {4}) �→ �) �→ ♦.

Here, ♦ is the set of all effect trees for which at least one execution path
succeeds and � is the set of trees that always succeed. So or succ |=F φ says
that, when given arguments 2 and a continuation that always succeeds for input
3 or 4, then or succ may succeed. In other words, or succ may ‘return’ 3 or 4
to the continuation. In contrast, or succ |=F φ′ = ({2}, ({3} ∨ {4}) �→ �) �→ �
says that the program or succ must return 3 or 4 to the continuation. Thus
or succ �|=F φ′ because the continuation k might diverge on 2.

Another example can be obtained by generalizing the or succ function to
take a function as a parameter, rather than using addk:

or succ’ = λ(x : nat, k : nat→R, f : (nat, nat, nat→R)→R).
or(k x, or(f (x, 1, k), f (x, 2, k)))

|=F
(
{2}, {4} �→ ♦,

(
({2}, {2}, {4} �→ ♦) �→ ♦

)) �→ ♦.

The formula above says that or succ’ may call f with arguments 2, 2 and k.
The main theorem concerning the logic F (Theorem 1) is that, under certain

restrictions on the observations in P, logical equivalence coincides with con-
textual equivalence. In other words, F is sound and complete with respect to
contextual equivalence. The proof of this theorem, outlined in Sect. 4, involves
applicative bisimilarity as an intermediate step. Thus, we show in fact that three
notions of program equivalence for ECPS are the same: logical equivalence, con-
textual equivalence and applicative bisimilarity. Due to space constraints, proofs
are omitted but they can be found in [21].

2 Programming Language – ECPS

We consider a simply-typed functional programming language with general
recursion, a datatype of natural numbers and general algebraic effects as intro-
duced by Plotkin and Power [32]. We will refer to this language as ECPS because
programs are written in continuation-passing style.

ECPS distinguishes between terms which can reduce further, named compu-
tations, and values, which cannot reduce. ECPS is a variant of both Plotkin’s
PCF [31] and Levy’s Jump-With-Argument language [20], extended with alge-
braic effects. A fragment of ECPS is discussed in [18] in connection with logic.

Types A,A1, B := (A1, . . . , An)→R | nat (n ≥ 0)
Typing contexts Γ := ∅ | Γ, x : A.
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The only base type in ECPS is nat. The return type of functions, R, is
fixed and is not a first-class type. Intuitively, we consider that functions are
not expected to return. A type in direct style A → B becomes in ECPS:
(A,B→R)→R. In the typing context (Γ, x : A), the free variable x does not
appear in Γ .

First, consider the pure fragment of ECPS, without effects, named CPS:

Values v, w := zero | succ(v) | λ(x1:A1, . . . , xn:An).t | x (n ≥ 0)
Computations s, t := v(w1, . . . , wn) | case v of {zero ⇒ s, succ(x) ⇒ t} |

(rec x.v)(w1, . . . , wn).

Variables, natural numbers and lambdas are values. Computations include func-
tion application and an eliminator for natural numbers. The expression rec x.v
is a recursive definition of the function v, which must be applied. If exactly
one argument appears in a lambda abstraction or an application term, we will
sometimes omit the parentheses around that argument.

There are two typing relations in CPS, one for values Γ 	 v : A, which says
that value v has type A in the context Γ , and one for computations Γ 	 t : R.
This says that t is well-formed given the context Γ . All computations have the
same return type R. We also define the order of a type recursively, which roughly
speaking counts the number of function arrows → in a type.

Γ, x : A 	 x : A

Γ,
−−−→
x : A 	 t : R

Γ 	 λ(
−−→
x:A).t : (

−→
A )→R Γ 	 zero : nat

Γ 	 v : nat
Γ 	 succ(v) : nat

Γ 	 v : (
−→
A )→R (Γ 	 wi : Ai)i

Γ 	 v (−→w ) : R
Γ, x : (

−→
A )→R 	 v : (

−→
A )→R (Γ 	 wi : Ai)i

Γ 	 (rec x.v)(−→w ) : R

Γ 	 v : nat Γ 	 t : R Γ, x : nat 	 s : R
Γ 	 case v of {zero ⇒ t, succ(x) ⇒ s} : R

ord(nat) = 0 ord(()→R) = 1
ord((A1, . . . , An)→R) = max1≤i≤n(ord(Ai)) + 1 (if n > 0)

To introduce algebraic effects into our language, we consider a new kind
of context Σ, disjoint from Γ , which we call an effect context. The symbols σ
appearing in Σ stand for effect operations and their type must have either order 1
or 2. For example, the binary choice operation or : (()→R, ()→R)→R expects two
thunked computations. The output operation output : (nat, ()→R)→R expects
a parameter and a continuation. An operation signifying success, which takes no
arguments, is ↓ : ()→R. Roughly, Σ could be regarded as a countable algebraic
signature.

We extend the syntax of CPS with effectful computations. The typing rela-
tions now carry a Σ context: Γ 	Σ v : A and Γ 	Σ t : R. Otherwise, the typing
judgements remain unchanged; we have a new rule for typing effect operations:
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s, t := . . . | σ(−→v ,
−→
k )

σ : (
−→
A,

−→
B )→R ∈ Σ (Γ 	Σ vi : Ai)i (Γ 	Σ kj : Bj)j

Γ 	Σ σ(−→v ,
−→
k ) : R

In ECPS, the only type with order 0 is nat, so in fact Ai = nat for all i. Notice
that the grammar does not allow function abstraction over a symbol from Σ
and that σ is not a first-class term. So we can assume that Σ is fixed, as in the
examples from Sect. 2.1.

As usual, we identify terms up to alpha-equivalence. Substitution of values
for free variables that are not operations, v [w/x ] and t [w/x ], is defined in the
standard way by induction on the structure of v and t. We use n to denote the
term succn(zero). Let (	Σ) be the set of well-formed closed computations and
(	Σ A) the set of closed values of type A.

2.1 Operational Semantics

We define a family of relations on closed computation terms (−→) ⊆ (	Σ)×(	Σ)
for any effect context Σ:

(λ(
−−→
x:A).t) (−→w ) −→ t[−→w/−→x ]

(rec x.v) (−→w ) −→ (v[(λ(
−→
y:A).(rec x.v)(−→y ))/x]) (−→w )

case zero of {zero ⇒ s, succ(x) ⇒ t} −→ s
case succ(v) of {zero ⇒ s, succ(x) ⇒ t} −→ t[v/x].

Observe that the reduction given by −→ can either run forever or terminate
with an effect operation. If the effect operation does not take any arguments
of order 1 (i.e. continuations), the computation stops. If the reduction reaches
σ(−→v ,

−→
k ), the intuition is that any continuation ki may be chosen, and executed

with the results of operation σ. Thus, repeatedly evaluating effect operations
leads to the construction of an infinitely branching tree (similar to that in [32]),
as we now explain, which we call an effect tree. A path in the tree represents a
possible execution path of the program.

An effect tree, of possibly infinite depth and width, can contain:

– leaves labelled ⊥, which signifies nontermination of −→;
– leaves labelled σ−→v , where σ : (

−→
A )→R ∈ Σ and (	Σ vi : Ai)i;

– nodes labelled σ−→v , where σ : (
−→
A,

−→
B )→R ∈ Σ and each 	Σ vi : Ai; such a

node has an infinite number of children t0, t1, . . ..

Denote the set of all effect trees by TreesΣ . This set has a partial order: tr1 ≤ tr2
if and only if tr1 can be obtained by replacing subtrees of tr2 by ⊥. Every
ascending chain t1 ≤ t2 ≤ . . . has a least upper bound

⊔
n tn. In fact TreesΣ is

the free pointed Σ-algebra [2] and therefore also has a coinductive property [9].
Next, we define a sequence of effect trees associated with each well-formed

closed computation. Each element in the sequence can be seen as evaluating the
computation one step further. Let �−�(−) : (	Σ) × N −→ TreesΣ :
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�t�0 = ⊥

�t�m+1 =

{
�s�m if t −→ s

σ−→v (
((

�ki (n1, . . . , npi
)�m

)
n1,...,npi

∈N

)
i
) if t = σ(−→v ,

−→
k )

These are all the cases since well-formed computations do not get stuck. We
define the function �−� : (	Σ) −→ TreesΣ as the least upper bound of the chain
{�tn�}n∈N: �t� =

⊔
n∈N

�t�n.
We now give examples of effect contexts Σ for different algebraic effects, and

of some computations and their associated effect trees.

Example 1 (Pure functional computation). Σ = {↓ : ()→R}. Intuitively, ↓ is a
top-level success flag, analogous to a ‘barb’ in process algebra. This is to ensure
a reasonable contextual equivalence for CPS programs, which never actually
return results. For example, loop = (rec f.λ().(f x)) () runs forever, and

test zero = λ(y:nat). case y of {zero ⇒ ↓ (), succ(x) ⇒ loop}
is a continuation that succeeds just when it is passed zero. Generally, an effect
tree for a pure computation is either ↓ if it succeeds or ⊥ otherwise.

Example 2 (Nondeterminism). Σ = {or : (()→R, ()→R)→R, ↓ : ()→R}. Intu-
itively, or(k1, k2) performs a nondeterministic choice between computations k1 ()
and k2 (). Consider a continuation test 3 : nat→R that diverges on 3 and suc-
ceeds otherwise. The program or succ from the introduction is in ECPS:

or succ = λ(x:nat, k:nat→R). or(λ(). k x,

λ(). or(λ().k (succ(x)),
λ().k (succ(succ(x)))))

or
↓ or

�or succ (2, test 3)� =

Example 3 (Probabilistic choice). Σ = {p-or : (()→R, ()→R)→R, ↓ : ()→R}.
Intuitively, the operation p-or(k1, k2) chooses between k1 () and k2 () with prob-
ability 0.5. Consider the following term which encodes the geometric distribution:

geom = λk:nat→R.(
rec f. λ(n:nat, k′:nat→R).p-or(λ().k′ n, λ().f (succ(n), k′))

)
(1, k).

The probability that geom passes a number n > 0 to its continuation is 2−n. To
test it, consider k = (λx:nat. ↓ ()); then �geom k� is an infinite tree:

p-or

↓ �geom k�

�geom k� =

Example 4 (Global store). L is a finite set of locations storing natural numbers
and Σ = {lookupl : (nat→R)→R, updatel : (nat, ()→R)→R | l ∈ L}∪{↓ : ()→R}.
Intuitively, lookupl(k) looks up the value at storage location l, if this is n it
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continues with k (n). For updatel(v, k) the intuition is: write the number v in
location l then continue with the computation k (). For example:

updatel0(1, λ().lookupl0(λx:nat.case x

of zero (), succ(y) loop )) =

updatel0,1

lookupl0

. . .

Only the second branch of lookupl0 can occur. The other branches are still
present in the tree because �−� treats effect operations as uninterpreted syntax.

Example 5 (Interactive input/output). Σ = {↓ : ()→R, output : (nat, ()→R)→R,
input : (nat→R)→R}. Intuitively, the computation input(k) accepts number n
from the input channel and continues with k (n). The computation output(v, k)
writes v to the output channel then continues with computation k (). Below is a
computation that inputs a number n then outputs it immediately, and repeats.

�echo� = � rec f. λ().

input(λx:nat. output(x, λ().f ())) () =

input

output0

echo

output1

echo

output2

echo

. . .

2.2 Contextual Equivalence

Informally, two terms are contextually equivalent if they have the same observ-
able behaviour in all program contexts. The definition of observable behaviour
depends on the programming language under consideration. In ECPS, we can
observe effectful behaviour such as interactive output values or the probability
with which a computation succeeds. This behaviour is encoded by the effect tree
of a computation. Therefore, we represent an ECPS observation as a set of effect
trees P . A computation t exhibits observation P if �t� ∈ P .

For a fixed set of effect operations Σ, we define the set P of possible observa-
tions. The elements of P are subsets of TreesΣ . Observations play a similar role
to the modalities from [38]. For our running examples of effects, P is defined as
follows:

Example 6 (Pure functional computation). Define P = {⇓} where ⇓ = {↓}.
There are no effect operations so the ⇓ observation only checks for success.

Example 7 (Nondeterminism). Define P = {♦,�} where:

♦ = {tr ∈ TreesΣ | at least one of the paths in tr has a ↓ leaf}
� = {tr ∈ TreesΣ | the paths in tr are all finite and finish with a ↓}.

The intuition is that, if �t� ∈ ♦, then computation t may succeed, whereas if
�t� ∈ �, then t must succeed.



A Sound and Complete Logic for Algebraic Effects 389

Example 8 (Probabilistic choice). Define P : TreesΣ −→ [0, 1] to be the least
function, by the pointwise order, such that:

P(↓) = 1 P(p-or(tr0, tr1)) =
1
2
P(tr0) +

1
2
P(tr1).

Notice that P(⊥) = 0. Then observations are defined as:

P>q = {tr ∈ TreesΣ | P(tr) > q} P = {P>q | q ∈ Q, 0 ≤ q < 1}.

This means that �t� ∈ P>q if the probability that t succeeds is greater than q.

Example 9 (Global store). Define the set of states as the set of functions from
storage locations to natural numbers: State = L −→ N. Given a state S, we
write [S↓] ⊆ TreesΣ for the set of effect trees that terminate when starting in
state S. More precisely, [−] is the least State-indexed family of sets satisfying
the following:

−
↓ ∈ [S↓]

l ∈ L trS(l) ∈ [S↓]
lookupl(tr0, tr1, tr2, . . .) ∈ [S↓]

l ∈ L tr ∈ [S[l := n]↓]
updatel,n(tr) ∈ [S↓]

The set of observations is: P = {[S↓] | S ∈ State}.

Example 10 (Interactive input/output). An I/O-trace is a finite word w over the
alphabet {?n | n ∈ N} ∪ {!n | n ∈ N}. For example, ?1 !1 ?2 !2 ?3 !3. The set of
observations is: P = {〈W 〉..., 〈W 〉↓ | W an I/O-trace}. Observations are defined
as the least sets satisfying the following rules:

−
tr ∈ 〈ε〉...

tr = ↓
tr ∈ 〈ε〉↓

trn ∈ 〈W 〉...

input(tr0, tr1, . . .) ∈ 〈(?n)W 〉...

tr′ ∈ 〈W 〉...

outputn(tr′) ∈ 〈(!n)W 〉...

and the analogous rules for 〈(?n)W 〉↓ and 〈(!n)W 〉↓. Thus, �t� ∈ 〈W 〉... if com-
putation t produces I/O trace W , and �t� ∈ 〈W 〉↓ if additionally t succeeds
immediately after producing W .

Using the set of observations P, we can now define contextual equivalence
as the greatest compatible and adequate equivalence relation between possibly
open terms of the same type. Adequacy specifies a necessary condition for two
closed computations to be related, namely producing the same observations.

Definition 1. A well-typed relation R = (Rv
A,Rc) (i.e. a family of relations

indexed by ECPS types where Rc relates computations) on possibly open terms
is adequate if:

∀s, t. 	Σ s Rc t =⇒ ∀P ∈ P. �s� ∈ P ⇐⇒ �t� ∈ P.

Relation R is compatible if it is closed under the rules in [21, Page 57]. As an
example, the rules for application and lambda abstraction are:

Γ 	Σ v Rv

(
−→
A)→R

v′ (Γ 	Σ wi Rv
Ai

w′
i)i

Γ 	Σ v(−→w ) Rc v′(
−→
w′)

Γ,
−−−→
x : A 	Σ s Rc t

Γ 	Σ λ(
−−→
x:A).s Rv

(
−→
A)→R

λ(
−−→
x:A).t



390 C. Matache and S. Staton

Definition 2 (Contextual equivalence). Let CA be the set of well-typed rela-
tions on possibly open terms that are both compatible and adequate. Define con-
textual equivalence ≡ctx to be

⋃
CA.

Proposition 1. Contextual equivalence ≡ctx is an equivalence relation, and is
moreover compatible and adequate.

This definition of contextual equivalence, originally proposed in [11,19], can
be easily proved equivalent to the traditional definition involving program con-
texts (see [21, §7]). As Pitts observes [30], reasoning about program contexts
directly is inconvenient because they cannot be defined up to alpha-equivalence,
hence we prefer using Definition 2.

For example, in the pure setting (Example 1), we have 0 �≡ctx 1, because
test zero(0) �≡ctx test zero(1); they are distinguished by the observation ⇓.
In the state example, lookupl1(k) �≡ctx lookupl2(k), because they are distin-
guished by the context (λk:nat→R. [−]) (test zero) and the observation [S↓]
where S(l1) = 0 and S(l2) = 1. In the case of probabilistic choice (Example 3),
geom (λx:nat. ↓ ()) ≡ctx ↓ () because (geom (λx:nat. ↓ ())) succeeds with prob-
ability 1 (‘almost surely’).

3 A Program Logic for ECPS – F
This section contains the main contribution of the paper: a logic F of program
properties for ECPS which characterizes contextual equivalence. Crucially, the
logic makes use of the observations in P to express properties of computations.

In F , there is a distinction between formulas that describe values and those
that describe computations. Each value formula is associated an ECPS type A.
Value formulas are constructed from the basic formulas (φ1, . . . , φn) �→ P and
φ = {n}, where n ∈ N and P ∈ P, as below. The indexing set I can be infinite,
even uncountable. Computation formulas are simply the elements of P.

n ∈ N

{n} : nat

(val)

φ1 : A1 . . . φn : An P ∈ P

(φ1, . . . , φn) �→ P : (A1, . . . , An)→R

(φi : A)i∈I

∨i∈Iφi : A

(φi : A)i∈I

∧i∈Iφi : A

φ : A

¬φ : A

The satisfaction relation |=F relates a closed value 	Σ v : A to a value
formula φ : A of the same type, or a closed computation t to an observation P .
Relation t |=F P tests the shape of the effect tree of t.

v |=F {n} ⇐⇒ v = n

v |=F (φ1, . . . , φn) �→ P ⇐⇒ for all closed values w1, . . . , wn such that
∀i. wi |=F φi then v(w1, . . . , wn) |=F P

v |=F ∨i∈Iφi ⇐⇒ there exists j ∈ I such that v |=F φj

v |=F ∧i∈Iφi ⇐⇒ for all j ∈ I, v |=F φj

v |=F ¬φ ⇐⇒ it is false that v |=F φ

t |=F P ⇐⇒ �t� ∈ P.
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Example 11. Consider the following formulas, where only φ3 and φ4 refer to the
same effect context:

φ1 =
(
({3} �→ ♦) �→ ♦

) ∧ (
({4} �→ ♦) �→ ♦

) ∧ (
({3} �→ � ∧ {4} �→ �) �→ �

)

φ2 = ((∨n>1{n}) �→ P>q) �→ P>q/2

φ3 = ∧S∈State

(
({S(l)} �→ [S↓]) �→ [S↓]

)

φ4 = ∧S∈State ∧n∈N

(
({n}, () �→ [S[l0 := n, l1 := n + 1]↓]) �→ [S[l0 := n]↓]

)

φ5 = ∧k∈N ∨n1,...,nk∈N (() �→ 〈?n1!n1?n2!n2 . . . ?nk!nk〉...).

Given a function v : (nat→R)→R, v |=F φ1 means that v is guaranteed to call
its argument only with 3 or 4. The function geom from Example 3 satisfies φ2

because with probability 1/2 it passes to the continuation a number n > 1.
For example, the following satisfactions hold: λk:nat→R. lookupl(k) |=F φ3

and f = λ(x:nat, k:()→R). updatel1(succ(x), k) |=F φ4. The latter formula says
that, either f always succeeds, or f evaluated with n changes the state from
S[l0 := n] to S[l0 := n, l1 := n + 1] before calling its continuation. This is similar
to a total correctness assertion [S[l0 := n]](−)[S[l0 := n, l1 := n + 1]] from Hoare
logic, for a direct style program. Formula φ5 is satisfied by λ().echo, where echo
is the computation defined in Example 5.

Even though the indexing set I in ∧i∈I and ∨i∈I may be uncountable, the sets
of values and computations are countable. Since logical formulas are interpreted
over values and computations, all conjunctions and disjunctions are logically
equivalent to countable ones.

Definition 3 (Logical equivalence). For any closed values 	Σ v1 : A and
	Σ v2 : A, and for any closed computations 	Σ s1 and 	Σ s2:

v1 ≡F v2 ⇐⇒ ∀φ : A in F . (v1 |=F φ ⇐⇒ v2 |=F φ)
s1 ≡F s2 ⇐⇒ ∀P in F . (s1 |=F P ⇐⇒ s2 |=F P ).

To facilitate equational reasoning, logical equivalence should be compatible, a
property proved in the next section (Proposition 3). Compatibility allows sub-
stitution of related programs for a free variable that appears on both sides of a
program equation. Notice that logical equivalence would not be changed if we
added conjunction, disjunction and negation at the level of computation formu-
las. We have omitted such connectives for simplicity.

To state our main theorem, first define the open extension of a well-typed
relation R on closed terms as:

−−−→
x : A 	Σ t R◦ s if and only if for any closed values

(	Σ vi : Ai)i, t[
−−→
v/x] R s[

−−→
v/x]. Three sufficient conditions that we impose on the

set of observations P are defined below. The first one, consistency, ensures that
contextual equivalence can distinguish at least two programs.

Definition 4 (Consistency). A set of observations P is consistent if there
exists at least one observation P0 ∈ P such that:
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1. P0 �= TreesΣ and
2. there exists at least one computation t0 such that �t0� ∈ P0.

Definition 5 (Scott-openness). A set of trees X is Scott-open if:

1. It is upwards closed, that is: tr ∈ X and tr ≤ tr′ imply tr′ ∈ X.
2. Whenever tr1 ≤ tr2 ≤ . . . is an ascending chain with least upper bound

⊔
tri ∈

X, then trj ∈ X for some j.

Definition 6 (Decomposability). The set of observations P is decomposable
if for any P ∈ P, and for any tr ∈ P :

∀σ ∈ Σ.
(
tr =σ−→v (

−→
tr′) =⇒

∃−→
P ′ ∈ P ∪ {TreesΣ}.

−→
tr′ ∈ −→

P ′ and ∀−→
p′ ∈ −→

P ′. σ−→v (
−→
p′ ) ∈ P

)
.

Theorem 1 (Soundness and Completeness of F). For a decomposable set
of Scott-open observations P that is consistent, the open extension of F-logical
equivalence coincides with contextual equivalence: (≡◦

F ) = (≡ctx).

The proof of this theorem is outlined in Sect. 4. It is easy to see that for all
running examples of effects the set P is consistent. The proof that each P ∈ P
is Scott-open is similar to that for modalities from [38]. It remains to show
that for all our examples P is decomposable. Intuitively, decomposability can
be understood as saying that logical equivalence is a congruence for the effect
context Σ.

Example 12 (Pure functional computation). The only observation is ⇓ = {↓}.
There are no trees in ⇓ whose root has children, so decomposability is satisfied.

Example 13 (Nondeterminism). Consider tr ∈ ♦. Either tr = ↓, in which case
we are done, or tr = or(tr′

0, tr
′
1). It must be the case that either tr′

0 or tr′
1 have

a ↓-leaf. Without loss of generality, assume this is the case for tr′
0. Then we

know tr′
0 ∈ ♦ so we can choose P ′

0 = ♦, P ′
1 = TreesΣ . For any

−→
p′ ∈ −→

P ′ we know
or(

−→
p′ ) ∈ ♦ because p′

0 has a ↓-leaf, so decomposability holds. The argument for
tr ∈ � is analogous: P ′

0 = P ′
1 = �.

Example 14 (Probabilistic choice). Consider tr = p-or(tr′
0, tr

′
1) ∈ P>q. Choose:

q0 = P(tr′
0)

P(tr′
0)+P(tr′

1)
·2q and q1 = P(tr′

1)
P(tr′

0)+P(tr′
1)

·2q. From P(tr) = 1
2 (P(tr′

0)+P(tr′
1)) >

q we can deduce that: 1 ≥ P(tr′
0) > q0 and 1 ≥ P(tr′

1) > q1. So we can choose
P ′
0 = P>q0 , P

′
1 = P>q1 to satisfy decomposability.

Example 15 (Global store). Consider a tree tr = σ−→v (tr′
0, tr

′
1, tr

′
2, . . .) ∈ [S↓]. If

σ = lookupl, then we know tr′
S(l) ∈ [S↓]. In the definition of decomposability,

choose P ′
S(l) = [S↓] and P ′

k �=S(l) = TreesΣ and we are done. If σ−→v = updatel,n,
then tr′

0 ∈ [S[l := n]↓]. Choose P ′
0 = [S[l := n]↓].
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Example 16 (Interactive input/output). Consider an I/O trace W �= ε and a
tree tr = σ−→v (tr′

0, tr
′
1, tr

′
2, . . .) ∈ 〈W 〉.... If σ = input, it must be the case that

W = (?k)W ′ and tr′
k ∈ 〈W ′〉.... We can choose P ′

k = 〈W ′〉... and P ′
m �=k = 〈ε〉...

and we are done. If σ−→v = outputn, then W = (!n)W ′ and tr′
0 ∈ 〈W ′〉.... Choose

P ′
0 = 〈W ′〉... and we are done. The proof for 〈W 〉↓ is analogous.

4 Soundness and Completeness of the Logic F
This section outlines the proof of Theorem 1, which says that F-logical equiva-
lence coincides with contextual equivalence. The full proof can be found in [21].
First, we define applicative bisimilarity for ECPS, similarly to the way Simpson
and Voorneveld [38] define it for PCF with algebraic effects. Then, we prove
in turn that F-logical equivalence coincides with applicative bisimilarity, and
that applicative bisimilarity coincides with contextual equivalence. Thus, three
notions of program equivalence for ECPS are in fact the same.

Definition 7 (Applicative P-bisimilarity). A collection of relations Rv
A ⊆

(	Σ A)2 for each type A and Rc ⊆ (	Σ)2 is an applicative P-simulation if:

1. v Rv
nat w =⇒ v = w.

2. s Rc t =⇒ ∀P ∈ P. (�s� ∈ P =⇒ �t� ∈ P ).
3. v Rv

(
−→
A)→R

u =⇒ ∀(	Σ wi : Ai)i. v(−→w ) Rc u(−→w ).

An applicative P-bisimulation is a symmetric simulation. Bisimilarity, denoted
by ∼, is the union of all bisimulations. Therefore, it is the greatest applicative
P-bisimulation.

Notice that applicative bisimilarity uses the set of observations P to relate
computations, just as contextual and logical equivalence do. It is easy to show
that bisimilarity is an equivalence relation.

Proposition 2. Given a decomposable set of Scott-open observations P, the
open extension of applicative P-bisimilarity, ∼◦, is compatible.

Proof (notes). This is proved using Howe’s method [14], following the structure
of the corresponding proof from [38]. Scott-openness is used to show that the
observations P interact well with the sequence of trees �−�(−) associated with
each computation. For details see [21, §5.4]. ��
Proposition 3. Given a decomposable set of Scott-open observations P,
applicative P-bisimilarity ∼ coincides with F-logical equivalence ≡F . Hence, the
open extension of F-logical equivalence ≡◦

F is compatible.

Proof (sketch). We define a new logic V which is almost the same as F except
that the (val) rule is replaced by:

	Σ w1 : A1 . . . 	Σ wn : An P ∈ P

(w1, . . . , wn) �→ P : (A1, . . . , An)→R
v |=V (−→w ) �→ P ⇐⇒ v(−→w ) |=V P.
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That is, formulas of function type are now constructed using ECPS values. It
is relatively straightforward to show that V-logical equivalence coincides with
applicative P-bisimilarity [21, Prop. 6.3.1]. However, we do not know of a sim-
ilar direct proof for the logic F . From Proposition 2, we deduce that V-logical
equivalence is compatible.

Next, we prove that the logics F and V are in fact equi-expressive, so
they induce the same relation of logical equivalence on ECPS programs [21,
Prop. 6.3.4]. Define a translation of formulas from F to V, (−)�, and one from V
to F , (−)�. The most interesting cases are those for formulas of function type:

((φ1, . . . , φn) �→ P )� =
∧{

(w1, . . . , wn) �→ P
∣∣ w1 |=V φ�

1, . . . , wn |=V φ�
n

}

((w1, . . . , wn) �→ P )� = (χw1 , . . . , χwn
) �→ P

where χwi
is the characteristic formula of wi, that is χwi

=
∧ {φ | wi |=F φ}.

Equi-expressivity means that the satisfaction relation remains unchanged under
both translations, for example v |=V φ ⇐⇒ v |=F φ�. Most importantly, the
proof of equi-expressivity makes use of compatibility of ≡V , which we established
previously. For a full proof see [21, Prop. 6.2.3]). ��

Finally, to prove Theorem 1 we show that applicative P-bisimilarity coincides
with contextual equivalence [21, Prop. 7.2.2]:

Proposition 4. Consider a decomposable set P of Scott-open observations that
is consistent. The open extension of applicative P-bisimilarity ∼◦ coincides with
contextual equivalence ≡ctx.

Proof (sketch). Prove (≡ctx) ⊆ (∼◦) in two stages: first we show it holds for
closed terms by showing ≡ctx for them is a bisimulation; we make use of consis-
tency of P in the case of natural numbers. Then we extend to open terms using
compatibility of ≡ctx. The opposite inclusion follows immediately by compati-
bility and adequacy of ∼◦. ��

5 Related Work

The work closest to ours is that by Simpson and Voorneveld [38]. In the context
of a direct-style language with algebraic effects, EPCF, they propose a modal
logic which characterizes applicative bisimilarity but not contextual equivalence.
Consider the following example from [19] (we use simplified EPCF syntax):

M = λ().?nat N = let y ⇒ ?nat in λ().min(?nat, y) (1)

where ?nat is a computation, defined using or, which returns a natural number
nondeterministically. Term M satisfies the formula Φ = ♦(true �→ ∧n∈N♦{n})
in the logic of [38], which says that M may return a function which in turn may
return any natural number. However, N does not satisfy Φ because it always
returns a bounded number generator G. The bound on G is arbitrarily high
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so M and N are contextually equivalent, since a context can only test a finite
number of outcomes of G.

EPCF can be translated into ECPS via a continuation-passing translation
that preserves the shape of computation trees. The translation maps a value
Γ 	 V : τ to a value Γ ∗ 	 V ∗ : τ∗. An EPCF computation Γ 	 M : τ becomes
an ECPS value Γ ∗ 	 M∗ : (τ∗→R)→R, which intuitively is waiting for a contin-
uation k to pass its return result to (see [21, §4]). As an example, consider the
cases for functions and application, where k stands for a continuation:

(Γ 	 λx:τ.M : τ → ρ)∗ = Γ ∗ 	 λ(x:τ∗, k:ρ∗→R). (M∗ k) : (τ∗, (ρ∗→R))→R

(Γ 	 V W : ρ)∗ = Γ ∗ 	 λk:ρ∗→R. V ∗ (W ∗, k) : (ρ∗→R)→R.

This translation suggests that ECPS functions of type (A1, . . . , An)→R can be
regarded as continuations that never return. In EPCF the CPS-style algebraic
operations can be replaced by direct-style generic effects [34], e.g. input() : nat.

One way to understand this CPS translation is that it arises from the fact
that ((−)→R)→R is a monad on the multicategory of values (in a suitable sense,
e.g. [40]), which means that we can use the standard monadic interpretation of
a call-by-value language. As usual, the algebraic structure on the return type R
induces an algebraic structure on the entire monad (see e.g. [16], [24, §8]). We
have not taken a denotational perspective in this paper, but for the reader with
this perspective, a first step is to note that the quotient set Q

def= (TreesΣ)/≡P
is a

Σ-algebra, where (tr ≡P tr ′) if ∀P ∈ P, (tr ∈ P ⇐⇒ tr ′ ∈ P ); decomposability
implies that (≡P) is a Σ-congruence. This thus induces a CPS monad Q(Q−) on
the category of cpos.

Note that the terms in (1) above are an example of programs that are not bisim-
ilar in EPCF but become bisimilar when translated to ECPS. This is because in
ECPS bisimilarity, like contextual and logical equivalence, uses continuations to
test return results. Therefore, in ECPS we cannot test for all natural numbers, like
formula Φ does. This example provides an intuition of why we were able to show
that all three notions of equivalence coincide, while [38] was not.

The modalities in Simpson’s and Voorneveld’s logic are similar to the obser-
vations from P, because they also specify shapes of effect trees. Since EPCF
computations have a return value, a modality is used to lift a formula about the
return values to a computation formula. In contrast, in the logic F observations
alone suffice to specify properties of computations. From this point of view, our
use of observations is closer to that found in the work of Johann et al. [17].
This use of observations also leads to a much simpler notion of decomposability
(Definition 6) than that found in [38].

It can easily be shown that for the running examples of effects, F-logical
equivalence induces the program equations which are usually used to axiomatize
algebraic effects, for example the equations for global store from [33]. Thus our
choice of observations is justified further.

A different logic for algebraic effects was proposed by Plotkin and Pret-
nar [35]. It has a modality for each effect operation, whereas observations in P
are determined by the behaviour of effects, rather than by the syntax of their
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operations. Plotkin and Pretnar prove that their logic is sound for establishing
several notions of program equivalence, but not complete in general. Refinement
types are yet another approach to specifying the behaviour of algebraic effects,
(e.g. [3]). Several monadic-based logics for computational effects have been pro-
posed, such as [10], [29], although without the focus on contextual equivalence.

A logic describing a higher-order language with local store is the Hoare logic
of Yoshida, Honda and Berger [42]. Hoare logic has also been integrated into a
type system for a higher-order functional language with dependent types, in the
form of Hoare type theory [27]. Although we do not yet know how to deal with
local state or dependent types in the logic F , an advantage of our logic over the
previous two is that we describe different algebraic effects in a uniform manner.

Another aspect worth noticing is that some (non-trivial) F-formulas are not
inhabited by any program. For example, there is no function v : (()→R)→R
satisfying: ψ = (() �→ 〈!0〉...) �→ 〈!1〉... ∧ (() �→ 〈!1〉...) �→ 〈!0〉....

Formula ψ says that, if the first operation of a continuation is output(0), this
is replaced by output(1) and vice-versa. But in ECPS, one cannot check whether
an argument outputs something without also causing the output observation,
and so the formula is never satisfied.

However, ψ could be inhabited if we extended ECPS to allow λ-abstraction
over the symbols in the effect context Σ, and allowed such symbols to be captured
during substitution (dynamic scoping). Consider the following example in an
imaginary extended ECPS where we abstract over output:

h = λ(x:nat, k:()→R). case x of {zero ⇒ output(1, k), succ(y) ⇒
case y of {zero ⇒ output(0, k), succ(z) ⇒ k ()}}

v = λf :()→R.
(
(λoutput:(nat, ()→R)→R. (f ())) h

)
.

The idea is that during reduction of (v f), the output operations in f are captured
by λoutput. Thus, output(0) operations from (f ()) are replaced by output(1)
and vice-versa, and all other writes are skipped; so in particular v |=F ψ. This
behaviour is similar to that of effect handlers [36]: computation (f ()) is being
handled by handler h. We leave for future work the study of handlers in ECPS
and of their corresponding logic.

6 Concluding Remarks

To summarize, we have studied program equivalence for a higher-order CPS lan-
guage with general algebraic effects and general recursion (Sect. 2). Our main
contribution is a logic F of program properties (Sect. 3) whose induced pro-
gram equivalence coincides with contextual equivalence (Theorem 1; Sect. 4).
Previous work on algebraic effects concentrated on logics that are sound for con-
textual equivalence, but not complete [35,38]. Moreover, F-logical equivalence
also coincides with applicative bisimilarity for our language. We exemplified our
results for nondeterminism, probabilistic choice, global store and I/O. A next
step would be to consider local effects (e.g. [22,33,37,39]) or normal form bisim-
ulation (e.g. [6]).
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